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PREFACE 

TN  the  Easter  Term  of  the  present  year  I  delivered  a  short  course 

of  six  Professorial  Lectures  on  the  history  of  the  problem  of  the 

quadrature  of  the  circle,  in  the  hope  that  a  short  account  of  the 

fortunes  of  this  celebrated  problem  might  not  only  prove  interesting 

in  itself,  but  might  also  act  as  a  stimulant  of  interest  in  the  more 

general  history  of  Mathematics.  It  has  occurred  to  me  that,  by  the 

publication  of  the  Lectures,  they  might  perhaps  be  of  use,  in  the 

same  way,  to  a  larger  circle  of  students  of  Mathematics. 

The  account  of  the  problem  here  given  is  not  the  result  of  any 

independent  historical  research,  but  the  facts  have  been  taken  from 

the  writings  of  those  authors  who  have  investigated  various  parts  of 

the  history  of  the  problem. 

The  works  to  which  I  am  most  indebted  are  the  very  interesting 

book  by  Prof.  F.  Rudio  entitled  "Archimedes,  Huygens,  Lambert, 

Legendre.  Vier  Abhandlungen  iiber  die  Kreismessung "  (Leipzig, 

1892),  and  Sir  T.  L.  Heath's  treatise  "  The  works  of  Archimedes  " 

(Cambridge,  1897).  I  have  also  made  use  of  Cantor's  "Geschichte  der 

Mathematik,"  of  Vahlen's  "  Konstruktionen  und  Approximationen " 

(Leipzig,  1911),  of  Yoshio  Mikami's  treatise  "The  development  of 

Mathematics  in  China  and  Japan"  (Leipzig,  1913),  of  the  translation 

by  T.  J.  McCormack  (Chicago,  1898)  of  H.  Schubert's  "  Mathematical 

Essays  and  Recreations,"  and  of  the  article  "  The  history  and  trans- 

cendence of  TT  "  written  by  Prof.  D.  E.  Smith  which  appeared  in  the 

"Monographs  on  Modern  Mathematics"  edited  by  Prof.  J.  W.  A. 
Young.  On  special  points  I  have  consulted  various  other  writings. 

E.  W.  H. 

CHRIST'S  COLLEGE,  CAMBRIDGE. 
October,  1913. 
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CHAPTEE  I 

GENERAL   ACCOUNT   OF   THE    PROBLEM 

A  GENERAL  survey  of  the  history  of  thought  reveals  to  us  the  fact 
of  the  existence  of  various  questions  that  have  occupied  the  almost 
continuous  attention  of  the  thinking  part  of  mankind  for  long  series  of 
centuries.  Certain  fundamental  questions  presented  themselves  to  the 
human  mind  at  the  dawn  of  the  history  of  speculative  thought,  and 
have  maintained  their  substantial  identity  throughout  the  centuries, 
although  the  precise  terms  in  which  such  questions  have  been  stated 
have  varied  from  age  to  age  in  accordance  with  the  ever  varying 
attitude  of  mankind  towards  fundamentals.  In  general,  it  may  be 
maintained  that,  to  such  questions,  even  after  thousands  of  years  of 
discussion,  no  answers  have  been  given  that  have  permanently  satisfied 
the  thinking  world,  or  that  have  been  generally  accepted  as  final 
solutions  of  the  matters  concerned.  It  has  been  said  that  those 

problems  that  have  the  longest  history  are  the  insoluble  ones. 
If  the  contemplation  of  this  kind  of  relative  failure  of  the  efforts  of 

the  human  mind  is  calculated  to  produce  a  certain  sense  of  depression, 
it  may  be  a  relief  to  turn  to  certain  problems,  albeit  in  a  more  restricted 
domain,  that  have  occupied  the  minds  of  men  for  thousands  of  years, 
but  which  have  at  last,  in  the  course  of  the  nineteenth  century, 
received  solutions  that  we  have  reasons  of  overwhelming  cogency  to 
regard  as  final.  Success,  even  in  a  comparatively  limited  field,  is 
some  compensation  for  failure  in  a  wider  field  of  endeavour.  Our 
legitimate  satisfaction  at  such  exceptional  success  is  but  slightly 
qualified  by  the  fact  that  the  answers  ultimately  reached  are  in  a 
certain  sense  of  a  negative  character.  We  may  rest  contented  with 
proofs  that  these  problems,  in  their  original  somewhat  narrow  form, 
are  insoluble,  provided  we  attain,  as  is  actually  the  case  in  some 
celebrated  instances,  to  a  complete  comprehension  of  the  grounds, 
resting  upon  a  thoroughly  established  theoretical  basis,  upon  which 
our  final  conviction  of  the  insolubility  of  the  problems  is  founded. 
H.  1 
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The  three  celebrated  problems  of  the  quadrature  of  the  circle,  the 
trisection  of  an  angle,  and  the  duplication  of  the  cube,  although  all  of 
them  are  somewhat  special  in  character,  have  one  great  advantage  for 
the  purposes  of  historical  study,  viz.  that  their  complete  history  as 
scientific  problems  lies,  in  a  completed  form,  before  us.  Taking  the 
first  of  these  problems,  which  will  be  here  our  special  subject  of  study, 
we  possess  indications  of  its  origin  in  remote  antiquity,  we  are  able  to 
follow  the  lines  on  which  the  treatment  of  the  problem  proceeded  and 

changed  from  age  to  age  in  accordance  with  the  progressive  develop- 
ment of  general  Mathematical  Science,  on  which  it  exercised  a 

noticeable  reaction.  We  are  also  able  to  see  how  the  progress  of 
endeavours  towards  a  solution  was  affected  by  the  intervention  of  some 
of  the  greatest  Mathematical  thinkers  that  the  world  has  seen,  such 
men  as  Archimedes,  Huyghens,  Euler,  and  Hermite.  Lastly,  we 
know  when  and  how  the  resources  of  modern  Mathematical  Science 

became  sufficiently  powerful  to  make  possible  that  resolution  of  the 
problem  which,  although  negative,  in  that  the  impossibility  of  the 
problem  subject  to  the  implied  restrictions  was  proved,  is  far  from  being 
a  mere  negation,  in  that  the  true  grounds  of  the  impossibility  have 
been  set  forth  with  a  finality  and  completeness  which  is  somewhat 
rare  in  the  history  of  Science. 

If  the  question  be  raised,  why  such  an  apparently  special  problem, 
as  that  of  the  quadrature  of  the  circle,  is  deserving  of  the  sustained 
interest  which  has  attached  to  it,  and  which  it  still  possesses,  the 
answer  is  only  to  be  found  in  a  scrutiny  of  the  history  of  the 
problem,  and  especially  in  the  closeness  of  the  connection  of  that 
history  with  the  general  history  of  Mathematical  Science.  It  would 
be  difficult  to  select  another  special  problem,  an  account  of  the  history 
of  which  would  afford  so  good  an  opportunity  of  obtaining  a  glimpse 

of  so  many  of  the  main  phases  of  the  development  of  general  Mathe- 
matics ;  and  it  is  for  that  reason,  even  more  than  on  account  of  the 

intrinsic  interest  of  the  problem,  that  I  have  selected  it  as  appropriate 
for  treatment  in  a  short  course  of  lectures. 

Apart  from,  and  alongside  of,  the  scientific  history  of  the  problem, 
it  has  a  history  of  another  kind,  due  to  the  fact  that,  at  all  times,  and 
almost  as  much  at  the  present  time  as  formerly,  it  has  attracted  the 
attention  of  a  class  of  persons  who  have,  usually  with  a  very  inadequate 
equipment  of  knowledge  of  the  true  nature  of  the  problem  or  of  its 
history,  devoted  their  attention  to  it,  often  with  passionate  enthusiasm. 
Such  persons  have  very  frequently  maintained,  in  the  face  of  all  efforts 
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at  refutation  made  by  genuine  Mathematicians,  that  they  had  obtained 
a  solution  of  the  problem.     The  solutions  propounded  by  the  circle 
squarer  exhibit  every  grade  of  skill,  varying  from  the  most  futile 
attempts,  in  which  the  writers  shew  an  utter  lack  of  power  to  reason 
correctly,   up  to   approximate   solutions  the   construction  of  which 
required  much  ingenuity  on  the  part  of  their  inventor.     In  some  cases 
it  requires  an  effort  of  sustained  attention  to  find  put  the  precise 
point  in  the  demonstration  at  which  the  error  occurs,  or  in  which  an 
approximate   determination  is  made  to  do  duty  for  a  theoretically 
exact  one.     The  psychology  of  the  scientific  crank  is  a  subject  with 
which  the   officials  of  every  Scientific  Society  have  some  practical 
acquaintance.      Every  Scientific  Society  still  receives  from  time  to 
time  communications  from  the   circle   squarer  and  the  trisector  of 
angles,   who    often   make    amusing    attempts   to   disguise    the    real 
character  of  their  essays.     The  solutions  propounded  by  such  persons 

usually  involve  some  misunderstanding  as  to  the  nature  of  the  con- 
ditions under  which  the  problems  are  to  be  solved,  and  ignore  the 

difference  between  an  approximate  construction  and  the  solution  of 
the  ideal  problem.     It  is  a  common  occurrence  that  such  a  person 
sends  his   solution   to   the    authorities   of   a   foreign  University  or 

Scientific   Society,   accompanied   by  a  statement    that  the  men   of 

Science  of  the  writer's  own  country  have  entered  into  a  conspiracy  to 
suppress  his  work,  owing  to  jealousy,  and  that  he  hopes  to  receive 
fairer  treatment  abroad.     The  statement  is  not  infrequently  accom- 

panied with  directions  as  to  the  forwarding  of  any  prize  of  which  the 
writer  may  be  found  worthy  by  the  University  or  Scientific  Society 
addressed,   and   usually  indicates    no    lack  of   confidence  that   the 
bestowal  of  such  a  prize  has  been  amply  deserved  as  the  fit  reward  for 
the  final  solution  of  a  problem  which  has  baffled  the  efforts  of  a  great 
multitude  of  predecessors  in  all  ages.     A  very  interesting  detailed 
account  of  the  peculiarities  of  the  circle  squarer,  and  of  the  futility  of 
attempts  on  the  part  of  Mathematicians  to  convince  him  of  his  errors, 

will  be  found  in  Augustus  De  Morgan's  Budget  of  Paradoxes.     As 
early  as  the  time  of  the  Greek  Mathematicians  circle-squaring  occupied 
the  attention  of  non-Mathematicians  ;  in  fact  the  Greeks  had  a  special 

word  to  denote  this  kind  of  activity,  viz.  reTpaytovi&Lv,  which  means  to 

occupy  oneself  with  the  quadrature.     It  is  interesting  to  remark  that, 

in  the  year  1775,  the  Paris  Academy  found  it  necessary  to  protect  its 

officials  against  the  waste  of  time  and  energy  involved  in  examining 

the  efforts  of  circle  squarers.     It  passed  a  resolution,  which  appears 

1—2 

/ 
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in  the  Minutes  of  the  Academy*,  that  no  more  solutions  were  to  be 
examined  of  the  problems  of  the  duplication  of  the  cube,  the  trisection 
of  the  angle,  the  quadrature  of  the  circle,  and  that  the  same  resolution 
should  apply  to  machines  for  exhibiting  perpetual  motion.  An  account 
of  the  reasons  which  led  to  the  adoption  of  this  resolution,  drawn  up 
by  Condorcet,  who  was  then  the  perpetual  Secretary  of  the  Academy, 

is  appended.  It  is  interesting  to  remark  the  strength  of  the  convic- 
tion of  Mathematicians  that  the  solution  of  the  problem  is  impossible, 

more  than  a  century  before  an  irrefutable  proof  of  the  correctness  of 
that  conviction  was  discovered. 

The  popularity  of  the  problem  among  non-Mathematicians  may 
seem  to  require  some  explanation.  No  doubt,  the  fact  of  its  com- 

parative obviousness  explains  in  part  at  least  its  popularity;  unlike 

many  Mathematical  problems,  its  nature  can  in  some  sense  be  under- 
stood by  anyone ;  although,  as  we  shall  presently  see,  the  very  terms 

in  which  it  is  usually  stated  tend  to  suggest  an  imperfect  apprehension 
of  its  precise  import.  The  accumulated  celebrity  which  the  problem 

attained,  as  one  of  proverbial  difficulty,  makes  it  an  irresistible  attrac- 
tion to  men  with  a  certain  kind  of  mentality.  An  exaggerated  notion 

of  the  gain  which  would  accrue  to  mankind  by  a  solution  of  the 
problem  has  at  various  times  been  a  factor  in  stimulating  the  efforts 
of  men  with  more  zeal  than  knowledge.  The  man  of  mystical 
tendencies  has  been  attracted  to  the  problem  by  a  vague  idea  that  its 
solution  would,  in  some  dimly  discerned  manner,  prove  a  key  to  a 
knowledge  of  the  inner  connections  of  things  far  beyond  those  with 
which  the  problem  is  immediately  connected. 

Statement  of  the  problem 

The  fact  was  well  known  to  the  Greek  Geometers  that  the  problems 
of  the  quadrature  and  the  rectification  of  the  circle  are  equivalent 
problems.  It  was  in  fact  at  an  early  time  established  that  the  ratio  of 
the  length  of  a  complete  circle  to  the  diameter  has  a  definite  value 
equal  to  that  of  the  area  of  the  circle  to  that  of  a  square  of  which  the 
radius  is  side.  Since  the  time  of  Euler  this  ratio  has  always  been 

denoted  by  the  familiar  notation  IT.  The  problem  of  "squaring  the 

circle  "  is  roughly  that  of  constructing  a  square  of  which  the  area  is 
equal  to  that  enclosed  by  the  circle.  This  is  then  equivalent  to  the 
problem  of  the  rectification  of  the  circle,  i.e.  of  the  determination  of  a 

*  Hi$toire  de  VAcadtmie  royale,  ann^e  1775,  p.  61. 
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straight  line,  of  which  the  length  is  equal  to  that  of  the  circumference 
of  the  circle.  But  a  problem  of  this  kind  becomes  definite  only  when  it 
is  specified  what  means  are  to  be  at  our  disposal  for  the  purpose  of 
making  the  required  construction  or  determination;  accordingly,  in 
order  to  present  the  statement  of  our  problem  in  a  precise  form,  it  is 
necessary  to  give  some  preliminary  explanations  as  to  the  nature  of 
the  postulations  which  underlie  all  geometrical  procedure. 

The  Science  of  Geometry  has  two  sides ;  on  the  one  side,  that  of 
practical  or  physical  Geometry,  it  is  a  physical  Science  concerned  with 
the  actual  spatial  relations  of  the  extended  bodies  which  we  perceive 
in  the  physical  world.  It  was  in  connection  with  our  interests,  of  a 
practical  character,  in  the  physical  world,  that  Geometry  took  its 
origin.^  Herodotus  ascribes  its  origin  in  Egypt  to  the  necessity  of 
measuring  the  areas  of  estates  of  which  the  boundaries  had  been 

obliterated  by  the  inundations  of  the  Nile,  the  inhabitants  being  com- 
pelled, in  order  to  settle  disputes,  to  compare  the  areas  of  fields  of 

different  shapes.  On  this  side  of  Geometry,  the  objects  spoken  of, 
such  as  points,  lines,  &c.,  are  physical  objects ;  a  point  is  a  very  small 
object  of  scarcely  perceptible  and  practically  negligible  dimensions  ;  a 
line  is  an  object  of  small,  and  for  some  purposes  negligible,  thickness  ; 
and  so  on.  The  constructions  of  figures  consisting  of  points,  straight 
lines,  circles,  &c.,  which  we  draw,  are  constructions  of  actual  physical 

objects.  In  this  domain,  the  possibility  of  making  a  particular  con- 
struction is  dependent  upon  the  instruments  which  we  have  at  our 

disposal. 
On  the  other  side  of  the  subject,  Geometry  is  an  abstract  or 

rational  Science  which  deals  with  the  relations  of  objects  that  are  no 
longer  physical  objects,  although  these  ideal  objects,  points,  straight 
lines,  circles,  &c.,  are  called  by  the  same  names  by  which  we  denote 
their  physical  counterparts.  At  the  base  of  this  rational  Science  there 
lies  a  set  of  definitions  and  postulations  which  specify  the  nature  of 
the  relations  between  the  ideal  objects  with  which  the  Science  deals. 
These  postulations  and  definitions  were  suggested  by  our  actual 
spatial  perceptions,  but  they  contain  an  element  of  absolute  exactness 
which  is  wanting  in  the  rough  data  provided  by  our  senses.  The 
objects  of  abstract  Geometry  possess  in  absolute  precision  properties 
which  are  only  approximately  realized  in  the  corresponding  objects  of 
physical  Geometry.  In  every  department  of  Science  there  exists  in  a 
greater  or  less  degree  this  distinction  between  the  abstract  or  rational 
side  and  the  physical  or  concrete  side;  and  the  progress  of  each 
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department  of  Science  involves  a  continually  increasing  amount  of 
rationalization.  In  Geometry  the  passage  from  a  purely  empirical 
treatment  to  the  setting  up  of  a  rational  Science  proceeded  by  much 
more  rapid  stages  than  in  other  cases.  We  have  in  the  Greek 
Geometry,  known  to  us  all  through  the  presentation  of  it  given  in  that 

oldest  of  all  scientific  text  books,  Euclid's  Elements  of  Geometry,  a 
treatment  of  the  subject  in  which  the  process  of  rationalization  has 
already  reached  an  advanced  stage.  The  possibility  of  solving  a 

particular  problem  of  determination,  such  as  the  one  we  are  con- 
templating, as  a  problem  of  rational  Geometry,  depends  upon  the 

postulations  that  are  made  as  to  the  allowable  modes  of  determination 

of  new  geometrical  elements  by  means  of  assigned  ones.  The  restric- 
tion in  practical  Geometry  to  the  use  of  specified  instruments  has  its 

counterpart  in  theoretical  Geometry  in  restrictions  as  to  the  mode  in 
which  new  elements  are  to  be  determined  by  means  of  given  ones.  As 
regards  the  postulations  of  rational  Geometry  in  this  respect  there  is 
a  certain  arbitrariness  corresponding  to  the  more  or  less  arbitrary 
restriction  in  practical  Geometry  to  the  use  of  specified  instruments. 

The  ordinary  obliteration  of  the  distinction  between  abstract  and 
physical  Geometry  is  furthered  by  the  fact  that  we  all  of  us,  habitually 
and  almost  necessarily,  consider  both  aspects  of  the  subject  at  the 
same  time.  We  may  be  thinking  out  a  chain  of  reasoning  in  abstract 
Geometry,  but  if  we  draw  a  figure,  as  we  usually  must  do  in  order  to 
fix  our  ideas  and  prevent  our  attention  from  wandering  owing  to  the 
difficulty  of  keeping  a  long  chain  of  syllogisms  in  our  minds,  it  is 
excusable  if  we  are  apt  to  forget  that  we  are  not  in  reality  reasoning 
about  the  objects  in  the  figure,  but  about  objects  which  are  their 
idealizations,  and  of  which  the  objects  in  the  figure  are  only  an 
imperfect  representation.  Even  if  we  only  visualize,  we  see  the  images 
of  more  or  less  gross  physical  objects,  in  which  various  qualities 
irrelevant  for  our  specific  purpose  are  not  entirely  absent,  and  which 
are  at  best  only  approximate  images  of  those  objects  about  which  we 
are  reasoning. 

It  is  usually  stated  that  the  problem  of  squaring  the  circle,  or  the 
equivalent  one  of  rectifying  it,  is  that  of  constructing  a  square  of  an 
area  equal  to  that  of  the  circle,  or  in  the  latter  case  of  constructing 
a  straight  line  of  length  equal  to  that  of  the  circumference,  by  a 
method  which  involves  the  use  only  of  the  compass  and  of  the  ruler  as 

a  single  straight-edge.  This  mode  of  statement,  although  it  indicates 
roughly  the  true  statement  of  the  problem,  is  decidedly  defective  in 
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that  it  entirely  leaves  out  of  account  the  fundamental  distinction 
between  the  two  aspects  of  Geometry  to  which  allusion  has  been  made 

above.  The  compass  and  the  straight-edge  are  physical  objects  by  the 
use  of  which  other  objects  can  be  constructed,  viz.  circles  of  small 
thickness,  and  lines  which  are  approximately  straight  and  very  thin, 
made  of  ink  or  other  material.  Such  instruments  can  clearly  have  no 
direct  relation  to  theoretical  Geometry,  in  which  circles  and  straight 
lines  are  ideal  objects  possessing  in  absolute  precision  properties  that 
are  only  approximately  realized  in  the  circles  and  straight  lines  that 
can  be  constructed  by  compasses  and  rulers.  In  theoretical  Geometry, 
a  restriction  to  the  use  of  rulers  and  compasses,  or  of  other  instru- 

ments, must  be  replaced  by  corresponding  postulations  as  to  the 
allowable  modes  of  determination  of  geometrical  objects.  We  will  see 
what  these  postulations  really  are  in  the  case  of  Euclidean  Geometry. 
Every  Euclidean  problem  of  construction,  or  as  it  would  be  preferable 

to  say,  every  problem  of  determination,  really  consists  in  the  deter- 
mination of  one  or  more  points  which  shall  satisfy  prescribed  conditions. 

We  have  here  to  consider  the  fundamental  modes  in  which,  when  a 
number  of  points  are  regarded  as  given,  or  already  determined,  a  new 
point  is  allowed  to  be  determined. 

Two  of  the  fundamental  postulations  of  Euclidean  Geometry  are 
that,  having  given  two  points  A  and  B,  then  (1)  a  unique  straight 
line  (A,  B)  (the  whole  straight  line,  and  not  merely  the  segment 
between  A  and  B)  is  determined  such  that  A  and  B  are  incident  on 
it,  and  (2)  that  a  unique  circle  A  (B\  of  which  A  is  centre  and  on 
which  B  is  incident,  is  determined.  The  determinancy  or  assumption 

of  existence  of  such  straight  lines  and  circles  is  in  theoretical  Geo- 
metry sufficient  for  the  purposes  of  the  subject.  When  we  know  that 

these  objects,  having  known  properties,  exist,  we  may  reason  about 
them  and  employ  them  for  the  purposes  of  our  further  procedure ;  and 

that  is  sufficient  for  our  purpose.  The  notion  of  drawing  or  con- 
structing them  by  means  of  a  straight-edge  or  compass  has  no 

relevance  to  abstract  Geometry,  but  is  borrowed  from  the  language 
of  practical  Geometry. 

A  new  point  is  determined  in  Euclidean  Geometry  exclusively  in 
one  of  the  three  following  ways  : 

Having  given  four  points  A,  £,  Ct  D,  not  all  incident  on  the  same 
straight  line,  then 

(1)  Whenever  a  point  P  exists  which  is  incident  both  on  (A,  B) 
and  on  (C,  D),  that  point  is  regarded  as  determinate. 
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(2)  Whenever  a  point  P  exists  which  is  incident  both  on  the 
straight  line  (A,  B)  and  on  the  circle  C(D\  that  point  is  regarded  as 
determinate. 

(3)  Whenever  a  point  P  exists  which  is  incident  on  both  the 
circles  A  (B\  C(D\  that  point  is  regarded  as  determinate. 

The  cardinal  points  of  any  figure  determined  by  a  Euclidean 
construction  are  always  found  by  means  of  a  finite  number  of 
successive  applications  of  some  or  all  of  these  rules  (1),  (2)  and  (3). 
Whenever  one  of  these  rules  is  applied  it  must  be  shewn  that  it  does 

not  fail  to  determine  the  point.  Euclid's  own  treatment  is  sometimes 
defective  as  regards  this  requisite ;  as  for  example  in  the  first  pro- 

position of  his  first  book,  in  which  it  is  not  shewn  that  the  circles 
intersect  one  another. 

In  order  to  make  the  practical  constructions  which  correspond  to 
these  three  Euclidean  modes  of  determination,  corresponding  to  (1)  the 
ruler  is  required,  corresponding  to  (2)  both  the  ruler  and  the  compass, 
and  corresponding  to  (3)  the  compass  only. 

As  Euclidean  plane  Geometry  is  concerned  with  the  relations  of 
points,  straight  lines,  and  circles  only,  it  is  clear  that  the  above  system 
of  postulations,  although  arbitrary  in  appearance,  is  the  system  that 

the  exigencies  of  the  subject  would  naturally  suggest.  It  may,  how- 
ever, be  remarked  that  it  is  possible  to  develop  Euclidean  Geometry 

with  a  more  restricted  set  of  postulations.  For  example  it  can  be 
shewn  that  all  Euclidean  constructions  can  be  carried  out  by  means  of 

(3)  alone*,  without  employing  (1)  or  (2). 
Having  made  these  preliminary  explanations  we  are  now  in  a 

position  to  state  in  a  precise  form  the  ideal  problem  of  "  squaring  the 
circle,"  or  the  equivalent  one  of  the  rectification  of  the  circle. 

The  historical  problem  of  "  squaring  the  circle "  is  that  of  deter- 
mining a  square  of  which  the  area  shall  equal  that  of  a  given  circle, 

by  a  method  such  that  the  determination  of  the  corners  of  the  square 
is  to  be  made  by  means  of  the  above  rules  (1),  (2),  (3),  each  of  which 
may  be  applied  any  finite  number  of  times.  In  other  words,  each  new 
point  successively  determined  in  the  process  of  construction  is  to  be 
obtained  as  the  intersection  of  two  straight  lines  already  determined, 

or  as  an  intersection  of  a  straight  line  and  a  circle  already  deter- 
mined, or  as  an  intersection  of  two  circles  already  determined.  A 

*  See  for  example  the  Mathematical  Gazette  for  March  1913,  where  I  have 
treated  this  point  in  detail  in  the  Presidential  Address  to  the  Mathematical 
Association. 
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similar  statement  applies  to  the  equivalent  problem  of  the  rectification 
of  the  circle. 

This  mode  of  determination  of  the  required  figure  we  may  speak  of 
shortly  as  a  Euclidean  determination. 

Corresponding  to  any  problem  of  Euclidean  determination  there  is 
a  practical  problem  of  physical  Geometry  to  be  carried  out  by  actual 
construction  of  straight  lines  and  circles  by  the  use  of  ruler  and  com- 

passes. Whenever  an  ideal  problem  is  soluble  as  one  of  Euclidean 
determination  the  corresponding  practical  problem  is  also  a  feasible 
one.  The  ideal  problem  has  then  a  solution  which  is  ideally  perfect ; 
the  practical  problem  has  a  solution  which  is  an  approximation  limited 
only  by  the  imperfections  of  the  instruments  used,  the  ruler  and  the 
compass;  and  this  approximation  may  be  so  great  that  there  is  no 
perceptible  defect  in  the  result.  fBut  it  is  an  error  which  accounts  I 
think,  in  large  measure,  for  the  aberrations  of  the  circle  squarer  and 
the  trisector  of  angles,  to  assume  the  converse  that,  when  a  practical 
problem  is  soluble  by  the  use  of  the  instruments  in  such  a  way  that 

the  error  is  negligible  or  imperceptible,  the  corresponding  ideal  pro- 
blem is  also  soluble.  This  is  very  far  from  being  necessarily  the  case. 

It  may  happen  that  in  the  case  of  a  particular  ideal  problem  no 
solution  is  obtainable  by  a  finite  number  of  successive  Euclidean 
determinations,  and  yet  that  such  a  finite  set  gives  an  approximation 

jo  the  solution"  which  mav  be  made  as  close  as  we  please  by  taking  tEe~ 
process  far  enough  In  this  case,  although  the  ideal  problem  is  in- 

soluble by  the  means  which  are  permitted,  the  practical  problem  is 
soluble  in  the  sense  that  a  solution  may  be  obtained  in  which  the 

error  is  negligible  or  imperceptible,  whatever  standard  of  possible 
perceptions  we  may  employj  As  we  have  seen,  a  Euclidean  problem 
of  construction  is  reducible  to  the  determination  of  one  or  more  points 

which  satisfy  prescribed  conditions.  Let  P  be  one  such  point ;  then 
it  may  be  possible  to  determine  in  Euclidean  fashion  each  point  of  a 
set  P15  P2,  ...  Pn,  ...  of  points  which  converge  to  P  as  limiting  point, 
and  yet  the  point  P  may  be  incapable  of  determination  by  Euclidean 
procedure.  This  is  what  we  now  know  to  be  the  state  of  things  in  the 
case  of  our  special  problem  of  the  quadrature  of  the  circle  by  Euclidean 
determination.  As  an  ideal  problem  it  is  not  capable  of  solution,  but  \\f 

the  corresponding  practical  problem  is  capable  of  solution  with  an"^ accuracy  bounded  only  by  the  limitations  of  our  perceptions  and  the 
imperfections  of  the  instruments  employed.  Ideally  we  Cjm. 

determine  by  Euclidean  methods  a  square  of  which  the  area  differs 
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from  that  of  a  given  circle  by  less  than  an  arbitrarily  prescribed 
magnitude,  although  \ve  cannot  pass  to  the  limit.  We  ran  obtain 
solutions  of  the  corresponding  physical  problem  which  leave  nothing 
to  be  desired  from  the  practical  point  of  view.  Such  is  the  answer 
which  has  been  obtained  to  the  question  raised  in  this  celebrated 
historical  problem  of  Geometry.  I  propose  to  consider  in  some  detail 
the  various  modes  in  which  the  problem  has  been  attacked  by  people 
of  various  races,  and  through  many  centuries ;  how  the  modes  of 

attack  have  been  modified  by  the  progressive  development  of  Mathe- 
matical tools,  and  how  the  final  answer,  the  nature  of  which  had 

been  long  anticipated  by  all  competent  Mathematicians,  was  at  last 
found  and  placed  on  a  firm  basis. 

General  survey  of  the  history  of  the  problem 

The  history  of  our  problem  is  typical  as  exhibiting  in  a  remarkable 
degree  many  of  the  phenomena  that  are  characteristic  of  the  history  of 
Mathematical  Science  in  general.  We  notice  the  early  attempts  at  an 
empirical  solution  of  the  problem  conceived  in  a  vague  and  sometimes 
confused  manner ;  the  gradual  transition  to  a  clearer  notion  of  the 
problem  as  one  to  be  solved  subject  to  precise  conditions.  We  observe 
also  the  intimate  relation  which  the  mode  of  regarding  the  problem  in 
any  age  had  with  the  state  then  reached  by  Mathematical  Science  in 
its  wider  aspect ;  the  essential  dependence  of  the  mode  of  treatment  of 
the  problem  on  the  powers  of  the  existing  tools.  We  observe  the  fact 

that,  as  in  Mathematics  in  general,  thejeallygreat  advances,  embody- 
ing new  ideas  of  far-reaching  fruitfulness,  have  been  due  to  an 

"exceedingly  small  number  of  great  men  ;  and  how  A  great  advance  has 

often" "been  followed  by  a  period  in  which  only  comparatively~sirrall 

improvements  in,  and  detailed  developments  of,  the  new  ideas~7iave been  accomplished  by  a  series  of  men  of  lesser  rank.  We  observe  that 
there  have  been  periods  when  for  a  long  series  of  centuries  no  advance 
was  made ;  when  the  results  obtained  in  a  more  enlightened  age  have 
been  forgotten.  We  observe  the  times  of  revival,  when  the  older 
learning  has  been  rediscovered,  and  when  the  results  of  the  progress 
made  in  distant  countries  have  been  made  available  as  the  starting 
points  of  new  efforts  and  of  a  fresh  period  of  activity. 

The  history  of  our  problem  falls  into  three  periods  marked  out  by 
fundamentally  distinct  differences  in  respect  of  method,  of  immediate 
aims,  and  of  equipment  in  the  possession  of  intellectual  tools.  The 
first  period  embraces  the  time  between  the  first  records  of  empirical 
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determinations  of  the  ratio  of  the  circumference  to  the  diameter  of  a 

circle  until  the  invention  of  the  Differential  and  Integral  Calculus,  in 

the  middle  of  the  seventeenth  •*cenTury!  This  period,  in  which  the 
ideal  of  an  exact  construction  was  never  entirely  lost  sight  of,  and  was 
occasionally  supposed  to  have  been  attained,  was  the  geometrical 
period,  in  which  the  main  activity  consisted  in  the  approximate 

determination  of  TT  by  calculation  of  the  sides  or  -areas  of  regular  i..  j  J 
polygons  in-  and  circum- scribed  to  the  circle.  The  theoretical  ground- 

work of  the  method  was  the  Greek  method  of  Exhaustions.  In  the 

earlier  part  of  the  period  the  work  of  approximation  was  much 
hampered  by  the  backward  condition  of  arithmetic  due  to  the  fact 
that  our  present  system  of  numerical  notation  had  not  yet  been 
invented ;  but  the  closeness  of  the  approximations  obtained  in  spite 
of  this  great  obstacle  are  truly  surprising.  In  the  later  part  of  this 
first  period  methods  were  devised  by  which  approximations  to  the 
value  of  TT  were  obtained  which  require/1  only  a  fraction  of  the  labour 

involved  in  the  earlier  calculations^SnEe* end  of  the  period  the 
method  was  developed  to  so  high  a  ctegree  of  perfection  that  no 
Turther  advance  could  be  hoped  for  on  the  lines  laid  down  by  the 
Greek  Mathematicians  $  for  further  progress  more  powerful  methods 
were  requisite. 

The  second  period,  which  commenced  in  the  middle  of  the  seven- 
teenth century,  and  lasted  for  about  a  century,  was  characterized  by 

the  application  of  the  powerful  analytical  methods  provided  by  the 
new  Analysis  to  the  determination  of  analytical  expressions  for  the 
number  TT  in  the  form  of  convergent  series,  products,  and  continued 
fractions.  The  older  geometrical  forms  of  investigation  gave  way  to 
analytical  processes  in  which  the  functional  relationship  as  applied 

to  the  trigonometrical  functions  became  prominent.  The  new  methods 

of  systematic  representation  gave  rise  to  a  race  of  calculators  of  ir, 

who,  in  their  consciousness  of  the  vastly  enhanced  means  of  calcula- 
tion placed  in  their  hands  by  the  new  Analysis,  proceeded  to  apply 

the  formulae  to  obtain  numerical  approximations  to  TT  to  ever  larger 

numbers  of  places  of  decimals,  although  their  efforts  were  quite  useless 

for  the  purpose  of  throwing  light  upon  the  true  nature  of  that  number. 

At  the  end  of  this  period  no  knowledge  had  been  obtained  as  regards 

^Ahe  number  TT  of  aTkmd  likely  to  throw  light  iipmi  thp.  possibility  or 

i'Jmpbssibility  ot  the  old  historical  problem  nf  flip,  id**]  nnnafaiifltion  ; it  was  not  even  definitely  known  whether  the  number  is  rational  or 

irrational.  However,  one  great  discovery,  destined  to  furnish  the  clue 
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to  the  solution  of  the  problem,  was  made  at  this  time ;  that  of  the 
relation  between  the  two  numbers  IT  and  0,  as  a  particular  case  of 
those  exponential  expressions  for  the  trigonometrical  functions  which 
form  one  of  the  most  fundamentally  important  of  the  analytical 

weapons  forged  during  this  period. 
In  the  third  period,  which  lasted  from  the  middle  of  the  eighteenth 

century  until  late  in  the  nineteenth  century,  attention  was  turned  to 
critical  investigations  of  the  true  nature  of  the  number  TT  itself, 

considered  independently  of  mere  analytical  representations.  7The 
number  was  first  studied  in  respect  of  its  rationality  or,  irrationality, 
and  it  was  shewn  to  be  really  irrational.  When  the  discovery  was 

made  of  the  fundamental  distinction  between  algebraic  and  trans- 
cendental numbers,  i.e.  between  those  numbers  which  can  be,  and 

those  numbers  which  cannot  be,  roots  of  an  algebraical  equation  with 
rational  coefficients,  the  question  arose  to  which  of  these  categories 
the  number  TT  belongs.  It  was  finally  established  by  a  method  which 
involved  the  use  of  some  of  the  most  modern  devices  of  analytical 
investigation  that  the  number  TT  is  transcendental.  When  this  result 
was  combined  with  the  results  of  a  critical  investigation  of  the 
possibilities  of  a  Euclidean  determination,  the  inference  could  be 
made  that  the  number  TT,  being  transcendental,  does  not  admit  of 
construction  either  by  a  Euclidean  determination,  or  even  by  a 
determination  in  which  the  use  of  other  algebraic  curves  besides  the 
straight  line  and  the  circle  is  permitted.  The  answer  to  the  original 
question  thus  obtained  is  of  a  conclusively  negative  character ;  but  it 
is  one  in  which  a  clear  account  is  given  of  the  fundamental  reasons 
upon  which  that  negative  answer  rests. 

We  have  here  a  record  of  human  effort  persisting  throughout  the 
best  part  of  four  thousand  years,  in  which  the  goal  to  be  attained  was 
seldom  wholly  lost  sight  of.  When  we  look  back,  in  the  light  of  the 

completed  history  of  the  problem,  we  are  able  to  appreciate  the  diffi- 
culties which  in  each  age  restricted  the  progress  which  could  be  made 

within  limits  which  could  not  be  surpassed  by  the  means  then  avail- 
able ;  we  see  how,  when  new  weapons  became  available,  a  new  race  of 

thinkers  turned  to  the  further  consideration  of  the  problem  with  a  new 
outlook. 

The  quality  of  the  human  mind,  considered  in  its  collectiv 
aspect,  which  most  strikes  us,  in  surveying  this  record,  is  its  colossa 
patience. 



CHAPTER  II 

THE    FIRST    PERIOD 

Earliest  traces  of  the  problem 

THE  earliest  traces  of  a  determination  of  IT  are  to  be  found  in  the 
Papyrus  Rhind  which  is  preserved  in  the  British  Museum  and  was 

translated  and  explained*  by  Eisenlohr.  It  was  copied  by  a  clerk, 
named  Ahmes,  of  the  king  Raaus,  probably  about  1700  B.C.,  and 
contains  an  account  of  older  Egyptian  writings  on  Mathematics.  It  is 
there  stated  that  the  area  of  a  circle  is  equal  to  that  of  a  square  whose 

side  is  the  diameter  diminished  by  one  ninth ;  thus  A  =  (f)2  d2,  or 

comparing  with  the  formula  A  =  \trd'\  this  would  give 
*•  =  -2*j«=  3-1604-... 

No  account  is  given  of  the  means  by  which  this,  the  earliest  determina- 
tion of  TT,  was  obtained ;  but  it  was  probably  found  empirically. 

The  approximation  IT  =  3,  less  accurate  than  the  Egyptian  one,  was 
known  to  the  Babylonians,  and  was  probably  connected  with  their 
discovery  that  a  regular  hexagon  inscribed  in  a  circle  has  its  side 
equal  to  the  radius,  and  with  the  division  of  the  circumference  into 

6  x  60  =  360  equal  parts. 
This  assumption  (v  =  3)  was  current  for  many  centuries ;  it  is 

implied  in  the  Old  Testament,^!  Kings  vii.  23,  and  in  2  Chronicles  iv. 
2,  where  the  following  statement  occurs  : 

"  Also  he  made  a  molten  sea  of  ten  cubits  from  brim  to  brim,  round 
in  compass,  and  five  cubits  the  height  thereof;  and  a  line  of  thirty 

cubits  did  compass  it  round  about." 
The  same  assumption  is  to  be  found  in  the  Talmud,  where  the 

statement  is  made  "that  which  in  circumference  is  three  hands  broad 

is  one  hand  broad." 

*  Eisenlohr,  Ein  mathematisches  Handbuch  der  alien  Agypter  (Leipzig,  1877). 
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The  earlier  Greek  Mathematicians 

It  is  to  the  Greek  Mathematicians,  the  originators  of  Geometry  as 
an  abstract  Science,  that  we  owe  the  first  systematic  treatment  of  the 
problems  of  the  quadrature  and  rectification  of  the  circle.  The  oldest 

of  the  Greek  Mathematicians,  Thales  of  Miletus  (640 — 548  B.C.)  and 
Pythagoras  of  Samos  (580—500  B.C.),  probably  introduced  the  Egyptian 
Geometry  to  the  Greeks,  but  it  is  not  known  whether  they  dealt  with 
the  quadrature  of  the  circle.  According  to  Plutarch  (in  De  exilio\ 

Anaxagoras  of  Clazomene  (500 — 428  B.C.)  employed  his  time  during 
an  incarceration  in  prison  on  Mathematical  speculations,  and  constructed 
the  quadrature  of  the  circle.  He  probably  made  an  approximate 
construction  of  an  equal  square,  and  was  of  opinion  that  he  had 
obtained  an  exact  solution.  At  all  events,  from  this  time  the  problem 
received  continuous  consideration. 

About  the  year  420  B.C.  Hippias  of  Elis  invented  a  curve  known  as 

the  TCTpayojvi^ovo-a  or  Quadratrix,  which  is  usually  connected  with  the 
name  of  Dinostratus  (second  half  of  the  fourth  century)  who  studied 
the  curve  carefully,  and  who  shewed  that  the  use  of  the  eurve  gives 
a  construction  for  TT. 

This  curve  may  be  described  as  follows,  using  modern  notation. 
Let  a  point  Q  starting  at  A  describe  the  circular  quadrant  AB 

with  uniform  velocity,  and  let  a  point  R 
starting  at  0  describe  the  radius  OB  with 
uniform  velocity,  and  so  that  if  Q  and  R 
start  simultaneously  they  will  reach  the 
point  B  simultaneously.  Let  the  point  P 

be  the  intersection  of  OQ  with  a  line  perpen- 
dicular to  OB  drawn  from  R.  The  locus  of 

P  is  the  quadratrix.  Letting  L  QOA  =  0, 
and  OR  =  y,  the  ratio  y/0  is  constant,  and 
equal  to  2a/w,  where  a  denotes  the  radius  of 
the  circle.  We  have 

FIG.  1. 

the  equation  of  the  curve  in  rectangular  coordinates.     The  curve  will 
intersect  the  x  axis  at  the  point 

x  =  lim  (  y  cot  ~ )  =  2a/?r. 
y  =  0    \  &Q>' 
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If  the  curve  could  be  constructed,  we  should  have  a  construction  for 

the  length  2a/ir,  and  thence  one  for  TT.  It  was  at  once  seen  that  the 
-construction  of  the  curve  itself  involves  the  same  difficulty  as  that  of  ir. 

The  problem  was  considered  by  some  of  the  Sophists,  who  made 

futile  attempts  to  connect  it  with  the  discovery  of  "cyclical  square 
numbers,"  i.e.  such  square  numbers  as  end  with  the  same  cipher  as  the 
number  itself,  as  for  example  25  =  52,  36  =  62 ;  but  the  right  path  to 
a  real  treatment  of  the  problem  was  discovered  by  Antiphon  and 
further  developed  by  Bryson,  both  of  them  contemporaries  of  Socrates 

{469 — 399  B.C.).  Antiphon  inscribed  a  square  in  the  circle  and  passed 
on  to  an  octagon,  16agon,  &c.,  and  thought  that  by  proceeding  far 
enough  a  polygon  would  be  obtained  of  which  the  sides  would  be  so 
small  that  they  would  coincide  with  the  circle.  Since  a  square  can 
always  be  described  so  as  to  be  equal  to  a  rectilineal  polygon,  and 
a  circle  can  be  replaced  by  a  polygon  of  equal  area,  the  quadrature  of 
the  circle  would  be  performed.  That  this  procedure  would  give  only 

an  approximate  solutio^uhe^overlooked.  The  important  improvement 

was  mtrndiicftd^y^JBryson^)>f  considering  circumscribed  as  well  as 
inscribed  polygons :  in  this  procedure  he  foreshadowed  the  notion  JoT 
upper  and  lower  limits  in  a  limiting  process.  He  thought  that  the 
area  of  the  circle  could  be  found  by  taking  the  mean  of  the  areas  of 

Hippocrates_pf  Chios*  who  lived  in  Athens  in  the  second  half  of 

~the  nfth'century  B.C.,  and  wrote  the  first  text  book  on  Geometry,  was 
the  first  to  give  examples  of  curvilinear  areas  which  admit  of  exact 
quadrature.     These  figures  are  the  menisci  or  lunulae  of  Hippocrates. 

If  on  the  sides  of  a  right-angled  triangle  ACB  semi-circles  are 
described  on  the  same  side,  the  sum  of 
the  areas  of  the  two  lunes  AEC,  BDC 
is  equal  to  that  of  the  triangle  A  CB. 

If  the  right-angled  triangle  is  isosceles, 
the  two  lunes  are  equal,  and  each  of 
them  is  half  the  area  of  the  triangle. 

Thus  the  area  of  a  lunula  is  found.  FlG-  2- 

If  AC=CD  =  DB  =  radius  OA  (see  Fig.  3),  the  semi-circle  ACE 
is  J  of  the  semi-circle  ACDB.     We  have  now 

DAB-3DAC  =  ACDB  -  3  .  meniscus  ACE, 

^ind    each    of   these    expressions    is   \\)AB    or   half   the    circle    on 
AB  as    diameter.      If   then   the   meniscus   AEC  were   quadrable 
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O 

FIG.  3. 

so  also  would  be  the  circle  on  \AB  as  diameter.  Hippocrates 
recognized  the  fact  that  the  meniscus  is  not  quadrable,  and  he  made 
attempts  to  find  other  quadrable 

lunulae  in  order  to  make  the  quad- 
rature of  the  circle  depend  on  that 

of  such  quadrable  lunulae.  The 
question  of  the  existence  of  various 
kinds  of  quadrable  lunulae  was 

taken  up  by  Th.  Clausen*  in  1840, 
who  discovered  four  other  quad- 

rable lunulae  in  addition  to  the 

one  mentioned  above.  The  question  was  considered  in  a  general 
manner  by  Professor  Landau  t  of  Gottingen  in  1890,  who  pointed  out 
that  two  of  the  four  lunulae  which  Clausen  supposed  to  be  new  were 
already  known  to  Hippocrates. 

From  the  time  of  Plato  (429 — 348  B.C.),  who  emphasized  the 
distinction  between  Geometry  which  deals  with  incorporeal  things  or 
images  of  pure  thought  and  Mechanics  which  is  concerned  with  things 
in  the  external  world,  the  idea  became  prevalent  that  problems  such  as 
that  with  which  we  are  concerned  should  be  solved  by  Euclidean 
determination  only,  equivalent  on  the  practical  side  to  the  use  of  two 
instruments  only,  the  ruler  and  the  coin] 

The  work  of  Archimedes     ) 

The  first  really  scientific  treatment  of  the  problem  was  undertaken 
by  the  greatest  of  all  the  Mathematicians  of  antiquity,  Archimedes 

(287 — 212  B.C.).  In  order  to  understand  the  mode  in  which  he 
actually  established  his  very  important  approximation  to  the  value  of 
it  is  necessary  for  us  to  consider  in  some  detail  the  Greek  method  01 
dealing  with  problems  of  limits,  which  in  the  hands  of  Archimedes 
provided  a  method  of  performing  genuine  integrations,  such  as  his 

determination  of  the  area  of  a  segment  of  a  parabola,  and  of  a  con- 
siderable number  of  areas  and  volumes. 

This  method  is  that  known  as  the  method  of  exhaustions,  and 
rests  on  a  principle  stated  in  the  enunciation  of  Euclid  x.  1 ,  as  follows 

"  Two  unequal  magnitudes  being  set  out,  if  from  the  greater  thert 
be  subtracted  a  magnitude  greater  than  its  half,  and  from  that  which 

*  Journal  fUr  Mathematik,  vol.  21,  p.  375. 
t  Archiv  Math.  Physik  (3)  4  (1903). 
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is  left  a  magnitude  greater  than  its  half,  and  if  this  process  be  repeated 
continually,  there  will  be  left  some  magnitude  which  will  be  less  than 

the  lesser  magnitude  set  out/' 
This  principle  is  deduced  by  Euclid  from  the  axiom  that,  if  there 

are  two  magnitudes  of  the  same  kind,  then  a  multiple  of  the  smaller 
one  can  be  found  which  will  exceed  the  greater  one.  This  latter  axiom 
is  given  by  Euclid  in  the  form  of  a  definition  of  ratio  (Book  v.  def.  4), 
and  is  now  known  as  the  axiom  of  Archimedes,  although,  as  Archimedes 
himself  states  in  the  introduction  to  his  work  on  the  quadrature  of  the 
parabola,  it  was  known  and  had  been  already  employed  by  earlier 

Geometers.  The  importance  of  this  so-called  axiom  of  Archimedes, 
now  generally  considered  as  a  postulate,  has  been  widely  recognized  in 
connection  with  the  modern  views  as  to  the  arithmetic  continuum  and 

the  theory  of  continuous  magnitude.  The  attention  of  Mathematicians 

was  directed  to  it  by  0.  Stolz*,  who  shewed  that  it  was  a  consequence  of 

Dedekind's  postulate  relating  to  "sections."  The  possibility  of  dealing 
with  systems  of  numbers  or  of  magnitudes  for  which  the  principle  does 
not  hold  has  been  considered  by  Veronese  and  other  Mathematicians, 

who  contemplate  non- Archimedean  systems,  i.e.  systems  for  which 
this  postulate  does  not  hold.  The  acceptance  of  the  postulate  is 
equivalent  to  the  ruling  out  of  infinite  and  of  infinitesimal  magnitudes 
or  numbers  as  existent  in  any  system  of  magnitudes  or  of  numbers 
for  which  the  truth  of  the  postulate  is  accepted. 

The  example  of  the  use  of  the  method  of  exhaustions  which  is  most 
familiar  to  us  is  contained  in  the  proof  given  in  Euclid  xn.  2,  that  the 
areas  of  two  circles  are  to  one  another  as  the  squares  on  their  diameters. 
This  theorem  which  is  a  presupposition  of  the  reduction  of  the  problem 
of  squaring  the  circle  to  that  of  the  determination  of  a  definite  ratio  TT 

is  said  to  have  been  proved  by  Hippocrates^  and  the  proof  given  by 
Euclid  is  pretty  certainly  due  tQ^Eudoxus,^o  whom  various  other 

applications  of  the  method  of  Exhatmtiofts-  are  specifically  attributed 

by  Archimedes.  JRnclid  shews  that  the_circle  can  be  <( exhausted^by 
the  in^criptiojx_Q£a.  oQqiior>nQ  nf  rftffn1ar  polygons  each  of  which  has  twice 
as  many  sides  as  the  preceding  one.  He  shews  that  the  area  of  the  - 

hiserrbecl"'square  exceeds  half  the  area  of  the  circle  ;  he  then  passes  to  ̂  
an  octagon  by  bisecting  the  arcs  bounded  by  the  sides  of  the  square*^. 
He  shews  that  the  excess  of  the  area  of  the  circle  over  that  of  the 

octagon  is  less  than  half  what  is  left  of  the  circle  when  the  square  is 
/removed  from  it,  and  so  on  through  the  further  stages  of  the  process. 

*  See  Math.  Annalen,  vol.  22,  p.  504,  and  vol.  39,  p.  107. 

H.  2 
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The  truth  of  the  theorem  is  then  inferred  by  shewing  that  a  contrary 

assumption  leads  to  a  contradiction. 
A  study  of  the  works  of  Archimedes,  now  rendered  easily  accessible 

to  us  in  Sir  T.  L.  Heath's  critical  edition,  is  of  the  greatest  interest 
not  merely  from  the  historical  point  of  view  but  also  as  affording 
a  very  instructive  methodological  study  of  rigorous  treatment  of 
problems  of  determination  of  limits.  The  method  by  which  Archimedes 
and  other  Greek  Mathematicians  contemplated  limit  problems  impresses 
one,  apart  from  the  geometrical  form,  with  its  essentially  modern  way 
of  regarding  such  problems.  In  the  application  of  the  method  of 
exhaustions  and  its  extensions  no  use  is  made  of  the  ideas  of  the 

infinite  or  the  infinitesimal;  there  is  no  jumping  to  the  limit  as  the 
supposed  end  of  an  essentially  endless  process,  to  be  reached  by  some 

inscrutable  saltus.  This  passage  to  the  limit-is  always,  evaded  by 
substituting  a  proof  in  the  form  of  a  reductio  ad  absurdum,  involving 
the  use  of  inequalities  such  as  we  Have  in  recent  times  again  adopted 
as  appropriate  to  a  rigorous  treatment  of  such  matters.  Thus  the 
Greeks,  who  were  however  thoroughly  familiar  with  all  the  difficulties 
as  to  infinite  divisibility,  continuity,  &c.,  in  their  mathematical  proofs 
of  limit  theorems  never  involved  themselves  in  the  morass  of  indivisibles, 
indiscernibles,  infinitesimals,  &c.,  in  which  the  Calculus  after  its 
invention  by  Newton  and  Leibnitz  became  involved,  and  from  which 
our  own  text  books  are  not  yet  completely  free. 

The  essential  rigour  of  the  processes  employed  by  Archimedes,  with 
such  fruitful  results,  leaves,  according  to  our  modern  views,  one  point 
open  to  criticism.  The  Greeks  never  doubted  that  a  circle  has  a 
definite  area  in  the  same  sense  that  a  rectangle  has  one ;  nor  did  they 
doubt  that  a  circle  has  a  length  in  the  same  sense  that  a  straight  line 

has  one.  They  had  not  contemplated  the  notion  of  non-rectifiable 
curves,  or  non-quadrable  areas;  to  them  the  existence  of  areas  and 
lengths  as  definite  magnitudes  was  obvious  from  intuition.  At  the 
present  time  we  take  only  the  length  of  a  segment  of  a  straight  line, 
the  area  of  a  rectangle,  and  the  volume  of  a  rectangular  parallelepiped 
as  primary  notions,  and  other  lengths,  areas,  and  volumes  we  regard  as 
derivative,  the  actual  existence  of  which  in  accordance  with  certain  de- 

finitions requires  to  be  established  in  each  individual  case  or  in  particular 
classes  of  cases.  For  example,  the  measure  of  the  length  of  a  circle  is 
defined  thus:  A  sequence  of  inscribed  polygons  is  taken  so  that  the 
number  of  sides  increases  indefinitely  as  the  sequence  proceeds,  and 
such  that  the  length  of  the  greatest  side  of  the  polygon  diminishes 
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indefinitely,  then  if  the  numbers  which  represent  the  perimeters  of  the 
successive  polygons  form  a  convergent  sequence,  of  which  the  arithmetical 
limit  is  one  and  the  same  number  for  all  sequences  of  polygons  which 
satisfy  the  prescribed  conditions,  the  circle  has  a  length  represented 

by  this  limit.  It  must  be  proved  that  this  limiFexisls~an3"Ts  inde- 
pendent of  the  particular  sequence  employed,  before  we  are  entitled  to 

regard  the  circle  as  rectifiable. 

In  his  work  KVK\OV  /xeVpr/o-is,  the  measurement  of  a  circle,  Archimedes 
proves  the  following  three  theorems. 

(1)  The  area  of  any  circle  is  equal  to  a  right-angled  triangle  in 
which  one  of  the  sides  about  the  right  angle  is  equal  to  the  radius, 
and  the  other  to  the  circumference,  of  the  circle. 

(2)  The  area  of  the  circle  is  to  the  square  on  its  diameter  as  11  to 
14. 

(3)  The  ratio  of  the  circumference  of  any  circle  to  its  diameter  is 
less  than  3^  but  greater  than  3|f. 

It  is  clear  that  (2)  must  be  regarded  as  entirely  subordinate  to  (3). 
In  order  to  estimate  the  accuracy  of  the  statement  in  (3),  we  observe 
that 

3^=3-14285...,     3}?  =  314084...,     TT  =  3*14159.... 
In  order  to  form  some  idea  of  the  wonderful  power  displayed  by 

Archimedes  in  obtaining  these  results  with  the  very  limited  means  at 

his  disposal,  it  is  necessary  to  describe  briefly  the  details  of  the  method 
he  employed. 

His  first  theorem  is  established  by  using  sequences  of  in-  and 
circum-scribed  polygons  and  a  reductio  ad  absurdum,  as  in  Euclid  xn. 
2,  by  the  method  already  referred  to  above. 

In  order  to  establish  the  first  part  of  (3),  Archimedes  considers 

a  regular  hexagon  circumscribed  to  the  circle. 
In  the  figure,  A  C  is  half  one  of  the  sides  of  this  hexagon.     Then 

OA       i-     265 

Bisecting  the  angle  AOC,  we  obtain  AD  half  the  side  of  a  regular 

circumscribed  12agon.     It  is  then  shewn  that  --   >  --    .     If  OE  is 

the  bisector  of  the  angle  DOA,  AE  is  half  the  side  of  a  circum- /~\  Tfl  .. 

scribed   24agon,   and  it  is  then  shewn  that   •r>    -.     8  •      Next, 

bisecting  EOA,  we  obtain  AF  the  half  side  of  a  48agon,  and  it 

2—2 
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OJP     23394- 
is  shewn  that  -       >          *  .     Lastly  if  OG  (not  shewn  in  the  figure) 

be  the  bisector  of  FOA,  AG  is  the  half  side  of  a  regular  96agon 

circumscribing  the  circle,  and  it  is   shewn   that  -77,  >         p-,  and -a.  Or  lOO 

thence  that  the  ratio  of  the  diameter  to  the  perimeter  of  the  96agon 

FIG.  4. 

is  >  -     -  ,  and  it  is  deduced  that  the  circumference  of  the  circle, 14688 

which  is  less  than  the  perimeter  of  the  polygon,  is  <  3^  of  the  diameter. 
The  second  part  of  the  theorem  is  obtained  in  a  similar  manner  by 
determination  of  the  side  of  a  regular  96agon  inscribed  in  the  circle. 

In  the  course  of  his  work,  Archimedes  assumes  and  employs, 
without  explanation  as  to  how  the  approximations  were  obtained,  the 
following  estimates  of  the  values  of  square  roots  of  numbers  : 

,  i^L>N/3>f||,     3013|>>/9082321,     1838i9T>  N/3380929, 

•  1009J  >  \/1018405,     2017±  >  ̂4069284^.     59H  <  \/349450, 

1 172£  <  Vl373943ff,     2339J  <  v/5472132TV. 

In  order  to  appreciate  the  nature  of  the  difficulties  in  the  way  of 
obtaining  these  approximations  we  must  remember  the  backward 
condition  of  Arithmetic  with  the  Greeks,  owing  to  the  fact  that  they 
possessed  a  system  of  notation  which  was  exceedingly  inconvenient  for 
the  purpose  of  performing  arithmetical  calculations. 

The  letters  of  the  alphabet  together  with  three  additional  signs 
were  employed,  each  letter  being  provided  with  an  accent  or  with 
a  short  horizontal  stroke;  thus  the  nine  integers 

1,  2,  3,  4,  5,  6,  7,  8,  9  were  denoted  by  a',  p,  /,  8',  «',  <r',  £  //,  ff, 
the  multiples  of  10, 

10,  20,  30, ...  90  were  denoted  by  t',  *',  V,  /,  v',  f,  o',  TT',  <i', 
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the  multiples  of  100, 

100,  200, ...  900  by  p',  <r',  r',  v',  <f>',  x',  f ,  w',  -y. 
The  intermediate  numbers  were  expressed  by  juxtaposition,  repre- 

senting here  addition,  the  largest  number  being  placed  on  the  left,  the 
next  largest  following,  and  so  on  in  order.  There  was  no  sign  for 
zero.  Thousands  were  represented  by  the  same  letters  as  the  first 

nine  integers  but  with  a  small  dash  in  front  and  below  the  line ;  thus 

for  example  ,3'  was  4000,  and  1913  was  expressed  by  ,a~Vy'  or  ,a~Vy. 
10000  and  higher  numbers  were  expressed  by  using  the  ordinary 

numerals  with  M  or  Mv  as  an  abbreviation  for  the  word  /Apia's ;  the 
number  of  myriads,  or  the  multiple  of  10000,  was  generally  written 

AS 

over  the  abbreviation,  thus  349450  was  M^wv'.     A  variety  of  devices 
were  emploj£dJ9¥-4heJcepre^entation  of  fractions  *. 

The  ̂ determinations  of  square  roots  such  as  J3  by 
were  much  closer  than  tKose  of  earlier  Ul'eek  vviileis. — Tkei e  -has-  beg!i 
much  speculation  as  to  the  method  he  must  have  employed  in  their 
determination.  There  is  reason  to  believe  that  he  was  acquainted 
with  the  method  of  approximation  that  we  should  denote  by 

a  ±  — -  >  \/a2  ±  b  >  a  ± 

2a±l' 

Various  alternative  explanations  have  been  suggested ;  some  of  these 
suggest  that  a  method  equivalent  to  the  use  of  approximation  by 
continued  fractions  was  employed. 

A  full  discussion  of  this  matter  will  be  found  in  Sir  T.  L.  Heath's 
work  on  Archimedes. 

The  treatise  of  Archimedes  on  the  measurement  of  the  circle  must 

be  regarded  as  the  one  really  great  step  made  by  the  Greeks  towards 
the  solution  of  the  problem  ;  in  fact  no  essentially  new  mode  of  attack 
was  made  until  the  invention  of  the  Calculus  provided  Mathematicians 
with  new  weapons.  In  a  later  writing  which  has  been  lost,  but  which 
is  mentioned  by  Hero,  Archimedes  found  a  still  closer  approximation 
to  TT. 

The  essential  points  of  the  method  of  Archimedes,  when  generalized 
and  expressed  in  modern  notation,  consist  of  the  following  theorems  : 

(1)     The  inequalities  sin  6  <  0  <  tan  0. 

*  For  an  interesting  account  of  the  Arithmetic  of   Archimedes,  see  Heath's 
Works  of  Archimedes,  Chapter  iv. 
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(2)  The  relations  for  the  successive  calculation  of  the  perimeters 
and  areas  of  polygons  inscribed  and  circumscribed  to  a  circle. 

Denoting  byjt?n,  an  the  perimeter  and  area  of  an  inscribed  regular 

polygon  of  n  sides,  and  by  Pn,  An  the  perimeter  and  area  of  a  circum- 
scribed regular  polygon  of  n  sides,  these  relations  are 

Thus  the  two  series  of  magnitudes 

are  calculated  successively  in  accordance  with  the  same  law.  In  each 
case  any  element  is  calculated  from  the  two  preceding  ones  by  taking 
alternately  their  harmonic  and  geometric  means.  This  system  of 
formulae  is  known  as  the  Archimedean  Algorithm  ;  by  means  of  it  the 
chords  and  tangents  of  the  angles  at  the  centre  of  such  polygons  as 
are  constructible  can  be  calculated.  By  methods  essentially  equivalent 
to  the  use  of  this  algorithm  the  sines  and  tangents  of  small  angles 
were  obtained  to  a  tolerably  close  approximation.  For  example, 

Aristarchus  (250  B.C.)  obtained  the  limits  ̂   and  FV  for  sin  1°. 

The  wor, 

(  '^\~ 
Among  the  later  Greeks^HipparchusJJBO—  1  25  B.C.)  calculated 

the  first  table  of  chords  of  a  circle  and  thus  founded  the  science  of 

T»gUll011ielry>  But  the  greatest  step  in  this  direction  was^  made  by 

Ptolemy  (87  —  16.4  A.D.)  who  calculated  a  table  of  chords  in  which  the 

chords  of  all  angles  at  interval^  of  |°  from  0  to  180°  are  contained, 
and  thus  constructed  a  trigonometry  -  that  was  not  surpassed  for 
1000  years.  He  was  the  first  to  obtain  an  approximation  to  TT  more 
exact  than  that  of  Archimedes  ;  this  was  expressed  in  sexagesimal 

measure  by  3°  8'  30"  which  is  equivalent  to 
or  3E  3-14166.... 

The  work  of  the  Indians 

We  have  now  to  pass  over  to  the  Indian  Mathematicians.     Aryab- 
hatta  (about  500  A.D.)  knew  the  value 

K5JS  =  31416  for  TT. 
The  same  value  in  the  form  ££f  J  was  given  by  Bhaskara  (born  1  1  14  A.D.) 
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in  his  work  The  crowning  of  the  system  ;  and  he  describes  this  value  as 

exact,  in  contrast  with  the  inexact  value  -2y-.  His  commentator  Gancea 
explains  that  this  result  was  obtained  by  calculating  the  perimeters  of 
polygons  of  12,  24,  48,  96,  192,  and  384  sides,  by  the  use  of  the formula 

connecting  the  sides  of  inscribed  polygons  of  2n  and  w  sides  respectively, 
the  radius  being  taken  as  unity.  If  the  diameter  is  100,  the  side  of 

an  inscribed  384agon  is  \/98694  which  leads  to  the  above  value*  given 

by  Aryabhatta.  Erahmagupta~(born  598  A.D.)  gave  as  the  exact  value 
TT  =  \/Tol  Hankel  has  suggested  that  this  was  obtained  as  the 

supposed  limit  (VToOO)  of  s/965",  v/98l,  \/986,  >/987  (diameter  10), the  perimeters  of  polygons  of  12,  24,  48,  96  sides,  but  this  explanation 
is  doubtful.  It  has  also  been  suggested  that  it  was  obtained  by  the 
approximate  formula 

V^  =  a  +  ̂Ti> 

which  gives  VlO  =  3  +  \. 

The  work  of  the  Chinese  Mathematicians 

The  earliest  Chinese  Mathematicians,  from  the  time  of  Chou-Kong 

who  lived  in  the  12th  century  B.C.,  employed  the  approximation  7r  =  3. 

Some  of  those  who  used  this  approximation  were  mathematicians  of 
considerable  attainments  in  other  respects. 

According  to  the  Sui-shu,  or  Records  of  the  Sui  dynasty,  there 

were  a  large  number  of  circle-squarers,  who  calculated  the  length  of 

the-emmlar  circumference,  obtaining  however  divergent  results. 

^J]MngHfag,  who  died  in  139  A.D.,  gave  the  rule 

_  (circumference)2 
(perimeter  of  circumscribed 

wjueh  is  equivalent  to  -n-  =  \/10. 

Wang  Fan  made  the  statement  that  if  the  circumference  of  a 

circte-irt42-  the  diameter  is  45;  this  is  equivalent  to  ir  =  3'lB^5.... 
No  record  has  been  found  of  the  method  by  which  MaTTgsult  was 
obtained. 

*  See  Colebrooke's  Algebra  with  arithmetic  and  mensuration,  from  the  Sanscrit 

I    of  Brahmagupta  and  Bhaskara,  London,  1817. 
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iu  //Me^ublished  in  263  A.D.  an  Arithmetic  in  nine  sections  which 

-a  determination  of  •*.     Starting  with  an  inscribed  regular 
hexagon,  he  proceeds  to  the  inscribed  dodecagon,  24agon,  and  so  on, 
and  finds  the  ratio  of  the  circumference  to  the  diameter  to  be  157  : 50, 

which  is  equivalent  to  TT  =  3*14.  > 
By  far  the  m^^infor^ting  Ql^rnpsft  determination  was  that  of  the 

great  Astronomeiv^M  Cfcung-chi/Tltborn  430  A.D.).  He  found  the 

two  values  *?-  andfff  (=3*1415929...).  In  fact  he  proved  that 
lOir  lies  between  3T415927  and  31*415926,  and  deduced  the 
value  fff . 

The  value  ̂   which  is  that  of  Archimedes  he  spoke  of  as  the 

"inaccurate"  value,  and  f  Tf  as  the  "accurate  value."  This  latter  value 
was  not  obtained  either  by  the  Greeks  or  the  Hindoos,  and  was  only 
rediscovered  in  Europe  more  than  a  thousand  years  later,  by  Adriaen 
Anthonisz.  The  later  Chinese  Mathematicians  employed  for  the 

most  part  the__ ' "-inaccurate "  ̂ alue,  but  the  "accurate" 
rediscovered  by  Chang  Yu-chln,  who  employed  an 

The  work  of  the  Arabs 

In  the  middle  ages  a  knowledge  of  Greek  and  Indian  mathematics 
was  introduced  into  Europe  by  the  Arabs,  largely  by  means  of  Arabic 

translations  of  Euclid's  elements,  Ptolemy's  o-vVra£is,  and  treatises  by 
Appollonius  and  Archimedes,  including  the  treatise  of  Archimedes  on 
the  measurement  of  the  circle. 

The  first  Arabic  Mathematician  Muhammed  ibn  Musa  Alehwarizmi, 

at  the  beginning  of  the  ninth  century,  gave  the  Greek  value  IT  =  3y, 

and  the  Indian  values  7r  =  \/To,  ,r  =  f§Jg$,  which  he  states  to  be  of 
Indian  origin.  He  introduced  the  Indian  system  of  numerals  which 
was  spread  in  Europe  at  the  beginning  of  the  13th  century  by  Leonardo 
Pisano,  called  Fibonacci. 

The  time  of  the  Renaissance 

The  greatest  Christian  Mathematician  of  medieval  times,  Leonardo 
Pisano  (born  at  Pisa  at  the  end  of  the  12th  century),  wrote  a  work 
entitled  Practica  geometriae,  in  1220,  in  which  he  improved  on  the 

results  of  Archimedes,  using  the  same  method  of  employing  the  in- 

and    circum-scribed    96agons.      His    limits    are    -     |?  =  3'1427    and 
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lp  =  3-1410...,  whereas  3|  =  31428,  3}$  =  31408...  were  the  values 

given  by  Archimedes.     From  these  limits  he  chose 

as  the  mean  result. 

During  the  period  of  the  Renaissance  no  fnrt.fr AT 

.problem  was  made  beyond  that  due  to  Leonardo  Pisano  •  some  later 

writers""sfflB\  thought  that  3^-  was  the  exact  value  of  TT.  George 
13 — 1461),  who  constructed  a  new  and  more  exact  table 

"sines  of  angles  at  intervals  of  10',  was  acquainted  with  the 
Archimedean  a»ijndian  values,  which  he  fully  recognized  to  be 
approximations  only?  fie  expressed  doubts  as  to  whether  an  exact 

value  exists.  Cardinal  Nicholas  of  Cusa  (1401 — 1464)  obtained 

IT  —  3*1423  which  he  thought  to  be  the  exact  value.  His  approximations 
and  methods  were  criticized  by  Regiomontanus  (Johannes  M  tiller,  1436 — 
1476),  a  great  mathematicianwho  was  the  firsiTto  shew  how  to  calculate 
the  sides  of  a  spherical  triangle  from  the  angles,  and  who  calculated 

extensive  tables  of  sines  and  tangents,  pmpTnyj^gr  for  the  first  time 
the  decimal  instead  of  the  sexagesimal  notation. 

The  fifteenth  and  sixteenth  centuries 

In  the  fifteenth  and  sixteenth  centuries  great  improvements  in 

trigonometry  were  introduced  by  Copernicus  (1473 — 1543),  Rheticus 
(1514 — 1576),  Pitiscus  (1561—1613),  and  Johannes  Kepler  (1571— 
1630). 

These  improvements  are  of  importance  in  relation  to  our  problem, 
as  forming  a  necessary  part  of  the  preparation  for  the  analytical 
developments  of  the  second  period. 

In  this  period  Leonardo  da  Vinci  (1452—1519)  and  Albrecht 
Durer  (1471 — 1528)  should  be  mentioned,  on  account  of  their  celebrity, 
as  occupying  themselves  with  our  subject,  without  however  adding 
anything  to  the  knowledge  of  it. 

Orontius  Finaeus  (1494—1555)  in  a  work  De  rebus  mathematicis 
hactenus  desiratis,  published  after  his  death,  gave  two  theorems  which 
were  later  established  by  Huyghens,  and  employed  them  to  obtam.  the 

limits  -2/,  -2T4/  f°r  *•;  ne  appears  to  have  asserted  that  -2T4/  is  the  exact 
value.  His  theorems  when  generalized  are  expressed  in  our  notation 

by  the  fact  that  0  is  approximately  equal  to  (sin2  0  tan  0)*. 

i 
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The  development  of  the  theory  of  equations  which  later  became  of 
fundamental  importance  in  relation  to  our  problem  was  due  to  the 

Italian  Mathematicians  of  the  16th  century,  Tartaglia  (1506—1559), 
Cardano  (1501—1576),  and  Ferrari  (1522—1565). 

The  first  to  obtain  a  more  exact  value  of  TT  than  those  hitherto 

known  in  Europe  was  Adriaen  Aiithonisz(1527  —  1607)  who  rediscovered 

the  Chinese  value  ?r  =  -}']!;  =3'14  15929...,  which  is  correct  to  6  decimal 
places.  His  son  Adriaen  who  took  the  name  of  Metius  (1571  —  1635), 
published  this  value  in  1625,  and  explained  that  his  father  had 

obtained  the  approximations  flf  <ir<f^  by  the  method  of  Archi- 
medes, and  had  then  taken  the  mean  of  the  numerators  and  denomi- 
nators, thus  obtaining  his  value. 

The  first  explicit  expression  for  TT  by  an  infinite  sequence  of 

operations  was  obtained  by  Vieta  (Frai^ois  Vi£te,  1540  —  1603).  He 
proved  that,  if  two  regular  polygons  are  inscribed  in  a  circle,  the  first 
having  half  the  number  of  sides  of  the  second,  then  the  area  of  the 
first  is  to  that  of  the  second  as  the  supplementary  chord  of  a  side  of 
the  first  polygon  is  to  the  diameter  of  the  circle.  Taking  a  square,  an 

octagon,  then  polygons  of  16,  32,  ...  sides,  he  expressed  the  supple- 
mentary chord  of  the  side  of  each,  and  thus  obtained  the  ratio  of  the 

area  of  each  polygon  to  that  of  the  next.  He  found  that,  if  the 
diameter  be  taken  as  unity,  the  area  of  the  circle  is 

2 

from  which  we  obtain 

It  may  be  observed  that  this  expression  is  obtainable  from  the  formula 

/,       sin0 
=      £   g   £            \?   <  ») 

cos  -  cos  -  cos  -  ... 
Z          4          o 

afterwards  obtained  by  Euler,  by  taking  0  =  - . 2 

Applying  the  method  of^i'ehimudesj^j&Lrdng  with  a  hexagon  and 
proceeding  to  a  polygon  b£^\J)  sides,^jg5T^hewed  that,  if  the 

diameter  of  the  circle  be  100000,  the  cir^ujnfergnce^s  >  314159^*^ 
and  is  <3'14159TV\rV&;  he  thus decimals. 
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Adrianus  Romanus  (Adriaen  van  Rooman,  born  in  Lyons,  1561  — 

1615)  by  the  help  of  a  15  .  224agon  calculated  TT  to  15  places  of  decimals. 
Ludolfv&u  Ceulen  (Cologne)  (1539  —  1610),  after  whom  the  number 

is  still  called  in  Germany  "Ludolph's  number,"  is  said  to  have 
t>f  decimals.    According  to  his  wish  the  value 

was  engraved  on  his  tombstone  which  has  been  lost.  In  his  writing 
Van  den  Cirkel  (Delft,  1596)  he  explained  how,  by  employing  the 

method  of  Archimedes,  using  in-  and  circum-scribed  polygons  up  to 

the  60  .  S^agon,  he  obtained  TT  to  20  decimal  places.  Later,  in  his 
work  De  Arithmetische  en  Geometrische  fondamenten  he  obtained  the 
limits  given  by 

q    14159265358979323846264338327950 

*>  T^TTTTD"  TnFTnnnnnnrinnf'TnnF  o"zniTnF  OTRRF  vuw  > 
and  the  same  expression  with  1  instead  of  0  in  the  last  place  of  the 
numerator. 

The  work  of  Snellius  and  Huyghens 

In  a  work  Cyclometricus,  published  in  1621,  Willebrod  Snellius 

(1580  —  1626)  shewed  how  narrower  limits  can  be  determined,  without 
increasing  the  number  of  sides  of  the  polygons,  than  in  the  method  of 
Archimedes.  The  two  theorems,  equivalent  to  the  approximations 

J  (2  sin  6  +  tan  0)i  0  *  3/(2  cosec  0  +  cot  0), 

by  which  he  attained  this  result  were  not  strictly  proved  by  him,  and 
were  afterwards  established  by  Huyghens  ;  the  approximate  formula 

had  been  already  obtained  by  Nicholas  of  Cusa  (1401- 

1464).  Using  in-  and  circum-scribed  hexagons  the  limits  3  and  3*464 
are  obtained  by  the  method  of  Archimedes,  but  Snellius  obtained  from 
the  hexagons  the  limits  314022  and  314160,  closer  than  those  obtained 
by  Archimedes  from  the  96agon.  With  the  96agon  he  found  the 
limits  31415926272  and  31415928320.  Finally  he  verified  Ludolf  s 

determination  with  a  great  saving  of  labour,  obtaining  34  places  with 

the  230agon,  by  which  Ludolf  had  only  obtained  14  places.  Grunberger* 
calculated  39  places  by  the  help  of  the  formulae  of  Snellius. 

The  extreme  limit  of  what  can  be  obtained  on  the  geometrical  lines 

laid  down  by  Archimedes  was  reached  in  the  work  of  Christian 

Huyghens  (1629  —  1665).  In  his  work  f  De  circuli  magnitudine  inventa, 

*  Elementa  Trigonometriae,  Eome,  1630. 

f  A  study  of  the  German  Translation  by  Budio  will  repay  the  trouble. 
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which  is  a  model  of  geometrical  reasoning,  he  undertakes  by  improved 
methods  to  make  a  careful  determination  of  the  area  of  a  circle.  He 

establishes  sixteen  theorems  by  geometrical  processes,  and  shews  that 
by  means  of  his  theorems  three  times  as  many  places  of  decimals 

can  be  obtained  as  by  the  older  method.  .The  determination  made  by 
Archimedes  he  can  get  from  the  triangle  alone. 

The 

gives 

him  the  limits  31415926533  and  3'1415926538. 
The  following  are  the  theorems  proved  by  Huyghens : 

I.     If  ABC  is  the  greatest  triangle  in  a  segment  less  than  a 

semi-circle,  then  B 

where  AEB,  BFC  are  the  greatest 
triangles  in  the  segments  AB,  BC. 

FIG.  5. 

II. 

where  ABC  is  the  greatest  tri- 
angle in  the  segment. 

FIG.  6. 

m. 
provided  the  segment  is  less  than 
the  semi-circle. 

This  theorem  had  already  been 
given  by  Hero. 

FIG.  7. 

TV segment  ACB 
&ATC 

FIG.  8. 
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V.  If  An  is  the  area  of  an  inscribed  regular  polygon  of  n  sides, 

and  S  the  area  of  the  circle,  then  S>  A^  +  \  (A^  -  An). 

VI.  If  An'  is  the  area  of  the  circumscribed  regular  polygon  of 
n  sides,  then  &<%A»  +  ̂ An. 

VII.  If  Cn  denotes  the  perimeter  of  the  inscribed  polygon,  and  C 

the  circumference  of  the  circle,  then  C>Ct»+$(Cm-  Cn). 

VIII.  \CD  +  IEF>  arc  CE, 

where  E  is  any  point  on  the  circle. 

FIG.  9. 

IX. 

where  Cn  is  the  perimeter  of  the  circumscribed  polygon  of  n  sides. 

X.     If  an,  anf  denote  the  sides  of  the  in-  and  circum-scribed 

polygons,  then  a2Jl2  =  «»  . 

XL  (7<the  smaller  of  the  two  mean  proportionals  between  Cn 

and  Cn'. 
S<the  similar  polygon  whose  perimeter  is  the  larger  of  the  two 

mean  proportionals. 

XII.  If  ED  equals  the  radius 
of  the  circle,  then  EG  >  arc  BF. 

FIG.  10. 
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XIII.     If   AC=  radius   of 

the  circle,  then  BL  <  arc  BE. 

XIV.     If  G  is  the  centroid  of 

the  segment,  then 

BG  >  GD  and  <  \ 

XV. 

and 

segment  ABC     4 

&ABC      *3 

3*. 

30D'
 

XVI.  If  a  denote  the  arc 

(<  semi-circle),  and  s,  s'  its  sine  and 
its  chord  respectively,  then 

This  is  equivalent,  as  Huyghens 

points  out,  to 

3 

FIG.  14. 
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where  pn  is  the  perimeter  of  a  regular  inscribed  polygon  of  n  sides,  and 
C  is  the  circumference  of  the  circle. 

The  work  of  Gregory 

The  last  Mathematician  to  be  mentioned  in  connection  with  the 

development  of  the  method  of  Archimedes  is  James  Gregory  (1638   
1675),  Professor  in  the  Universities  of  St  Andrews  and  Edinburgh, 
whose  important  work  in  connection  with  the  development  of  the  new 
Analysis  we  shall  have  to  refer  to  later.  Instead  of  employing  the 
perimeters  of  successive  polygons,  he  calculated  their  areas,  using 
the  formulae 

9/4     A   '         9  A   '  A 
A      '  =  n      n      _    "'"•n  jt±2n 
A*  ~  A     +  A        ~  A    '  +    A~  > •**•»    '    -"-271       -tin    ~T"  -"2n 

where  An,  An'  denote  the  areas  of  in-  and  circum-scribed  regular 
rc-agons  ;  he  also  employed  the  formula  Azn  =  */AnA*  which  had  been 
obtained  by  Snellius.  In  his  work  Exercitationes  geometricae  published 
in  1668,  he  gave  a  whole  series  of  formulae  for  approximations  on  the 
lines  of  Archimedes.  But  the  most  interesting  step  which  Gregory 
took  in  connection  with  the  problem  was  his  attempt  to  prove,  by 
means  of  the  Archimedean  algorithm,  that  the  quadrature  of  the  circle 
is  impossible.  This  is  contained  in  his  work  Vera  circuli  et  hyperbolae 
quadratura  which  is  reprinted  in  the  works  of  Huyghens  (Opera  varia 

I,  pp.  315 — 328)  who  gave  a  refutation  of  Gregory's  proof.  Huyghens 
expressed  his  own  conviction  of  the  impossibility  of  the  quadrature, 
and  in  his  controversy  with  Wallis  remarked  that  it  was  not  even 
decided  whether  the  area  of  the  circle  and  the  square  of  the  diameter 
are  commensurable  or  not.  In  default  of  a  theory  of  the  distinction 

between  algebraic  and  transcendental  numbers,  the  failure  of  Gregory's 
proof  was  inevitable.  Other  such  attempts  were  made  by  Lagny 
(Paris  Mem.  1727,  p.  124),  Saurin  (Paris  Mem.  1720),  Newton 
(Principia  I,  6,  Lemma  28),  and  Waring  (Proprietates  algebraicarum 
curvarum)  who  maintained  that  no  algebraical  oval  is  quadrable. 
Euler  also  made  some  attempts  in  the  same  direction  (Considerationes 
cydometricae,  Novi  Comm.  Acad.  Petrop.  xvi,  1771);  he  observed 
that  the  irrationality  of  TT  must  first  be  established,  but  that  this 
would  not  of  itself  be  sufficient  to  prove  the  impossibility  of  the 
quadrature.  Even  as  early  as  1544,  Michael  Stifel,  in  his  Arithmetic 
integra,  expressed  the  opinion  that  the  construction  is  impossible.  He 
emphasized  the  distinction  between  a  theoretical  and  a  practical 
construction. 
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The  work  of  Descartes 

The  great  Philosopher  and  Mathematician  Ren^  Descartes  (1596 — 
1650),  of  immortal  fame  as  the  inventor  of  coordinate  geometry, 
regarded  the  problem  from  a  new  point  of  view.  A  given  straight  line 
being  taken  as  equal  to  the  circumference  of  a  circle  he  proposed  to 
determine  the  diameter  by  the  following  construction : 

Take  AB  one  quarter  of  the  given  straight  line.  On  AB  describe 

the  square  ABCD ;  by  a  known  process  a  point  d  on  AC  produced, 

can  be  so  determined  that  the  rectangle  BCl  =  \ABCD.  Again  (72 
can  be  so  determined  that  rect.  B^C*  =  \BC± ;  and  so  on  indefinitely. 
The  diameter  required  is  given  by  ABU,  where  B**  is  the  limit  to 
which  B,  £i,  B^  ...  converge.  To  see  the  reason  of  this,  we  can 
shew  that  AB  is  the  diameter 
of  the  circle  inscribed  in  ABCD, 
that  ABl  is  the  diameter  of  the 
circle  circumscribed  by  the  regular 

octagon  having  the  same  peri- 
meter as  the  square;  and  gene- 

rally that  ABn  is  the  diameter  of 

the  regular  2n+2-agon  having  the 
same  perimeter  as  the  square. 
To  verify  this,  let 

B 
FIG.  15. 

B,  B. 

then  by  the  construction, 

K      and  this  is  satisfied  by  xn  =  -~  cot  ̂   ;  thus 

lim  xn  =  — °  =  diameter  of  the  circle. 
7T 

This  process  was  considered  later  by  Schwab  (Gergonne's  Annales  de 
Math.  vol.  vi),  and  is  known  as  the  process  of  isometers. 

This  method  is  equivalent  to  the  use  of  the  infinite  series 
4 

'D4     2 

which  
is  a  particular  

case  of  the  formula 
1_          _  If     #     1        x     \   t    x 
x  i       9     4    '   4     9        8 

due  to  Euler. 

TT          1  7T          1  7T 

-  +  -tan-+-tan-+..., 
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The  discovery  of  logarithms 

One  great  invention  made  early  in  the  seventeenth  century  must 
be  specially  referred  to ;  that  of  logarithms  by  John  Napier  (1550 — 
1617).  The  special  importance  of  this  invention  in  relation  to  our 
subject  is  due  to  the  fact  of  that  essential  connection  between  the 

numbers  TT  and  e  which,  after  its  discovery  in  the  eighteenth  century, 
dominated  the  later  theory  of  the  number  IT.  The  first  announcement 

of  the  discovery  was  made  in  Napier's  Mirifici  logarithmorum  canonis 
descriptio  (Edinburgh,  1614),  which  contains  an  account  of  the  nature 
of  logarithms,  and  a  table  giving  natural  sines  and  their  logarithms 
for  every  minute  of  the  quadrant  to  seven  or  eight  figures.  These 
logarithms  are  not  what  are  now  called  Napierian  or  natural  logarithms 
(i.e.  logarithms  to  the  base  e),  although  the  former  are  closely  related 
with  the  latter.  The  connection  between  the  two  is 

_L^ 
L  =  107  loge  107  -  107 . 1,  or  e1  =  107  e  107, 

where  /  denotes  the  logarithm  to  the  base  e,  and  L  denotes  Napier's 
logarithm.  It  should  be  observed  that  in  Napier's  original  theory  of 
logarithms,  their  connection  with  the  number  e  did  not  explicitly 
appear.  The  logarithm  was  not  defined  as  the  inverse  of  an  exponential 
function ;  indeed  the  exponential  function  and  even  the  exponential 
notation  were  not  generally  used  by  mathematicians  till  long  afterwards. 

Approximate  constructions 

A  large  number  of  approximate  constructions  for  the  rectification 
and  quadrature  of  the  circle  have  been  given,  some  of  which  give  very 
close  approximations.  It  will  suffice  to  give  here  a  few  examples  of 
such  constructions. 

(1)  The  following  construction  for  the  approximate  rectification 
of  the  circle  was  given  by  Kochansky  (Acta  Eruditorum,  1685). 

D  L 
FIG.  16. 

Let  a  length  DL  equal  to  3  .  radius  be  measured  off  on  a  tangent 
to  the  circle ;  let  DAB  be  the  diameter  perpendicular  to  DL. 

3 H. 
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Let  ./be  on  the  tangent  at  B,  and  such  that  L BAJ=3Q°.  Then 
JL  is  approximately  equal  to  the  semi-circular  arc  BCD.  Taking  the 
radius  as  unity,  it  can  easily  be  proved  that 

JL  =  y  y  -  N/12  =  3141533  ... 

the  correct  value  to  four  places  of  decimals. 

(2)    The  value  fff  =  3141592  ...  is  correct  to  six  decimal  places. 

Since  -  -=  =  3  +  -5 —  2 ,  it  can  easily  be  constructed. llu  7  +  o 

FIG.  17. 

Let  CD  =  l,  CE=l,  AF=\\  and  let  FG  be  parallel  to  CD  and 

FH\aEG\  then  AH=  =5^5. 
I       •    O 

This  construction  was  given  by  Jakob  de  Gelder  (Grunert's  Archiv, 
vol.  7,  1849). 

(3)    At  A  make  AB  =  (2  +  £)  radius  on  the  tangent  at  ̂ 4  and  let 
=  \ .  radius. 
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On  the  diameter  through  A  take  AD 
to  OC.     Then 

OB,  and  draw  DE  parallel 

AE 
AD AO =      ;  therefore 

thus  AE=r.  6*2831839  ...,  so  that  AE  is  less  than  the  circumference 
of  the  circle  by  less  than  two  million  ths  of  the  radius. 

The  rectangle  with  sides  equal  to  AE  and  half  the  radius  r  has 

very  approximately  its  area  equal  to  that  of  the  circle.  This  construc- 

tion was  given  by  Specht  (Crelle's  Journal,  vol.  3,  p.  83). 
(4)    Let  A  OB  be  the  diameter  of  a  given  circle.     Let 

Describe  the  semi-circles  DGE,  AHF  with  DE  and  AF&$  diameters; 
and  let  the  perpendicular  to  AB  through  0  cut  them  in  G  and  H 
respectively.  The  square  of  which  the  side  is  GH  is  approximately  of 
area  equal  to  that  of  the  circle. 

Fm.  19. 

We  find  that  GH=r.  T77246  ...,  and  since  A/7r  =  l'77245  we  see 
that  GH  is  greater  than  the  side  of  the  square  whose  area  is  equal  to 
that  of  the  circle  by  less  than  two  hundred  thousandths  of  the  radius. 

3—2 



CHAPTER  III 

THE    SECOND    PERIOD 

The  new  Analysis 

THE  foundations  of  the  new  Analysis  were  laid  in  the  second  half 

of  the  seventeenth  century  when  Newton  (1642 — 1727)  and  Leibnitz 
(1646 — 1716)  founded  the  Differential  and  Integral  Calculus,  the 
ground  having  been  to  some  extent  prepared  by  the  labours  of 
Huyghens,  Fermat,  Wallis,  and  others.  By  this  great  invention  of 
Newton  and  Leibnitz,  and  with  the  help  of  the  brothers  James  Bernouilli 

(1654 — 1705)  and  John  Bernouilli  (1667 — 1748),  the  ideas  and 
methods  of  Mathematicians  underwent  a  radical  transformation  which 

naturally  had  a  profound  effect  upon  our  problem.  The  first  effect 

of  the  new  Analysis  was  to  replace  the  old  geometrical  or  semi- 
geometrical  methods  of  calculating  IT  by  others  in  which  analytical 
expressions  formed  according  to  definite  laws  were  used,  and  which 
could  be  employed  for  the  calculation  of  TT  to  any  assigned  degree 
of  approximation. 

The  work  of  John   Wallis 

The  first  result  of  this  kind  was  due  to  John  Wallis  (1616—1703), 

Undergraduate  at  Emmanuel  College,  Fellow  of  Queens'  College,  and 
afterwards  Savilian  Professor  of  Geometry  at  Oxford.  He  was  the  first 
to  formulate  the  modern  arithmetic  theory  of  limits,  the  fundamental 

importance  of  which,  however,  has  only  during  the  last  half  century 
received  its  due  recognition ;  it  is  now  regarded  as  lying  at  the  very 
foundation  of  Analysis.  Wallis  gave  in  his  Arithmetica  Infinitorum 

the  expression 
7r  =  2    2446688 
2~1'3'3'5'5'7*7'9" 

for  TT  as  an  infinite  product,  and  he  shewed  that  the  approximation 
obtained  by  stopping  at  any  fraction  in  the  expression  on  the  right  is 

in  defect  or  in  excess  of  the  value  -  according  as  the  fraction  is  proper m 

or  improper.     This  expression  was  obtained  by  an  ingenious  method 
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depending  upon  the  expression  for  ~  the  area  of  a  semi-circle  of o 

diameter  1  as  the  definite  integral  JQ  ̂Ix-x*  dx.     The  expression  has 
the  advantage  over  that  of  Vieta  that  the  operations  required  by  it 
are  all  rational  ones. 

Lord  Brouncker  (1620—1684),  the  first  President  of  the  Royal 
Society,  communicated  without  proof  to  Wallis  the  expression 

4  J__9__?ii9 

TT  2  +  2  +  2  +  2+'"' 
a  proof  of  which  was  given  by  Wallis  in  his  Arithmetica  Infinitorum. 

It  was  afterwards  shewn  by  Euler  that  Wallis'  formula  could  be 
obtained  from  the  development  of  the  sine  and  cosine  in  infinite 

products,  and  that  Brouncker's  expression  is  a  particular  case  of  much 
more  general  theorems. 

The  calculation  of  TT  by  series 

The  expression  from  which  most  of  the  practical  methods  of 
calculating  IT  have  been  obtained  is  the  series  which,  as  we  now  write 
it,  is  given  by 

i&\rlx  =  x-%a?  +  ̂ a?-  ...  (-1^#^1). 
This  series  was  discovered  by  Gregory  (1670)  and  afterwards  indepen- 

dently by  Leibnitz  (1673).    In  Gregory's  time  the  series  was  written  as 

where  a,  t,  r  denote  the  length  of  an  arc,  the  length  of  a  tangent  at 
one  extremity  of  the  arc,  and  the  radius  of  the  circle  ;  the  definition 
of  the  tangent  as  a  ratio  had  not  yet  been  introduced. 

The  particular  case 
7T  11 

4  =  1-3  +  <T- 
is  known  as  Leibnitz's  series  ;  he  discovered  it  in  1674  and  published 
it  in  1682,  with  investigations  relating  to  the  representation  of  T,  in 

his  work  "  De  vera  proportione  circuli  ad  quadratum  circumscriptum 
in  numeris  rationalibus."  The  series  was,  however,  known  previously 
to  Newton  and  Gregory. 

By  substituting  the  values  ̂ ,  £,  ̂,  ̂   in  Gregory's  series,  the O        O         1U         La 

calculation  of  TT  up  to  72  places  was  carried  out  by  Abraham  Sharp  under 

instructions  from  Halley  (Sherwin's  Mathematical  Tables,  1705,  1706). 



38  THE   SECOND   PERIOD 

The  more  quickly  convergent  series 

sin-1#  =  #  +  --+^-4-+  ..., 

discovered  by  Newton,  is  troublesome  for  purposes  of  calculation, 

owing  to  the  form  of  the  coefficients.  By  taking  x  =  J,  Newton 

himself  calculated  •*  to  14  places  of  decimals. 

Euler  and  others  occupied  themselves  in  deducing  from  Gregory's 
series  formulae  by  which  IT  could  be  calculated  by  means  of  rapidly 
converging  series. 

Euler,  in  1737,  employed  special  cases  of  the  formula 

,->!  = tan-1  -  -  tan-1  -—  +  tan , 

p  p  +  q  p*+pq+l' 
and  gave  the  general  expression 

,  x  ,ax  —  y  ,  b  —  a  ,  c  —  b 
tan'1  -  ̂ tan-1  --  -  +  tan"1  -^  —  -  +  tan-1  -=—-  -  +  ...  , y  ay  +  x  ab  +  l  cb  +  I 

from  which  more  such  formulae  could  be  obtained.     As  an  example, 
we  have,  if  a,  b,  c,  ...  are  taken  to  be  the  uneven  numbers,  and 
*     i 
* 

In  the  year  1706,  Machin  (1680—1752),  Professor  of  Astronomy 
in  London,  employed  the  series 

«;,/!  __  1_        1  1 

4~4V5     3.53+5.55     l.f+"' 
_/J_          1  1  1  \ 

V239     3  .  2393  +  5  .  2398     7.2397+"7' which  follows  from  the  relation 

to  calculate  ir  to  100  places  of  decimals.     This  is  a  very  convenient 

expression,  because  in  the  first  series  -,  -3,  ...  can  be  replaced  by 5     5 
A.  fi  A. 

100'  1000000'  ̂ C*'  an(^  *^e  8econ(^  series  ig  very  rapidly  convergent. 

In  1719,  de  Lagny  (1660—1734),  of  Paris,  determined  in  two 
different  ways  the  value  of  IT  up  to  127  decimal  places.  Vega  (1754— 
1802)  calculated  TT  to  140  places,  by  means  of  the  formulae 
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due  to  Euler,  and  shewed  that  de  Lagny's  determination  was  correct 
with  the  exception  of  the  113th  place,  which  should  be  8  instead  of  7. 

$#~  Clausen  calculated  in  1847,  24^>laces  of  decimals  by  the  use  of 
Machin's  formula  and  the  formula 

j  =  2  tan-1  i  +  tan-1  - . 4  61 

In  1841,  208  places,  of  which  152  are  correct,  were  calculated  by 
Rutherford  by  means  of  the  formula 

99 

In  1844  an  expert  reckoner,  Zacharias  Dase,  employed  the  formula 

supplied  to  him  by  Prof.  Schultz,  of  Vienna,  to  calculate  TT  to  200 
places  of  decimals,  a  feat  which  he  performed  in  two  months. 

In  1853  Rutherford  gave  440  places  of  decimals,  and  in  the  same 
year  W.  Shanks  gave  first  530  and  then  607  places  (Proc.  R.  &,  1853). 

Richter,  working  independently,  gave  in  1853  and  1855,  first  333, 
then  400  and  finally  500  places. 

Finally,  W.  Shanks,  working  with  Machin's  formula,  gave  (1873— 
74)  707  places  of  decimals. 

Another  series  which  has  also  been  employed  for  the  calculation 
of  TT  is  the  series 

2.4.6 

tan-1  t=i^\l  +  lY+e 
This  was  given  in  the  year  1755  by  Euler,  who,  applying  it  in  the 

formula 

TT  =  20  tan-1 1  +  8  tan"1  T3¥, 
calculated  TT  to  20  places,  in  one  hour  as  he  states.     The  same  series 

was  also   discovered    independently  by  Ch.   Hutton   (Phil.    Trans., 

1776).     It  was  later  rediscovered  by  J.  Thomson  and  by  De  Morgan. 

An  expression  for  -n-  given  by  Euler  may  here  be  noticed ;  taking 
the  identity 

x        -  f  *    dx        „  (*  xdx 

he  developed  the  integrals  in  series,  then  put  #  =  J,  x-  J,  obtaining 
series  for  tan-1      tan'1,  which  he  substituted  in  the  formula 

4 



40  THE   SECOND   PERIOD 

In  China  a  work  was  published  by  Imperial  order  in  1713  which 
contained  a  chapter  on  the  quadrature  of  the  circle  where  the  first 

19  figures  in  the  value  of  •*  are  given. 
At  the  beginning  of  the  eighteenth  century,  analytical  methods 

were  introduced  into  China  by  Tu  T^-mei  (Pierre  Jartoux)  a  French 
missionary  ;  it  is,  however,  not  known  how  much  of  his  work  is 
original,  or  whether  he  borrowed  the  formulae  he  gave  directly  from 
European  Mathematicians. 

One  of  his  series 

/         I2  12.32  12.32.52  \ 

V4.6+4.6.8.10  +  4.6.8.10.12.14+"7 
was  employed  at  the  beginning  of  the  nineteenth  century  by  Chu- 
Hung  for  the  calculation  of  TT.  By  this  means  25  correct  figures  were 
obtained. 

Ts£ng  Chi-hung,  who  died  in  1877,  published  values  of  TT  and  I/TT 
to  100  places.  He  is  said  to  have  obtained  his  value  of  TT  in  a  month, 
by  means  of  the  formula 

and  Gregory's  series. 
In  Japan,  where  a  considerable  school  of  Mathematics  was 

developed  in  the  eighteenth  century,  TT  was  calculated  by  Takebe  in 
1722  to  41  places,  by  employment  of  the  regular  1024agon.  It  was 
calculated  by  Matsunaga  in  1739  to  50  places  by  means  of  the  same 

series  as  had  been  employed  by  Chu-Hung. 

The  rational  values  7r  =  i|||^,  7r  =  4f|f§|A|f||^,  correct  to 
12  and  30  decimal  places  respectively,  were  given  by  Arima  in  1766. 

Kurushima   Yoshita   (died   1757)   gave   for  TT*   the    approximate 
2_27        10748        10975        08548 

TTTi    -T7TST->    TTp-J    -FffT*"' Tanyem  Shtikei  published  in  1728  the  series 

6     6.15     6.15.28 

2       2.8        2.8.18 
7^=41  1  +  -  +  -     -  + 6      6.15     6.15.28 

due  to  Takebe,  and  ultimately  to  Jartoux. 
The  following  series  published  in   1739   by  Matsunaga  may  be 

mentioned : 
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The  work  of  Euler 

Developments  of  the  most  far-reaching  importance  in  connection 
with  our  subject  were  made  by  Leonhard  Euler,  one  of  the  greatest 
Analysts  of  all  time,  who  was  born  at  Basel  in  1707  and  died  at 
St  Petersburg  in  1783.  With  his  vast  influence  on  the  development 
of  Mathematical  Analysis  in  general  it  is  impossible  here  to  deal,  but 
some  account  must  be  given  of  those  of  his  discoveries  which  come 
into  relation  with  our  problem. 

The  very  form  of  modern  Trigonometry  is  due  to  Euler.  He 
introduced  the  practice  of  denoting  each  of  the  sides  and  angles  of  a 
triangle  by  a  single  letter,  and  he  introduced  the  short  designation  of 

the  trigonometrical  ratios  by  sin  a,  cos  a,  tan  a,  &c.  Before  Euler's 
time  there  was  great  prolixity  in  the  statement  of  propositions,  owing 
to  the  custom  of  denoting  these  expressions  by  words,  or  by  letters 
specially  introduced  in  the  statement.  The  habit  of  denoting  the 
ratio  of  the  circumference  to  the  diameter  of  a  circle  by  the  letter  TT, 
and  the  base  of  the  natural  system  of  logarithms  by  e,  is  due  to  the 
influence  of  the  works  of  Euler,  although  the  notation  TT  appears  as 
early  as  1706,  when  it  was  used  by  William  Jones  in  the  Synopsis 

palmariorum  Matheseos.  In  Euler's  earlier  work  he  frequently  used 
p  instead  of  TT,  but  by  about  1740  the  letter  TT  was  used  not  only 
by  Euler  but  by  other  Mathematicians  with  whom  he  was  in 
correspondence. 

A  most  important  improvement  which  had  a  great  effect  not  only 
upon  the  form  of  Trigonometry  but  also  on  Analysis  in  general  was  the 
introduction  by  Euler  of  the  definition  of  the  trigonometrical  ratios  in 
order  to  replace  the  old  sine,  cosine,  tangent,  &c.,  which  were  the 
lengths  of  straight  lines  connected  with  the  circular  arc.  Thus  these 
trigonometrical  ratios  became  functions  of  an  angular  magnitude,  and 
therefore  numbers,  instead  of  lengths  of  lines  related  by  equations 
with  the  radius  of  the  circle.  This  very  important  improvement  was 

not  generally  introduced  into  our  text  books  until  the  latter  half  of 
the  nineteenth  century. 

This  mode  of  regarding  the  trigonometrical  ratios  as  analytic 
functions  led  Euler  to  one  of  his  greatest  discoveries,  the  connection 

of  these  functions  with  the  exponential  function.  On  the  basis  of  the 
definition  of  e?  by  means  of  the  series 
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he  set  up  the  relations 

cos  x  =  -        — ,       sin  x  =  — 2 

which  can  also  be  written 

eix  =  cos  as  +  i  sin  #, 

The  relation  eiir  =  -l,  which  Euler  obtained  by  putting  X  =  TT,  is 
the  fundamental  relation  between  the  two  numbers  TT  and  e  which  was 

indispensable  later  on  in  making  out  the  true  nature  of  the  number  TT. 
In  his  very  numerous  memoirs,  and  especially  in  his  great  work, 

Introdtwtio  in  analysin  infinitorum  (1748),  Euler  displayed  the  most 
wonderful  skill  in  obtaining  a  rich  harvest  of  results  of  great  interest, 
largely  dependent  on  his  theory  of  the  exponential  function.  Hardly 
any  other  work  in  the  history  of  Mathematical  Science  gives  to  the 
reader  so  strong  an  impression  of  the  genius  of  the  author  as  the 
Introductio.  Many  of  the  results  given  in  that  work  are  obtained  by 
bold  generalizations,  in  default  of  proofs  which  would  now  be  regarded 
as  completely  rigorous;  but  this  it  has  in  common  with  a  large  part  of  all 
Mathematical  discoveries,  which  are  often  due  to  a  species  of  divining 
intuition,  the  rigorous  demonstrations  and  the  necessary  restrictions 
coming  later.  In  particular  there  may  be  mentioned  the  expressions 
for  the  sine  and  cosine  functions  as  infinite  products,  and  a  great 
number  of  series  and  products  deduced  from  these  expressions  ;  also  a 
number  of  expressions  relating  the  number  e  with  continued  fractions 
which  were  afterwards  used  in  connection  with  the  investigation  of  the 
nature  of  that  number. 

Great  as  the  progress  thus  made  was,  regarded  as  preparatory  to 
a  solution  of  our  problem,  nothing  definite  as  to  the  true  nature  of  the 

number  TT  was  as  yet  established,  although  Mathematicians  were  con- 
vinced that  e  and  TT  are  not  roots  of  algebraic  equations.  Euler 

himself  gave  expression  to  the  conviction  that  this  is  the  case.  Some- 
what later,  Legendre  gave  even  more  distinct  expression  to  this  view 

in  his  Elements  de  Geometrie  (1794),  where  he  writes  :  "  It  is  probable 
that  the  number  TT  is  not  even  contained  among  the  algebraical 
irrationalities,  i.e.  that  it  cannot  be  a  root  of  an  algebraical  equation 
with  a  finite  number  of  terms,  whose  coefficients  are  rational.  But  it 

seems  to  be  very  difficult  to  prove  this  strictly." 
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THE    THIRD    PERIOD 

The  irrationality  of  TT  and  e 

THE  third  and  final  period  in  the  history  of  the  problem  is  concerned 
with  the  investigation  of  the  real  nature  of  the  number  ir.  Owing  to 
the  close  connection  of  this  number  with  the  number  e,  the  base  of 
natural  logarithms,  the  investigation  of  the  nature  of  the  two  numbers 
was  to  a  large  extent  carried  out  at  the  same  time. 

The  first  investigation,  of  fundamental  importance,  was  that  of 

J.  H.  Lambert  (1728  —  1777),  who  in  his  "Me'moire  sur  quelques 
proprie'te's  remarquables  des  quantitds  transcendentes  circulaires  et 
logarithmiques  "  (Hist,  de  VAcad.  de  Berlin,  1761,  printed  in  1768), 
proved  that  e  and  TT  are  irrational  numbers.  His  investigations  are 
given  also  in  his  treatise  Vorlaufige  Kenntnisse  fur  die,  so  die 
Quadratur  und  Rectification  des  Zirkels  suchen,  published  in  1766. 

He  obtained  the  two  continued  fractions 

_  __  _ 

&  +  1  ~  2/#  +  6/a?  +  fO/a?  +  14/a?  +  ...  ' 
1     _1  __  l_        1 

~l7^3A*-5/#-7/tf-...5 
which  are  closely  related  with  continued  fractions  obtained  by  Euler, 
but  the  convergence  of  which  Euler  had  not  established.  As  the 
result  of  an  investigation  of  the  properties  of  these  continued  fractions, 
Lambert  established  the  following  theorems  : 

(1)  If  a?  is  a  rational  number,  different  from  zero,  ex  cannot  be 
a  rational  number. 

(2)  If  x  is  a  rational  number,  different  from  zero,  tan  x  cannot  be 
a  rational  number. 

If  #  =  JTT,  we  have  tan#  =  l,  and  therefore  Jir,  or  w,  cannot  be 
a  rational  number. 



44  THE  THIRD  PERIOD 

It  has  frequently  beeii  stated  that  the  first  rigorous  proof  of 

Lambert's  results  is  due  to  Legendre  (1752—1833),  who  proved  these 
theorems  in  his  Elements  de  Gebmetrie  (1794),  by  the  same  method, 

and  added  a  proof  that  -n*  is  an  irrational  number.  The  essential 

rigour  of  Lambert's  proof  has  however  been  pointed  out  by  Pringsheim 
(Munch.  Akad.  Ber.,  Kl.  28,  1898),  who  has  supplemented  the 
investigation  in  respect  of  the  convergence. 

A  proof  of  the  irrationality  of  TT  and  T?  due  to  Hermite  (Crelle's 
Journal,  vol.  76,  1873)  is  of  interest,  both  in  relation  to  the  proof  of 
Lambert,  and  as  containing  the  germ  of  the  later  proof  of  the 
transcendency  of  e  and  IT. 

A  simple  proof  of  the  irrationality  of  e  was  given  by  Fourier 

(Stainville,  Melanges  d' analyse,  1815),  by  means  of  the  series 
1       1       1 

1  +  :f!+2!  +  3!+- 
which  represents  the  number.  This  proof  can  be  extended  to  shew 

that  e2  is  also  irrational.  On  the  same  lines  it  was  proved  by  Liouville 

(1809—1882)  (Li,ouwlle's  Journal,  vol.  5,  1840)  that  neither  e  nor  e2 
can  be  a  root  of  a  quadratic  equation  with  rational  coefficients.  This 
last  theorem  is  of  importance  as  forming  the  first  step  in  the  proof 

that  e  and  -*•  cannot  be  roots  of  any  algebraic  equation  with  rational 
coefficients.  The  probability  had  been  already  recognized  by  Legendre 
that  there  exist  numbers  which  have  this  property. 

Existence  of  transcendental  numbers 

The  confirmation  of  this  surmised  existence  of  such  numbers  was 

obtained  by  Liouville  in  1840,  who  by  an  investigation  of  the  properties 
of  the  convergents  of  a  continued  fraction  which  represents  a  root  of 
an  algebraical  equation,  and  also  by  another  method,  proved  that 
numbers  can  be  defined  which  cannot  be  the  root  of  any  algebraical 
equation  with  rational  coefficients. 

The  simpler  of  Liouville's  methods  of  proving  the  existence  of  such 
numbers  will  be  here  given. 

Let  x  be  a  real  root  of  the  algebraic  equation 

with  coefficients  which  are  all  positive  or  negative  integers.  We  shall 
assume  that  this  equation  has  all  its  roots  unequal ;  if  it  had  equal 
roots  we  might  suppose  it  to  be  cleared  of  them  in  the  usual  manner. 



THE   THIRD   PERIOD  45 

Let  the  other  roots  be  denoted  by  a?,,  #2,  ...  #„_!  •  these  may  be  real  or 

complex.     If  -  be  any  rational  fraction,  we  have 

p  apn  +  bpn~l  q  +  cpn~^  q2  +  ... 

If  now  we  have  a  sequence  of  rational  fractions  converging  to  the 

value  x  as  limit,  but  none  of  them  equal  to  #,  and  if  -  be  one  of  these 

fractions, 

(HG--0  •••(?--) approximates  to  the  fixed  number 

(x - #1) (x-x^  ...(x- #„). 

We  may  therefore  suppose  that  for  all  the  fractions  -  , 

is  numerically  less  than  some  fixed  positive  number  A.     Also 

is  an  integer  numerically  ̂   1  ;  therefore 

P 

--x 
Af 

Y) 

This  must  hold  for  all  the  fractions  -  of  such  a  sequence,  from  and 

after  some  fixed  element  of  the  sequence,  for  some  fixed  number  A. 
If  now  a  number  x  can  be  so  defined  such  that,  however  far  we  go  in 

the  sequence  of  fractions  -,  and  however  A  be  chosen,  there  exist 

fractions  belonging  to  the  sequence  for  which 
P 

--x 

1 
,  it  may 

Af 

be  concluded  that  x  cannot  be  a  root  of  an  equation  of  degree  n  with 

integral  coefficients.     Moreover,  if  we  can  shew  that  this  is  the  case 
whatever  value  n  may  have,  we  conclude  that  x  cannot  be  a  root  of 
any  algebraic  equation  with  rational  coefficients. 

Consider  a  number 
z-       z-  ic 

1    _L     2    -L.  j.       m  a. 

^  =  ̂ r!  +  ̂ -!+  •••  +  -^+---> 
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where  the  integers  klt  £2,  •••  #»»,  •••  are  all  less  than  the  integer  r,  and 
do  not  all  vanish  from  and  after  a  fixed  value  of  m. 

Let  *44+...+^:) 

then  -  continually  approaches  #  as  m  is  increased.     We  have 

2r 
<  ~~m+T  >  since  q  =  r  '. 

It  is  clear  that,  whatever  values  J.  and  w  may  have,  if  m,  and 
2r          1 

therefore  g,  is  large  enough,  we  have        -v  <  -r-^ ;    and  thus  the q          Aq 

relation 
-  -  x\  >  ̂ —^  is  not  satisfied  for  all  the  fractions  - .     The 
q       I       Aqn  q 

numbers  x  so  defined  are  therefore  transcendental.  If  we  take  r  =  10, 
we  see  how  to  define  transcendental  numbers  that  are  expressed  as 
decimals. 

This  important  result  provided  a  complete  justification  of  the 
division  of  numbers  into  two  classes,  algebraical  numbers,  and  trans^ 

Jj     cendental  numbers;    the  latter  being  characterized  by  the  property 
that  such  a  number  cannot  be  a  root  of  an  algebraical  equation  of  any 
degree  whatever,  of  which  the  coefficients  are  rational  numbers. 

A  proof  of  this  fundamentally  important  distinction,  depending  on 

entirely  different  principles,  was  given  by  G.  Cantor  (Crelle's  Journal, 
vol.  77,  1874)  who  shewed  that  the  algebraical  numbers  form  an 
enumerable  aggregate,  that  is  to  say  that  they  are  capable  of  being 
counted  by  means  of  the  integer  sequence  1,  2,  3,  ...,  whereas  the 
aggregate  of  all  real  numbers  is  not  enumerable.  He  shewed  how 

numbers  can  be  defined  which  certainly  do  not  belong  to  the  sequence 
of  algebraic  numbers,  and  are  therefore  transcendental. 

This  distinction  between  algebraic  and  transcendental  numbers 

being  recognized,  the  question  now  arose,  as  regards  any  particular 
number  defined  in  an  analytical  manner,  to  which  of  the  two  classes  it 

belongs  ;  in  particular  whether  IT  and  e  are  algebraic  or  transcendental. 
The  difficulty  of  answering  such  a  question  arises  from  the  fact  that 
the  recognition  of  the  distinction  between  the  two  classes  of  numbers 
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does  not  of  itself  provide  a  readily  applicable  criterion  by  the  use  of 
which  the  question  may  be  answered  in  respect  of  a  particular  number. 

The  scope  of  Ewlidean  determinations 

Before  proceeding  to  describe  the  manner  in  which  it  was  finally 

shewn  that  the  number  TT  is  a  transcendental  Dumber,  it  is  desirable  to 
explain  in  what  way  this  result  is  connected  with  the  problems  of  the 
quadrature  and  rectification  of  the  circle  by  means  of  Euclidean 
determinations. 

The  development  of  Analytical  Geometry  has  made  it  possible  to 
replace  every  geometrical  problem  by  a  corresponding  analytical  one 
which  involves  only  numbers  and  their  relations.  As  we  have  already 
remarked,  every  Euclidean  problem  of  what  is  called  construction 
consists  essentially  in  the  determination  of  one  or  more  points  which 
shall  satisfy  certain  prescribed  relations  with  regard  to  a  certain  finite 
number  of  assigned  points,  the  data  of  the  problem.  Such  a  problem 
has  as  its  analytical  counterpart  the  determination  of  a  number,  or 
a  finite  set  of  numbers,  which  shall  satisfy  certain  prescribed  relations 
relatively  to  a  given  set  of  numbers.  The  determination  of  the  required 
numbers  is  always  made  by  means  of  a  set  of  algebraical  equations. 

The  development  of  the  theory  of  algebraical  equations,  especially 
that  due  to  Abel,  Gauss,  and  Galois,  led  the  Mathematicians  of  the  last 

century  to  scrutinize  with  care  the  limits  of  the  possibility  of  solving 
geometrical  problems  subject  to  prescribed  limitations  as  to  the  nature 
of  the  geometrical  operations  regarded  as  admissible.  In  particular, 
it  has  been  ascertained  what  classes  of  geometrical  problems  are 

capable  of  solution  when  operations  equivalent  in  practical  geometry 

to  the  use  of  certain  instruments  are  admitted*.  The  investigations 
have  led  to  the  discovery  of  cases  such  as  that  of  inscribing  a  regular 
polygon  of  17  sides  in  a  circle,  in  which  a  problem,  not  previously 
known  to  be  capable  of  solution  by  Euclidean  means,  has  been  shewn 
to  be  so. 

We  shall  here  give  an  account  of  as  much  of  the  theory  of  this 

subject  as  is  necessary  for  the  purpose  of  application  to  the  theory  of 
the  quadrature  and  rectification  of  the  circle. 

In  the  first  place  we  observe  that,  having  given  two  or  more  points 

in  a  plane,  a  Cartesian  set  of  axes  can  be  constructed  by  means  of  a 

*  An  interesting  detailed  account  of  investigations  of  this  kind  will  be  found  in 

Euriques'  Questions  of  Elementary  Geometry,  German  Edition,  1907. 
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Euclidean  construction,  for  example  by  bisecting  the  segment  of  the 
line  on  which  two  of  the  given  points  are  incident,  and  then  determining 

a  perpendicular  to  that  segment.  We  may  therefore  assume  that 
a  given  set  of  points,  the  data  of  a  Euclidean  problem,  are  specified  by 
means  of  a  set  of  numbers,  the  coordinates  of  these  points. 

The  determination  of  a  required  point  P  is,  in  a  Euclidean 

problem,  made  by  means  of  a  finite  number  of  applications  of  the  three 
processes,  (1)  of  determining  a  new  point  as  the  intersection  of  straight 
lines  given  each  by  a  pair  of  points  already  determined,  (2)  of 
determining  a  new  point  as  an  intersection  of  a  straight  line  given  by 
two  points  and  a  circle  given  by  its  centre  and  one  point  on  the 
circumference,  all  four  points  having  been  already  determined,  and 
(3)  of  determining  a  new  point  as  an  intersection  of  two  circles  which 
are  determined  by  four  points  already  determined. 

In  the  analytical  interpretation  we  have  an  original  set  of  numbers 
«i,  «2)  •••  Oar  given,  the  coordinates  of  the  r  given  points;  (r  ̂  2). 
At  each  successive  stage  of  the  geometrical  process  we  determine  two 
new  numbers,  the  coordinates  of  a  fresh  point. 

When  a  certain  stage  of  the  process  has  been  completed,  the  data 
for  the  next  step  consist  of  numbers  (a1}  a2,  ...  a^}  containing  the 
original  data  and  those  numbers  which  have  been  already  ascertained 
by  the  successive  stages  of  the  process  already  carried  out. 

If  (1)  is  employed  for  the  next  step  of  the  geometrical  process,  the 
new  point  determined  by  that  step  corresponds  to  numbers  determined 

by  two  equations 

Ax  +  By  +  C=  0,     A'x  +  B'y  +  C'  =  0, 

where  A,  B,  C,  A',  £',  C'  are  rational  functions  of  eight  of  the 
numbers  (alt  «2,  •••  «2n)-  Therefore  #,  y  the  coordinates  of  the  new 
point  determined  by  this  step  are  rational  functions  of  al}  «2>  •••  #2»- 

In  order  to  get  the  data  for  the  next  step  afterwards,  we  have  only 
to  add  to  a,,  a2)  •  ••  #2»  these  two  rational  functions  of  eight  of  them. 

If  case  (2)  is  employed,  the  next  point  is  determined  by  two 
equations  of  the  form 

(x  -  apy  +  (y-  O2  -  (OT  -  O2  +  (a,  -  att)2, 

y  =  mx  +  n, 

where  m,  n  are  rational  functions  of  four  of  the  numbers  a1}  «2,  ...  a^. 
On  elimination  of  y,  we  have  a  quadratic  equation  for  x ;  and  thus  x 

is  determined  as  a  quadratic  irrational  function  of  (a,,  a2,  ...  «2n),  of 
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the  form  A  ±  JB,  where  A  and  B  are  rational  functions  ;  it  is  clear 
that  y  will  be  determined  in  a  similar  way. 

If,  in  the  new  step,  (3)  is  employed,  the  equations  for  determining 
(a,  y)  consist  of  two  equations  of  the  form 

O  -  O2  +  (y  -  <)2  =  (OT  -  O2  +  (at  -  O2; 
on  subtracting  these  equations,  we  obtain  a  linear  equation,  and  thus 

it  is"  clear  that  this  case  is  essentially  similar  to  that  in  which  (2)  is 
employed,  so  far  as  the  form  of  #,  y  is  concerned. 

Since  the  determination  of  a  required  point  P  is  to  be  made  by 
a  finite  number  of  such  steps,  we  see  that  the  coordinates  of  P  are 
determined  by  means  of  a  finite  succession  of  operations  on 

the  coordinates  of  the  points  ;  each  of  these  operations  consists  either 
of  a  rational  operation,  or  of  one  involving  the  process  of  taking 
a  square  root  of  a  rational  function  as  well  as  a  rational  operation. 

We  have  now  established  the  following  result  : 
In  order  that  a  point  P  can  be  determined  by  the  Euclidean  mode  it 

is  necessary  and  sufficient  that  its  coordinates  can  be  expressed  as  such 
functions  oj  the  coordinates  («i  ,  «2  ,  •  •  •  a2r)  °f  the  given  points  of  the 
problem,  as  involve  t/ie  successive  performance,  a  finite  number  of  times, 
of  operations  which  are  either  rational  or  involve  taking  a  square  root  of 
a  rational  function  of  the  elements  already  determined. 

That  the  condition  stated  in  this  theorem  is  necessary  has  been 

proved  above  ;  that  it  is  sufficient  is  seen  from  the  fact  that  a  single 
rational  operation,  and  the  single  operation  of  taking  a  square  root  of 
a  number  already  known,  are  both  operations  which  correspond  to 
possible  Euclidean  determinations. 

The  condition  stated  in  the  result  just  obtained  may  be  put  in 

another  form  more  immediately  available  for  application.  The  ex- 
pression for  a  coordinate  x  of  the  point  P  may,  by  the  ordinary 

processes  for  the  simplification  of  surd  expressions,  by  getting  rid  of 
surds  from  the  denominators  of  fractions,  be  reduced  to  the  form 

+7  +  b'     c^  ±  ̂c2'±  \/c3'  +...  +  ..., 
where  all  the  numbers 

a,  b,  GI,  c2,  •••,  b',  GI,  c2',  ... 
are  rational  functions  of  the  given  numbers  (aT,  «2,  •••  #2r)>  and  the 
number  of  successive  square  roots  is  in  every  term  finite.     Let  m  be 
H.  * 
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the  greatest  number  of  successive  square  roots  in  any  term  of  x  •  this 
may  be  called  the  rank  of  x.     We  may  then  write 

where  B,  B,  ...  are  all  of  rank  not  greater  than  m-l.  We  can  form 
an  equation  which  x  satisfies,  and  such  that  all  its  coefficients  are 

rational  functions  of  a,  b,  b',  B,  E  ...;  for  *JB  may  be  eliminated  by 

taking  (x-a-V  Jl?  -  .  .  -)2  -  tfB,  and  this  is  of  the  form 

from  which  we  form  the  biquadratic 

in  which  \/2F  does  not  occur.  Proceeding  in  this  way  we  obtain  an 

equation  in  x  of  degree  some  power  of  2,  and  of  which  the  coefficients 

are  rational  functions  of  a,  b,  B,  B',  .  .  .  ,  and  are  therefore  of  rank 
£m-l.  This  equation  is  of  the  form 

where  Ll}  L2,  •  ••  are  at  most  of  rank  m-l.     If  Ll}  L2,  ...  involve 
a  radical  \A&T,  the  equation  is  of  the  form 

and  we  can  as  before  reduce  this  to  an  equation  of  degree  2S+1  in  which 
iJTt  does  not  occur  ;  by  repeating  the  process  for  each  radical  like 

•JK,  we  may  eliminate  them  all,  and  finally  obtain  an  equation  such 

that  the  rank  of  every  coefficient  is  ̂   m  —  2.  By  continual  repetition 
of  this  procedure  we  ultimately  reach  an  equation,  such  that  the 
coefficients  are  all  of  rank  zero,  i.e.  rational  functions  of  (alt  a2,  ...  a^). 
We  now  see  that  the  following  result  has  been  established  : 

In  order  that  a  point  P  may  be  determinable  by  Euclidean  procedure 
it  is  necessary  that  each  of  its  coordinates  be  a  root  of  an  equation  of 
some  degree,  a  power  of  2,  of  which  t/ie  coefficients  are  rational  functions 
of  («i,  #2,  ...  a^),  the  coordinates  of  the  points  given  in  the  data  of  the 

From  our  investigation  it  is  clear  that  only  those  algebraic  equations 
which  are  obtainable  by  elimination  from  a  sequence  of  linear  and 
quadratic  equations  correspond  to  possible  Euclidean  problems. 

The  quadratic  equations  must  consist  of  sets,  those  in  the  first  set 
having  coefficients  which  are  rational  functions  of  the  given  numbers, 
those  in  the  second  set  having  coefficients  of  rank  at  most  1  ;  in  the 
next  set  the  coefficients  have  rank  at  most  2,  and  so  on. 
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The  criterion  thus  obtained  is  sufficient,  whenever  it  can  be  applied, 
to  determine  whether  a  proposed  Euclidean  problem  is  a  possible  one 
or  not. 

In  the  case  of  the  rectification  of  the  circle,  we  may  assume  that 
the  data  of  the  problem  consist  simply  of  the  two  points  (0,  0)  and 
(1,  0),  and  that  the  point  to  be  determined  has  the  coordinates  (TT,  0). 
This  will,  in  accordance  with  the  criterion  obtained,  be  a  possible 
problem  only  if  TT  is  a  root  of  an  algebraic  equation  with  rational 
coefficients,  of  that  special  class  which  has  roots  expressible  by  means 
of  rational  numbers  and  numbers  obtainable  by  successive  operations 
of  taking  the  square  roots.  The  investigations  of  Abel  have  shewn 
that  this  is  only  a  special  class  of  algebraic  equations. 

As  we  shall  see,  it  is  now  known  that  ir,  being  transcendental,  is 
not  a  root  of  any  algebraic  equation  at  all,  and  therefore  in  accordance 
with  the  criterion  is  not  determinable  by  Euclidean  construction.  The 

problems  of  duplication  of  the  cube,  and  of  the  trisection  of  an  angle, 
although  they  lead  to  algebraic  equations,  are  not  soluble  by  Euclidean 
constructions,  because  the  equations  to  which  they  lead  are  not  in 

general  of  the  class  referred  to  in  the  above  criterion. 

The  transcendence  of  TT 

In  1873  Ch.  Hermite*  succeeded  in  proving  that  the  number  e  is 
transcendental,  that  is  that  no  equation  of  the  form 

aem  +  ben  +  cer  +  ...  =0 

can  subsist,  where  m,  n,  r,  ...  a,  b,  c,  ...  are  whole  numbers.  In  1882, 

the  more  general  theorem  was  stated  by  Lindemann  that  such  an 

equation  cannot  hold,  when  m,  n,  r,  ...  a,  b,  c,  ...  are  algebraic  numbers, 

not  necessarily  real ;  and  the  particular  case  that  eix  +  I  =  0  cannot  be 

satisfied  by  an  algebraic  number  x,  and  therefore  that  TT  is  not  algebraic, 

was  completely  proved  by  Lindemann  t. 

Lindemann' s  general  theorem  may  be  stated  in  the  following  precise 
form : 

If  3?j,  #2,  ...  xn  are  any  real  or  complex  algebraical  numbers,  all 

distinct,  and  ply  p*,  ...  pn  are  n  algebraical  numbers  at  least  one  of 

which  is  different  from  zero,  then  the  sum 

is  certainly  different  from  zero. 

*  "  Sur  la  fonction  exponentielle,"  Comptes  Rendus,  vol.  77,  1873. 
f  Ber.  Akad.  Berlin,  1882. 
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The  particular  case  of  this  theorem  in  which 

shews  that  e™  +  1  cannot  be  zero  if  a  is  an  algebraic  number,  and  thus 
that,  since  eiir  +  1  =  0,  it  follows  that  the  number  -n-  is  transcendental. 

From  the  general  theorem  there  follow  also  the  following  important 
results  : 

(1)  Let  n  =  2,  pi=l,  p*  =  -a,  #!  =  #,  #2  =  0;    then  the  equation 
ex-a  =  0  cannot  hold  if  x  and  a  are  both  algebraic  numbers  and  x  is 
different  from  zero.    Hence  the  exponential  e*  is  transcendent  if  x  is  an 
algebraic  number  different  from  zero.     In  particular  e  is  transcendent. 
Further,  the  natural  logarithm  of  an  algebraic  number  different  from 
zero  is  a  transcendental  number.    The  transcendence  of  iir  and  therefore 
of  TT  is  a  particular  case  of  this  theorem. 

(2)  Let    n  =  3,  pi  =  -  i,  p2  =  i,  Ps  =  ~  2«,  #1  =  ix,  x2  =  -  ix,  #3  =  0  ; 
it  then  follows  that  the  equation  sin  x  -  a  cannot  be  satisfied  if  a  and 
x  are  both  algebraic  numbers  different  from  zero.     Hence,  if  sin  x  is 

algebraic,  x  cannot  be  algebraic,  unless  #  =  0,  and  if  a  is  algebraic, 

sin~la  cannot  be  algebraic,  unless  a  =  0. 
It  is  easily  seen  that  a  similar  theorem  holds  for  the  cosine  and  the 

other  trigonometrical  functions. 

The  fact  that  -n-  is  a  transcendental  number,  combined  with  what 
has  been  established  above  as  regards  the  possibility  of  Euclidean 
constructions  or  determinations  with  given  data,  affords  the  final 
answer  to  the  question  whether  the  quadrature  or  the  rectification  of 
the  circle  can  be  carried  out  in  the  Euclidean  manner. 

The  quadrature  and  the  rectification  of  a  circle  whose  diameter  is 
given  are  impossible,  as  problems  to  be  solved  by  the  processes  of 
Euclidean  Geometry,  in  which  straight  lines  and  circles  are  alone 
employed  in  the  constructions. 

It  appears,  however,  that  the  transcendence  of  -n-  establishes  the 
fact  that  the  quadrature  or  the  rectification  of  a  circle  whose  diameter 
is  given  are  impossible  by  a  construction  in  which  the  use  only  of 
algebraic  curves  is  allowed. 

The  special  case  (2)  of  Lindemann's  theorem  throws  light  on  the 
interesting  problems  of  the  rectification  of  arcs  of  circles  and  of  the 
quadrature  of  sectors  of  circles.  If  we  take  the  radius  of  a  circle  to  be 
unity  then  2sin|#  is  the  length  of  the  chord  of  an  arc  of  which  the 
length  is  x.  It  has  been  shewn  that  2sinJ#  and  x  cannot  both  be 

algebraic,  unless  #  =  0.  "We  have  therefore  the  following  result  : 
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If  the  chord  of  a  circle  bears  to  the  diameter  a  ratio  which  is 

algebraic,  then  the  corresponding  arc  is  not  rectifiable  by  any  construction 

in  which  algebraic  curves  alone  are  employed;  neither  can  the  quadrature 

of  the  corresponding  sector  of  the  circle  be  carried  out  by  such  a  con- 
struction. 

The  method  employed  by  Hermite  and  Lindemann  was  of  a  com- 

jirplicated  character,  involving  the  use  of  complex  integration.  The 
^method  was  very  considerably  simplified  by  Weierstrass*,  who  gave 

a  complete  proof  of  Lindemann's  general  theorem. 
Proofs  of  the  transcendence  of  e  and  IT,  progressively  simple  in 

character,  were  given  by  Stieltjest,  Hilbert,  Hurwitz  and  Gordan  J, 
Mertens§,  and  Vahlen||. 

All  these  proofs  consist  of  a  demonstration  that  an  equation  which 
is  linear  in  a  number  of  exponential  functions,  such  that  the  coefficients 
are  whole  numbers,  and  the  exponents  algebraic  numbers,  is  impossible. 
By  choosing  a  multiplier  of  the  equation  of  such  a  character  that  its 
employment  reduces  the  given  equation  to  the  equation  of  the  sum  of 

a  non-vanishing  integer  and  a  number  proved  to  lie  numerically 
between  0  and  1  to  zero,  the  impossibility  is  established. 

Simplified  presentations  of  the  proofs  will  be  found  in  Weber's 
Algebra,  in  Enriques'  Questions  of  Elementary  Geometry  (German 
Edition,  1907),  in  Hobson's  Plane  Trigonometry  (second  edition,  1911), 
and  in  Art.  ix.  of  the  "Monographs  on  Modern  Mathematics,"  edited 
by  J.  W.  A.  Young. 

Proof  of  the  transcendence  of  TT 

The  proof  of  the  transcendence  of  v  which  will  here  be  given  is 
founded  upon  that  of  Gordan. 

(1)  Let  us  assume  that,  if  possible,  TT  is  a  root  of  an  algebraical 
equation  with  integral  coefficients  ;  then  iir  is  also  a  root  of  such  an 
equation. 

Assume  that  iir  is  a  root  of  the  equation 

where  all  the  coefficients 

C, 

*  Ber.  Akad.  Berlin,  1885.  t  Comptes  Rendus,  Paris  Acad.  1890. 

$  These  proofs  are  to  be  found  in  the  Math.  Annalen,  vol.  43  (1896),  by  Hilbert, 
Hurwitz  and  Gordan. 

§  Wiener  Ber.  Kl.  cv.  Ha  (1896).  II  Math.  Annalen,  vol.  53  (1900). 
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are  positive  or  negative  integers  (including  zero);   thus  one  of  the 
numbers  e^,  ...  a,  is  eV. 

From  Euler's  equation  eiv  +  1  =  0,  we  see  that  the  relation 

(i  +  <?ao  (1+  O  .  .  .  (i  +  <?a«)  =  o 
must  hold,  since  one  of  the  factors  vanishes.     If  we  multiply  out  the 
factors  in  this  equation,  it  clearly  takes  the  form 

where  A  is  some  positive  integer  (=1),  being  made  up  of  1  together 

with  those  terms,  if  any,  which  are  of  the  form  eap  +  aq+  •-,  where 

0^  +  0,+  ...  =0. 
(2)  A  symmetrical  function  consisting  of  the  sum  of  the  products 

taken  in  every  possible  way,  of  a  fixed  number  of  the  numbers 
Calt  Cozt  ...  Ca8,  is  an  integer.  It  will  be  proved  that  the  symmetrical 
functions  of  (7ft  ,  C/32,  ...  Cftn  have  the  same  property.  In  order  to 
prove  this  we  have  need  of  the  following  lemma  : 

A  symmetrical  function  consisting  of  the  sums  of  the  products 

taken  p  together  of  a  +  ft  +  y  +  ...  letters 

#1,  #«,  —  #«;   yi,  y^  —  yv,   ZD  *2,  •••2V;  &c., 
belonging  to  any  number  of  separate  sets,  can  be  expressed  in  terms  of 
symmetrical  functions  of  the  letters  in  the  separate  sets. 

It  will  be  sufficient  to  prove  this  in  the  case  in  which  there  are 

only  two  sets  of  letters,  the  extension  to  the  general  case  being  then 
obvious. 

Denote  by  2P  (#,  y)  the  sum  of  the  products  which  we  require  to p 

express;  and  denote  by  2P  (x)  the  sum  of  the  products  of  r  dimensions 
r 

of  the  letters  x^  x2,  ...  xa  only.     In  case  p  ̂  a,  we  see  that 
2 

p  pi  p-l  2  p-2 

in  case  p  >  a,  we  see  that 

SP(*)     2    />(y)+SP(«)     2 
p-a  a-l  p-a+I  a-2  p-a+2 

and  the  terms  on  the  right-hand  side  involve  in  each  case  only 
symmetrical  functions  of  the  letters  of  the  two  separate  sets  ;  thus  the 
lemma  is  established. 

To  apply  this  lemma,  we  observe  that  the  numbers  j3  fall  into 
separate  sets,  according  to  the  way  they  are  formed  from  the  letters  a. 
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The  general  value  of  /?  consists  of  the  sum  of  r  of  the  letters 
a1}  03,  ...  as;  and  we  consider  those  values  of  /3  that  correspond  to 
a  fixed  value  of  r  to  belong  to  one  set.  It  is  clear  that  a  symmetrical 
function  of  those  letters  (3  which  belong  to  one  and  the  same  set  is 
expressible  as  a  symmetrical  function  of  a1}  a2,  ...  as;  therefore  a 

symmetrical  function  of  the  products  Cft,  where  all  the  /3's  belong  to 
one  and  the  same  set,  is  in  virtue  of  what  has  been  established  in  (1) 
an  integer.  Applying  the  above  lemma  to  all  the  n  numbers  Cfi,  we 
see  that  the  symmetrical  products  formed  by  all  the  numbers  Cfi  are 
integral,  or  zero.  We  have  supposed  those  of  the  numbers  /?  which 
vanish  to  be  suppressed  and  the  corresponding  exponentials  to  be 
absorbed  in  the  integer  A  ;  whether  this  is  done  before  or  after  the 
symmetrical  functions  of  C/8  are  formed  makes  no  difference,  so  that 
the  above  reasoning  applies  to  the  numbers  C/3  when  those  of  them 
which  vanish  are  removed. 

(3)  Let  p  be  a  prime  number  greater  than  all  the  numbers  A,  n,  C 

I0-A&...&J;  and  let 

*  (*)  =  (^ly,  cnp+p~l  K*  -  A)  («-?#-•'(«-  &)}'• 
We  observe  that  <f>  (x)  is  of  the  form 

where  qlt  q2,  ...  qn  are  integers.     The  function  <£(>)  may  be  expressed 
in  the  form 

4  0)  -  Cp^a?-1  +  cpxp  +  ...  +  cnp+p-ixnp+p~\ 

where  cp_j  (p  -  1)  !,  cpp\,  ...  are  integral. 

We  see  that  <t>p~l  (0)  -  (-  l)np  Cp~  lqnp,  which  is  an  integer  not 
divisible  by  p. 

Also  <f>p  (0)  is  the  value  when  x  =  0  of 

and  is  clearly  an  integer  divisible  by  p.     We  see  also  that 

are  all  multiples  of  p. 

Further  if  m  ̂   n,  *  (^m),  ̂   08»),  ...  ̂   (fc)  all  vanish,  and 
m=n 

m=l 
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are  all  integers  divisible  by  p.     This  follows  from  the  fact  that 
;n=n 

fw)r  is  expressible  in  terms  of  those  symmetrical  functions  which 

consist  of  the  sums  of  products  of  the  numbers  (%,  (7ft,  ...;  and 
these  expressions  have  integral  values. 

(4)    Let  Kp  denote  the  integer 

Q?  - 1) !  Cp_i  +  p !  cp  +  . . .  +  (np  +/?  —  !)!, 
which  may  be  written  in  the  form 

<£(p-D  (o)  +  <£<*>  (0)  +  . . .  +  ftnp+p-V  (0). 
In  virtue  of  what  has  been  established  in  (3)  as  to  the  values  of 

we  see  that  KPA  is  not  a  multiple  of  p. 

"We  examine  the  form  to  which  the  equation 

is  reduced  by  multiplying  all  the  terms  by  Kp. 
We  have 

r=np+p-I 

r=p-l 
Q    r+i  O   r+2 

"*"  T  "*"  7          ~  \  /          ̂ T\   + 

The  modulus  of  the  sum  of  the  series 

AH       ,  Pm+l 

r+1      (r+l)(r+2) 
does  not  exceed 

, 
r  +  1       r  +  lr  +  2 

and  this  is  less  than  e    m  ;  hence  we  have 

where  dr  is  some  number  whose  modulus  is  between  0  and  1. 
The  modulus  of 

""T  ~l$r\  crpmr  |  01  A»  I  is  less  than  «  >  A»  '  r=np|1>"1  1  Cr r=p-l  r=p-l 
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or  than 

or  than 

where  ft  denotes  the  greatest  of  the  numbers  |  ft  | ,  |  ft  | ,  ...  |  ft,  | . 
It  thus  appears  that  the  modulus  of 

r=np+p-l  f  fi  02 m  Hm 

r=p-i          '   (r+l     (r+l)(r  +  9) 
is  less  than  a  number  of  the  form  PQp/(p-  1)!,  where  P  and  Q  are 
independent  of  p  and  of  m. 

We  have  now 

(A  +  T  A)  -  KPA  +  T  #<*>  (ft,) T 
m=l  m=l 

where  -ffp^l  is  not  a  multiple  of  p,  the  second  term  is  an  integer 

divisible  by  p,  and  L  is  less  than  nPQp/(p  -1)1.  The  prime  p  may 
be  chosen  so  large  that  nPQP/(p  -  1)  !  is  numerically  less  than  unity. 

m=n     „ 

Since  KP(A  +    2   epm)  is  expressed  as  the  sum  of  an  integer  which m—l 

does  not  vanish  and  of  a  number  numerically  less  than  unity,  it  is 
impossible  that  it  can  vanish.  Having  now  shewn  that  no  such 
equation  as 

A+eP*  +  e?z+  ...  +/»  =  0 

can  subsist,  we  see  that  tn  cannot  be  a  root  of  an  algebraic  equation 
with  integral  coefficients,  and  thus  that  TT  is  transcendental. 

It  has  thus  been  proved  that  TT  is  a  transcendental  number,  and 

hence,  taking  into  account  the  theorem  proved  on  page  50,  the  im- 

possibility of  "  squaring  the  circle  "  has  been  effectively  established. 
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