Fremdländische Wald- und Parkbäume für Europa.

Von

Heinrich Mayr,
Dr. philos. et oec. publ., o. ö. Professor der forstlichen Produktionslehre an der k. Universität zu München.

Mit 258 Abbildungen im Texte und 354, zum Teil farbigen, Abbildungen auf 20 Tafeln.

BERLIN.
VERLAGSBUCHHANDLUNG PAUL PAREY.
Verlag für Landwirtschaft, Gartenbau und Forstwesen.
SW., Hedemannstrasse 10.
1906.
Alle Rechte, auch das der Übersetzung, vorbehalten.
Vorwort.

Die Abfassung einer Schrift, wie der vorliegenden, welche die Bäume und Waldungen dreier Weltteile behandelt, hätte ich nicht gewagt, wenn ich gezwungen gewesen wäre, den Stoff hierzu aus anderer Autoren Büchern statt aus dem waldfresfrischen Borne der Natur zu schöpfen; es war mein Bestreben, nur Selbstgeschafftes, Selbstgeprüftes aufzunehmen; wo ich fremde Ergebnisse be-
nützen mußte, ist gewissenhaft Mein und Dein auch für den in der Literatur nicht eingeweihten Leser kenntlich gemacht. Wer meinen früheren Schriften Beachtung geschenkt hat, wird von mir erwarten, daß nur in ganz bescheidenem Umfange fremde Beobachtungen in diesem Buche Eingang gefunden haben; demselben Gedanken folgend, wird er auch die vielen Zitate aus meinen eigenen Arbeiten entschuldigen und es selbstverständlich finden, daß ich von den 600 Abbildungen dieses Buches 550 nach der Natur selbst gezeichnet habe; er wird die vielen Widersprüche gegenüber den herrschenden Ansichten und den Darstellungen in anderen Büchern erklärlich finden, Widersprüche, in welche eben jeder Forscher gerät, der durch Vorstudien und langjährige Reisen und Beobachtungen das Recht der Selbständigkeit in seinem Wissensgebiete sich errungen hat; deshalb mußte auch manches an der gegenwärtigen Benennung der Baumarten korrigiert werden; mehrere bisher gar nicht oder nur unvollständig bekannte Bäume wurden hier als neue Arten beschrieben.

Der dem Buche zugrunde liegende Stoff ist im In- und Auslande gesammelt; das fremdländische Material ist das Ergebnis dreier Reisen um die Erde, für welche mir ein Zeitraum von nahezu sechs Jahren zur Verfügung stand.

Vorwort.

Für die treue Wiedergabe meiner kolorierten Originale, sowie für die ganze, prächtige Ausstattung des Buches muß ich der Verlagsbuchhandlung meine vollste Anerkennung und meinen wärmsten Dank ausdrücken.

München, Januar 1906.

Der Verfasser.
Inhalt.

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume</td>
<td>1</td>
</tr>
<tr>
<td>Die Waldungen von Nordamerika</td>
<td>4</td>
</tr>
<tr>
<td>Die atlantische Waldregion</td>
<td>12</td>
</tr>
<tr>
<td>a) Der tropische Wald</td>
<td>13</td>
</tr>
<tr>
<td>b) Der subtropische Wald</td>
<td>14</td>
</tr>
<tr>
<td>c) Der winterkalte Laubwald der gemässigt-warmen Region</td>
<td>20</td>
</tr>
<tr>
<td>d) Der Nadelwald der gemässigt-kühlen Region</td>
<td>29</td>
</tr>
<tr>
<td>Die nordamerikanische Prärie</td>
<td>30</td>
</tr>
<tr>
<td>Der pazifische Wald</td>
<td>38</td>
</tr>
<tr>
<td>Der nordmexikanische Wald</td>
<td>61</td>
</tr>
<tr>
<td>Die Waldungen der Alten Welt, Europa und Asien</td>
<td>63</td>
</tr>
<tr>
<td>Der atlantische Wald der Alten Welt, der europaöische Wald</td>
<td>64</td>
</tr>
<tr>
<td>Der pazifische Wald der Alten Welt, der ostasiatische Wald</td>
<td>66</td>
</tr>
<tr>
<td>Der japanische Wald</td>
<td>70</td>
</tr>
<tr>
<td>a) Der tropische Wald</td>
<td>116</td>
</tr>
<tr>
<td>b) Der subtropische Wald.</td>
<td>117</td>
</tr>
<tr>
<td>c) Der winterkalte Laubwald</td>
<td>122</td>
</tr>
<tr>
<td>d) Die gemässigt-kühle Region der Tannen und Fichten</td>
<td>128</td>
</tr>
<tr>
<td>e) Die alpine oder kühle Region der Krummhölzer</td>
<td>129</td>
</tr>
<tr>
<td>Der koreanische Wald</td>
<td>131</td>
</tr>
<tr>
<td>Die Waldungen von China</td>
<td>136</td>
</tr>
<tr>
<td>a) Die tropische Vegetationszone</td>
<td>152</td>
</tr>
<tr>
<td>b) Die subtropische Waldzone</td>
<td>153</td>
</tr>
<tr>
<td>c) Die Region des winterkahlen Laubwaldes</td>
<td>154</td>
</tr>
<tr>
<td>d) Die Region der Fichten und Tannen</td>
<td>156</td>
</tr>
<tr>
<td>e) Die Region der Krummhölzer</td>
<td>157</td>
</tr>
<tr>
<td>Die Waldungen des Himalaya</td>
<td>157</td>
</tr>
<tr>
<td>Der östliche Himalaya</td>
<td>160</td>
</tr>
<tr>
<td>Der westliche Himalaya</td>
<td>169</td>
</tr>
<tr>
<td>Der sibirische Wald</td>
<td>177</td>
</tr>
<tr>
<td>Die kaukasischen und kleinasiatischen Waldungen</td>
<td>179</td>
</tr>
<tr>
<td>Die Baumarten der kühlnsten Waldgebiete südlich vom Wendekreise des Krebses</td>
<td>180</td>
</tr>
</tbody>
</table>
II. Abschnitt. Landschafts-, Klima- und Holzartenparallelen der Waldbungen von Nordamerika, Europa und Asien

A. Tropische Waldzone, das Palmetum

B. Subtropische Waldzone der immergrünen Eichen und Lorbeeräume, das Lauretum

Ca. Gemäßigtsig-warme Zone des winterkalten Laubwaldes, wärmere Hälfte, das Castanetum

Cb. Gemäßigtsig-warme Zone des winterkalten Laubwaldes, kühlere Hälfte, das Fagetum

D. Gemäßigtsig-kühle Region der Fichten, Tannen und Lärchen, das Abietum, bez. Picetum

E. Kühle Region der Krummhölzer und Halbbäume, Waldgrenzen, das Alpinetum, das Polaretum

III. Abschnitt. Die Anbaufähigkeit der fremdländischen Holzarten, Akklimatisation, Naturalisation, Provenienz des Saatgutes

IV. Abschnitt. Die Anbauwürdigkeit der fremdländischen Holzarten

V. Abschnitt. Die Echtheit und Benennung der Arten

VI. Abschnitt. Anbauergebnisse

VII. Abschnitt. Die für Europa anbaufähigen und aus forstlichen oder gärtnerischen Gründen anbauwürdigen fremden Holzarten

A. Die Nadelhölzer

B. Monokotyle Laubbaumarten

C. Dikotyle Laubbaumarten

VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten

IX. Abschnitt. Spezielle Anbauregeln und Anbaupläne für forstliche Zwecke

Anbaupläne für Standorte mit Lauretum-Klima

Anbaupläne für Standorte mit Castanetum-Klima

Anbaupläne für Standorte mit Fagetum-Klima

Anbaupläne für Standorte mit Abietum- bzw. Picetum-Klima

Anbaupläne für das Alpinetum bzw. Polaretum

Holzarten für besondere forstliche Zwecke

X. Abschnitt. Spezielle Anbaupläne für Parke, Ziergärten und ähnliche, vorwiegend ästhetischen Zwecken dienende Anlagen

XI. Abschnitt. Schutz und Erziehung fremder Holzarten

XII. Abschnitt. Vermehrung der Pflanzen ohne Sämereien; Erziehung von Schmuckpflanzen

Anhang

Register mit Schlüssel zu demselben

Tafeln
Erster Abschnitt.

Die Heimat der fremdländischen Wald- und Parkbäume.

Zur Lösung aller Fragen bezüglich des Anbaues fremder Holzarten genügt es nicht, nur die Heimat und die Wechselbeziehungen zwischen heimatlichen Standortsfaktoren und Holzarten zu kennen; es bleibt noch eine Fülle von dunklen Punkten in der Lebensgeschichte der Baumarten dem praktischen Anbau, dem exakten Versuche selbst zur Aufhellung vorbehalten. Es wäre aber ebenso irrig zu glauben, daß die Kenntnis der Heimat belanglos sei, daß der praktische Versuch genüge und entscheide, da ja am neuen Standorte doch alles wieder anders sei. In der Mitte liegt der richtige Weg: die Kenntnis der Heimat ist notwendig, um auf ihrer naturwissenschaftlichen Grundlage die große Zahl der aussichtslosen Versuche einzuschränken, notwendig, um die Richtung anzugeben, nach welcher hin der Versuch unternommen werden muß, um Erfolg zu versprechen.

Wenn ich in diesem und dem folgenden Abschnitte deshalb etwas ausführlicher bei den heimatlichen Verhältnissen der fremden Holz-

Mayr, Fremdländische Wald- und Parkbäume!

Will man die Heimat einer Holzart kennen lernen, weil in ihr das naturwissenschaftlich-waldbauliche Problem, das wir durch langwierige praktische Versuche erst ergründen wollen, bereits gelöst ist, so muß man das ursprüngliche Verbreitungsgebiet und die ursprüngliche Verbreitungsf orm für jede Baumart wieder sich rekonstruiert denken; man muß den Wald wiederum aufbauen und mit Holzarten bevölkern auch in jenen Gebieten, welche durch die Tätigkeit des Menschen ihrer natürlichen Bodenbedeckung beraubt wurden. Ja auch dann, wenn man diese entwaldeten Gebiete sich mit Wald bestockt denkt, bleiben zwischen und außerhalb der großen Waldmassen der nördlichen Hemisphäre noch umfangreiche Flächen übrig, welche seit der letzten großen, geologischen Umwälzung während der Eiszeiten nicht mehr Wald trugen, welche aber sicher in früheren Erdepochen, in welchen viele der gegenwärtigen Hauptwaldlandschaften noch von Wasser überflutet wurden, mit Wald bestanden waren.

Waldlose Landstrecken beträchtlicher Umfanges nehmen Norden und Zentrum der großen Kontinente von Nordamerika und Europa-Asien ein. Während innerhalb des Waldgebietes der Mensch noch vielfach Wald vernichtet in seinem Streben nach Gewinn, weil er, mitten im Segen des Waldes wohnend, die Segnungen des Waldes nicht erkennt, baut er außerhalb des Waldes, auf der Steppe, auf der Prärie, wo er die Wohltat des Waldes entbehrt, so schnell und so viel als möglich den Wald auf; hier verwandelt er mit Feuer und Axt den Wald in Prärie, dort setzt er mit allem Aufgebot von Fleifs und Mitteln an die Stelle der Prärie den Wald: Waldverwüstung — Waldbegründung, die beiden Extreme in unmittelbarer Nähe, in ein und derselben Nation! Wo Waldvernichtung bereits zur Waldwirtschaft geführt hat, da scheiden unter der neuen Tätigkeit des Menschen Holzarten, welche für ihn keinen Nutzen gewähren, allmählich aus dem Walde aus, die wertvollen nehmen überhand, neue Holzarten, deren Ansiedlung den natürlichen Verbreitungsmitteln der Holzart selbst unmöglich wäre, bürgert der Mensch ein. Im Zeichen dieser Umgestaltung,
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

der Ausgleichung einzelner Baumarten auf große Flächen hin, unter der Herrschaft einer sogenannten geregelten Forstwirtschaft stehen die Waldungen des mittleren Europa seit Jahrhunderten; im trockenen, warmen Südeuropa hat die Waldvernichtung schon frühzeitig die Überhand gewonnen, im kühleren Nordeuropa ist noch Wald im Übermaß; im Norden drängt er sich trotz aller Misshandlungen von selbst wiederum auf.

In Amerika wächst die zweite Baumgeneration auf zu einem an Fläche um drei Viertel verkürzten, artenärmeren, vielfach minderwertigen Baumgemenge; unberührte, ursprüngliche Waldungen schwinden rasch bis auf jene Bergwaldungen, welche in den letzten Jahren die weitaus blickende amerikanische Nation noch rechtzeitig vor Verwüstung gerettet hat.

Der Wald rächt sich an seinen Verderbern, und zwar um so rascher und nachdrücklicher, je trockener das Klima, je bergiger das Land. Man muß zwar die allgemein verbreitete, landläufige Ansicht, daß der Wald die Regenmenge eines Landes vermehre, als unbewiesen und unbebrochen aufgeben; aber es bleibt von den Wirkungen des Waldes auf die Fruchtbarkeit der Erdscholle, die er deckt, und der ferner liegenden, die er mit Wasser speist, noch genug übrig, um die Existenz des Waldes als eine Notwendigkeit für die Blüte einer Nation zu bezeichnen. Der alte Kontinent weist zahlreiche Beispiele auf, daß Nationen, welche ihren Wald vernichteten, untergegangen oder doch verarmt sind, daß die Erhaltung des Waldes, die Wiederbewaldung des Ödlandes als Zeichen des Aufblühens einer Nation gelten muß; die folgenden Zeilen, welche neben einer floristischen Schilderung auch eine naturwissenschaftlich-forstliche Schilderung der Heimat der wichtigsten fremdländischen Baumarten bringen sollen, enthalten Anleitungen genug, um die Bedeutung des Waldes für Land und Volk ermessene zu können.
Die Waldungen von Nordamerika.

Als die ersten Europäer auf dem neuen Weltteile landeten, lag vor ihnen eine unermessliche Waldfläche. Ununterbrochener, unberührter Wald erstreckte sich damals von der Südspitze Floridas bis zur Küste Labrador's durch 35 Breitengrade und von der Küste des Atlantischen Ozeans bis zur Prärie, das ist volle 20 Längengrade. Rechnet man die Durchschnittslänge dieses Waldes zu 25 Breiten- und die Durchschnittsbreite zu 25 Längengraden, so bedeckte der Wald ursprünglich das Zehnfache des Deutschen Reiches an Bodenfläche; was heute davon noch vorhanden ist, kann man nur schätzungsweise angeben: es mag immer noch ein Zehntel der ganzen Fläche unberührter Wald vorhanden sein. Wer flüchtig dieses Gebiet durchreist, empfängt den Eindruck, als sei noch hinreichend Wald vorhanden: freilich sind jene Staaten, in denen noch Wald überwiegt, spärlich geworden. Wer den noch vorhandenen Wald näher durchforscht, erkennt darüber, daß kaum mehr ein Drittel dessen, was die ersten Weißen vor 400 Jahren erblickten, wirklich den Namen Wald verdient; zwei Drittel sind nur durchlöcherte Jungwuchs oder eine Ansammlung von isolierten, ästigen, vielfach beschädigten Bäumen, oftmals den letzten ihres Geschlechtes.

1) H. Mayr, Die Waldungen von Nordamerika 1890, S. 18 u. a. O.
Ich wies hin auf die meilenweiten Sandwüsten, den schneeweissen vom Winde hin und her getriebenen reinen Sand in den Golfstaaten, die einstmalis herrliche Stämme der besten Kiefer der Welt trugen; ich wies hin auf die weiten Sümpfe des nördlichen Wisconsin und Michigan, die einstens mit einem dichten Baumwuchse bedeckt und statt der armseligen Baum- und Strauchreste von hundertjährigen Weymouthsche Schichten eingefasst waren. Die allgemein fortschreitende Entstörung des Hügellandes und der höheren Berge — ich nenne nur die fichten- und tannenreichen Adirondacks, die Alleghanies; wie viele Abhänge und Täler der letzteren waren noch vor 20 Jahren mit einem Laubwalde bestanden, der in seinem Artenreichtum, seiner Massenentwicklung einzig war — mußte in den Vereinigten Staaten das Augenmerk auf die fortgesetzte Zunahme der Überschwemmungen an Häufigkeit und Gewalttätigkeit lenken. Was die Axt nicht trifft, vollendet das Feuer. Leider ist es hierin auch heute noch so wie vor 15, 50, ja vor 100 Jahren. Wo immer der Mensch in Nordamerika seinen Fußs in die Waldungen setzt, strahlt Feuer aus; die Gebildeten trifft hierin kaum weniger Vorwurf als die Ungebildeten; die Sorglosigkeit ist beiden gemeinsam; solange das Feuer nur im Walde oder auf der Prähme wütet, nimmt niemand davon Notiz. Erst wenn es an den Holzbaracken der Menschen empordodert, dann beginnt auch in den Zeitungen der Lärnm. Im Walde vernichtet das Feuer ja nur den wertlosen underbush, das Buschwerk; nur die wenigsten ahnen, daß dieses Buschwerk vorwiegend die zukünftige Waldgeneration bildet, welche sich langsam in die Höhe arbeitet, um einmal den Platz der alten, vielfach morschen Baumriesen einzunehmen. Alljährlich rast das Feuer durch den Wald, jeden keim, ja selbst das Keimbeet versengend; schließlich sind auch die alten Stämme am Boden anfangs in einem Dreieck, später ringsum ergriffen; sie sterben ab, verrotten, so daß das folgende Feuer dann an ihnen auflostdert Tage und Nächte lang, bis endlich eine trostlose Öde mit schwarzen Säulenresten auf schwarzem Grunde zurückbleibt. Erst ausgiebige Regengüsse löschen solche Waldbrände. Es sei nicht versäumt, an dieser Stelle zu erwähnen, daß seit mehreren Jahren bereits in einigen Staaten eigene Waldfeuerwachen eingerichtet sind; welche augenscheinlich mit Erfolg ihres Amtes walten.

Im atlantischen Waldgebiete sind schon heute von der Landwirtschaft durch den Anbau von Strafsonen, Städten, Eisenbahnen und anderes 75% der ursprünglichen Waldfläche in Besitz genommen; was an Wald bleibt, ist vielfach eine durchlöcherte, ästige Gesellschaft von Bäumen geringen Wertes.

Alljährlich berichten die Zeitungen über die Zunahme von Waldbränden an Zahl und Ausdehnung in den grasreichen Waldungen, alljährlich häufen sich die Klagen über früher ungekannte Trocknis, Versiegen von Quellen, Abnahme des Wasserstandes in den Flüssen. Auf heftige Regen-

Der vor 15 Jahren ausgesprochene Gedanke, daß die fortgesetzte

Was vor 15 Jahren als ein besonders erfreuliches Symptom hervorgehoben werden mußte, die Waldbegründung auf waldlosen Prärien, verdient auch heute besonders Erwähnung. Die Pflanzungen der Regierung wie der Privaten in den Präriestaaten waren größtenteils erfolgreich; stellenweise haben sie den Charakter der Prärie ganz verändert; die ehemals endlosen Grasflächen werden von Baumgruppen, ja Baumflächen durchbrochen, welche den von ihnen eingeschlossenen Niederlassungen alle Wohltaten eines Waldes spenden.

Die Waldungen von Nordamerika.
Auch hierin ist es heute besser geworden. Es bedarf nur eines wirklichen Schutzes gegen Feuer; Boden und Klima werden in kurzer Zeit über den Vandalismus vergangener Jahrzehnte einen Wald wachsen lassen.

Aufkaufes der Schutzwaldungen aus dem Stadium der „Verrücktheit“ in jenes der „Selbstverständlichkeit und Notwendigkeit“ übergegangen zum Nutzen des Waldes und der amerikanischen Nation. Gegenwährtig besitzt die Union bereits Wald, insbesonders im Gebirge als Forstreserven auf einer Fläche von 20 Millionen Hektar; es ist mir die Flächengröße, welche im Besitze der einzelnen Staaten sich befindet, nicht zugänglich; ebenso sicher sind die Waldmassen, aber unbekannt deren Grösse, welche in die Hände reicher Bürger der Union gelangt sind, die gleich dem Staate Erhaltung und Ausnützung ihrer Schätze anstreben.

Kanada, das ganz nach dem amerikanischen Vorbilde seine Waldungen ausnutzt und niederbrennt, schickt sich ebenfalls an, Ordnung in diese große, vitale Frage des kanadischen Volkes, in die Waldfrage zu bringen; die noch vorhandenen großen Urwaldbestände lassen diese Ordnung der Dinge allerdings noch nicht so sehr dringend erscheinen, als dies bei der wärmeren, trockneren, stärker bevölkerten und bereits länger entwaldeten Union der Fall ist. Dem Ministerium des Innern für Kanada ist ein leitender Forstbeamter als Superintendent of Forestry for Canada, Mr. E. Stewart, beigegeben, unter dessen bewährtem Aufforstungssysteme die Prärie mit Beihilfe der Farmer allmählich in eine Feld- und Waldlandschaft verwandelt wird. Auch in Kanada be-
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

steht eine Forstvereinigung mit jährlichen Sitzungen und einer reich illustrierten Zeitschrift (Canadian Forestry Journal).

Die Waldungen von Nordamerika liegen zum allergrößten Teile in der gemäfsigt warmen Region; daraus ergibt sich, daß die Ebenen winterkahlen Laubwald oder bei sandiger Bodenbeschaffenheit Kiefernwald tragen; beide Waldarten gehen an Bergen mit genügender Elevation in Fichten- und Tannenwaldungen über: im Westen wird der Laubwald größtenteils durch Koniferen vertreten.

Mit dem Ankaufe von Alaska haben die Vereinigten Staaten ausgedehnte Gebiete in der gemäsigt kühlen Region erworben, deren Nadelwald, dank dem warmen Meeresströme, bis zum 70. Grad n. B. sich erstreckt.

Die Waldungen Nordamerikas werden durch die Prärie in zwei Regionen geschieden, die in ihrer floristischen Zusammensetzung größere Unterschiede zeigen, als hätte sie ein Meer von der gleichen Breite wie die Prärie seit unvordenklichen Zeiten geschieden.

Die atlantische Waldregion.

1) C. S. Sargents Report 1884. S. 4 u. 5.
Das große Waldland vom Golfe von Mexiko bis zur Küste von Labrador und von der atlantischen Küste bis zum 90. Grad w. L. ist seinen klimatischen und Bodenverschiedenheiten entsprechend selbstverständlich sehr reich an den verschiedensten Baumarten und Waldförmen. In großen Zügen lassen sich die Waldlandschaften etwa folgendermaßen skizzieren:

Die Waldflora der Südspitze Floridas und der vorliegenden Inseln erscheint durch ihre Zusammensetzung und die geographische Lage dieser Region als die Nordgrenze der tropischen Region.

Das übrige Florida sowie ein sehr schmaler Streifen parallel dem warmen Golfstrom bis etwa zum 36. Grad n. B. bedeckt der Wald der subtropischen Region, ein wintergrüner Laubwald, an dessen Stelle auf sandigen, geringen Böden Kiefern (insbesonders Pinus cubensis) treten können.

Von Nordost nach Südwest ziehen durch diesen Laubwaldgürtel die Alleghanies, welche mit den höchsten Spitzen (5000') ebenfalls in die gemäßigt kühle Region, in die Tannen übergreifen.

a) Der tropische Wald.

Der tropische Wald überwiegt in Key-West, der größeren der Inseln von der Südspitze Floridas; auf dem Festlande besitzt er einen schmalen Küstensaum nördlich bis zum Kap Malabar und zur Bai von Tampa, die Niederungen am Rande der zahlreichen, schmalen, tief einschneidenden Meerbuchten bewohnnd.

b) Der subtropische Wald.

Im Süden der atlantischen Waldregion liegt forstwirtschaftlich der Schwerpunkt in den Nadelwaldungen, welche der Küste entlang die sandigen Gebiete einnehmen, wodurch ein 250 km breiter Gürtel von vorwiegend Föhren entsteht. Die Luftfeuchtigkeit in diesem Waldgebiete ist sehr groß und schwankt während des ganzen Jahres nur unbedeutend. Wo diese dunstreiche Atmosphäre noch Zuschuß erhält
aus stagnierenden Gewässern, Flüssen, Bodeneinsenkungen u. dgl., da flattert von den Bäumen herab die mehrere Meter lange, hellgraue, flechtenartige Tillandsia usneoides; oft sammelt sie sich so mächtig an, daß die Äste unter ihrer Last herabbrechen; die ganze Landschaft erhält durch sie ein eigenartiges Gepräge. Betrachtet man den Laubwald während des Winters, in dem Frost und Schnee nicht alljährliche Erscheinungen sind, so erfreut sich das Auge an dem dunklen, prächtig glänzenden Grün der Magnolia grandiflora, an dem hellen Grün der Eichen, des floridanischen Lorbeer (Persea): der Raum zwischen Baumkrone und Boden ist dicht erfüllt mit immergrünen Sträuchern und Halbbäumen, wie Ilex, Aralia, Illicium, Symplocos, Cliftonia-Arten: zahlreiche Smilax und winterkale Vitis klettern von Baum zu Baum und vervollständigen ein Gesamtbild, das durch baumhohe Palmen, bambusartiges Schilf und fleischige Scitamineen einen fast tropischen

Abb. 2. Subtropische Waldlandschaft im Staat Morelos, Mexiko.
Prinz Konrad von Bayern photogr. EFO1.
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Eindruck hervorrufit. Hier gedeiht die Dattelpalme, die Kaktusfeige, wenn sie auch nicht reife Früchte zeitigen; der Pfirsichbaum blüht im November, die Orange reift im Dezember. Yuca und eine zu Boden liegende kleine Opuntie wachsen wild, und die Mangrove, die typische Pflanze der tropischen Küste, erreicht hier ihre nördlichste Grenze. Im Winter 1886 und wiederum 1902 fiel das Thermometer bis auf —8° C. Diese ansnehmend kalte Luftwelle kam von Norden, tötete zahlreiche Orangenbäume, das Hauptprodukt dieser Region, und reichte nach Süden bis zur tropischen Baumgrenze, alle Mangrove-Bäsche vernichtend.

Wo der Boden größere Feuchtigkeit besitzt, da überziehen ihn mehrere Strauchechen und Pinus serotina, eine langnadelige Kiefer, über und über mit den hellen Zapfen von allen früheren Jahrgängen behangen; sie umgürtet die hummocks der wintergrünen Laubhölzer, insbesonders der Quercus virens, der fast wintergrünen Quercus laurifolia und aquatica; endlich die tiefer liegenden, mehrmals im Jahre unter Wasser gesetzten Partien (Swamps) bevölkert die prächtige Riesenzeder des Ostens, Taxodium distichum. Zur Zeit, als ich diese
„Zedern-Swamps“ besuchte (Anfang November 1887), waren trotz der vorhergehenden langwöchentlichen Trockenperiode größere Swamps wegen Nässe nur am Rande zugänglich; die flache, schirmförmige Krone an 40 m über dem Boden erhoben, braunrot durch die herbstliche Färbung, so daß man von Ferne den Eindruck bekam, einen von Feuer versengten Nadelwald vor sich zu sehen; von den Ästen flatterte mehrere Meter lang die hellgraue Tillandsia, wie Bartflechten vom Winde hin und her bewegt. So erhoben sich die Riesen aus dem sumpfigen Gebiete, je nach der Ausformung desselben bald in wenigen Individuen zusammenstehend, bald in größeren Gruppen, in ausgedehnten Waldungen, bald in zusammenhängenden, langen, schmalen Streifen an Flüssen entlang; typisch ist die flaschenförmige Basis dieser Bäume, umgeben von einer Anzahl von spitzen Knieen, die aus den Wurzeln allerorts emporwachsen. Wo der Standort dieser Sumpfzypressen zusaagt, herrscht sie ausschließlich; einzeln eingemengt sieht man sie selten. Viele der Laubhölzer, die ihren Standort mehr oder minder teilen, zeigen die gleiche Eigentümlichkeit einer flaschenförmig angeschwollenen Basis, wie z. B. Liquidambar styraciflua, Fraxinus platycarpa, Nyssa aquatica u. a. Umsäumt sind solche sumpfigen Niederungen

Abb. 3. Urwald von Taxodium distichum, Florida.
T. S. Woolsey photogr.

Mayr, Fremdländische Wald- und Parkbäume.
von Laubhölzern, unter welche sich *Juniperus virginiana*, *Chamaecyparis sphaceroidea* drängen. Ersterer erreicht hier und jenseits des Mississippi seine Vollendung.

Die zahlreichen winterkahlen Laubhölzer, welche aus der nördlichen Region übergreifen und, unter die wintergrünen Laubhölzer sich ein- drängend, hier ihre südliche Grenze finden, behalten die Blätter un- gewöhnlich lange, verlieren ihre schöne bunte Färbung, mit der sie in ihrer nördlichen Heimat dem herbstlichen Bilde eines nordamerikanischen Laubwaldes ein besonders auffällendes Gepräge verleihen. Die ganze

Entwicklung der Pflanzen ist durch die länger wirkende Wärme und Luftfeuchtigkeit in die Länge gezogen; die Früchte reifen hier am spätesten, und hier konnte ich noch reife Früchte pflücken von Bäumen, die weiter nördlich längst blätterlos waren und ihre Früchte als will- kommene Speise für Eichhörnchen, Mäuse und Schweine zu Boden geworfen hatten. Das feuchtwarme Klima belebt die Sumpfe mit zahl- losen Mosquitos: das gelbe Fieber, das von Kuba aus zuweilen als unheimlicher Gast die nordamerikanische Küste besucht, erhält sich hier bis spät in den Winter; hatte ich doch, als ich Mitte November 1887 in Florida reiste, mich auszuweisen, daß ich nicht aus dem nahen
Tampa kam, wo die Seuche besonders hartnäckig standhielt; die Klapperschlange, diese unheimliche Bestie in dem raschelnden Palmgestrüppe, erreicht hier mit 8' Länge ihr Maximum; in den Bächen und Sümpfen kriechen die faulen Alligatoren, deren hoffnungsvolle Jugend in den Pfützen herumwühlt wie bei uns Salamander in den Teichen.

Das der Landwirtschaft dauernd nutzbare Terrain ist in diesem Gebiete von verhältnismässig geringer Ausdehnung; die einen Ortlichkeiten sind zu trocken und in der Regel auch ohne energische Düngung viel zu mager; die anderen sind wieder zu feucht, und ihre Entwässerung, wenn sie möglich wäre, würde nur die völlige Verödung der höheren Standorte zur Folge haben.

Im grossen Haushalte der Union bleiben daher dem Staate Florida als Hauptprodukte des Landes die Erzeugung von Nutzholz und Harz neben Zitronen und Orangen.

Als die beste Föhre des südlichen Kieferngürtels sowohl als von allen Föhren der Erde überhaupt, ist Pinus palustris zu bezeichnen. Ihr Holz ist, wie das aller südlichen Föhren, durch die mächtig entwickelte dunkle Sommerholzzone, die oft zwei Drittel des Jahrringes umfaßt und das hohe spezifische Gewicht, die Härte und die Brennkraft des Holzes bedingt, ausgezeichnet (vgl. Tafel VIII Fig. 13).

Die langnadelige Föhre (Pinus palustris) ist in den Vereinigten Staaten die einzige Holzart, die gegenwärtig auf Harz genutzt wird; sie bringt davon solche Erträge, daß der Export des erzeugten Harzes die Nutzung dieses Produktes an Fichten, Föhren und Tannen in Europa fast ganz erdrückt hat. Nur mit Schwierigkeit behauptet sich die französische und österreichische Harzindustrie. Zahllose Bäume
finden ein vorzeitiges Ende infolge der schweren Verletzungen durch die Harznutzungsmethode; kaum geringer ist die Zahl der Stämme, die, ohne geharzt zu sein, alljährlich den Bodenfeuern zum Opfer fallen.

Auf ihrem heimatlichen Standorte hat die Pinus palustris einen harten Kampf mit der schneller wüchsigen Pinus Taeda; auf der nördlichen Grenze im Hügellande wechselt die Pinus palustris bei besserer Bodenart mit Gruppen von Eichen, oft einzeln unter diese gemengt. Wird sie dort entfernt, so fallen die Laubhölzer, insbesondere Quercus falcata, Catesbaei, ciracea, nigra, den geräumten Platz; so war es wohl auch im unberührten Urwald, und die angeflogen Kiefern arbeiteten sich langsam zwischen den anderen Laubhölzern empor. Jetzt aber jagt regelmäßig Feuer durch den Wald am Boden dahin, das dürre Laub und die kleinen Zweige und Grashalme mit den jungen Föhren verzerrend. Ich zweifle keinen Augenblick, daß die Kiefer wieder ihr früheres Terrain zurückerobern würde, wenn es möglich wäre, das Feuer aus dem Walde fernzuhalten, das seinen Ursprung vorzugsweise den verarmten Negerbäumern dieser Gegend verdankt. Aber bald wäre Hilfe nötig, ehe noch die alten samentragenden Mutterbäume verschwunden sind; überdies rückt von Norden her, durch die Mißhandlung der Waldwanderungen begünstigt, eine Kiefer vor, die Pinus mitis, deren ferner Überhandnehmen, obwohl sie ein ziemlich wertvolles Holz liefert, doch als ein gewaltiger Rückschritt in volks- und forstwirtschaftlichem Sinne zu bezeichnen wäre.

c) Der winterkahl Laubwald der gemäßigt-warmen Region.

Nur an Artenreichtum, nicht aber an Ausdehnung und Vollkommenheit hat dieser Laubwald seinesgleichen in der gemäßigten Region der nördlichen Hemisphäre. Wo die Bodenbeschaffenheit einigermaßen günstig ist, treten Gruppen oder auch zusammenhängende Waldkomplexe der winterkahlen Laubhölzer bereits in dem südlichen Kiefernürtel auf; von da an nordwärts erstreckt sich der Laubwald durch die ganze Union, ungefähr das Vierfache des Deutschen Reiches an Fläche bedeckend; erst in Kanada erfolgt der allmähliche Übergang in die gemäßigt kühle Region, die durch Eichen und Tannen gekennzeichnet ist.

An der Küste des Atlantischen Ozeans herrscht ebenfalls vielfach sandiger Boden vor; dort finden sich wiederum Kiefern wie in den Bergen auf den trockenen, kiesig-sandigen Bodenausformungen. Dort sind sie einzeln oder gruppenweise dem Laubwalde beigemischt, stets bereit, bei Mißhandlung desselben seinen Platz einzunehmen; so sind heute bereits ausgedehnte reine Föhrenbestände entstanden. So weit sumpfige Bodenbeschaffenheit überwiegt, ist die bereits genannte Weiß- zeder, Chamaecyparis sphaeroidea, allein herrschend. Sie ist hochwertig durch ihr vortreffliches, weiches, dauerhaftes Nutzholz.

In den Alleghanies ist der Boden besser und die Natur energetischer; über mißglückten landwirtschaftlichen Experimenten wächst recht bald das Gras oder Staudenwerk, der Vorläufer des Waldes, wenn keine Feuer dazwischen treten.

Wo der Mensch und mit ihm Axt und Feuer noch gar nicht oder nur wenig hingekommen sind, entfaltet sich der buntgemischte Laubwald in aller Üppigkeit und Urwüchsigkeit.

Im südlichen Teile des Laubwaldgebietes erreicht der mehrhundertjährige Urwald seine höchste Vollkommenheit; für die meisten und besten Holzarten liegt hier das Optimum. Die Hickory sind hier in voller Zahl, ihr säulenförmiger Schaft mit einem Durchmesser von über 1 m, ihre Höhe 30—40 m; die zahlreichen Eichen, die Walnüsse, die Kastanien, die Gleditsche, der Liriodendron, die Platanen erreichen in geschützten Tälern Dimensionen, die man wie jene der Mammutbäume der Sierra Nevada für Übertriebungen oder Unmöglichkeiten hält, bis man selbst unter ihnen steht.

Als ich im Spätherbst 1887 in den südlichen Alleghanies ein warmes, feuchtes Tal mit solchen Kolossen betrat, wollte ich einige Aufnahmen über Holzvorrat und dergleichen anstellen, allein ich mußte davon abstehen; in solchem Urwalde ist ohne vielköpfige Arbeitermannschaft nichts zu erreichen. Der Boden, uneben durch die gefallenen Bäume, durch Baumstümpfe und Wurzeln, mit Stauden und Halbbäumen aller Art bedeckt, hemmt jeden Versuch, mit dem Meßbande vorwärts zu kommen; man kann nur staunen und allenfalls noch schätzen, welcher Vorrat auf einem Hektar allenfalls beisammenstehen
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Abb. 3. Durch Feuer verödete Perge in den Adirondacks.
Nach amerik. Photogr.
könnte, aber messen oder gar Probestämme fällen, sind fast ein Ding der Unmöglichkeit.

Stirbt in diesem Urwalde ein Baumriesen ab, nachdem jahrzehntelang die Pilze sein Inneres durchbohrt und endlich in eine mürbe Masse umgewandelt haben, so bröckeln zuerst die dünnen Äste ab, dem auf Licht wartenden Nachwuchs allmählich Gelegenheit zur Erstarkung gebend; endlich brechen auch die starken Äste, der Gipfel, und nachdem der Baum jahrelang dem Wetter getrotzt, bedeckt mit den Pilzfrüchten verschiedener Polyporeen, stürzt er zu Boden, mit seiner vermoderten Substanz das Nährkapital des Bodens bereichernd; bald ist die Lücke von der aufwachsenden Jugend wieder geschlossen. Unter die guten Holzarten, die sich in diesem Halbschatten so langsam emporkämpfen, mischen sich zahlreiche Sträucher und Halb-

Dieser Wald, die Perle aller blattabwerfenden Waldungen der nördlichen Erdhälfte, verschwand natürlich zuerst entlang den großen, Schiffbaren Flüssen.

Bis etwa 1000 m steigt in den warmen, feuchten Tälern die bereits erwähnte Laubholzflora empor; nur die Bewohner der Niederungen, wie einige Caryas, mehrere Eichen, bleiben zurück; von 1000 m an nimmt die Zahl und Dimension der Holzarten merklich ab bis zu einer Höhe von etwa 1500 m. Von da an vermindert sich die Zahl abermals, die nordamerikanische Edelkastanie verschwindet, der Wald wird einförmig und erinnert dabei lebhaft an die Laubwaldungen der europäischen Mittelgebirge; in diesem Striche bis 1800 m herrschen die nordamerikanische Buche (*Fagus ferruginea*), die Roteiche (*Quercus rubra*), der Zuckerahorn (*Acer saccharinum*), die Gelbbirke (*Betula lenta*), eine Roßkastanie (*Aesculus rubra*) als die wichtigsten. Von 1800 m an dominieren die Buchen, ganz entsprechend dem hohen Partien des deutschen Laubwaldes, insbesondere im Mittelgebirge und am Fufs der Alpen. *Betula* folgt mit; auf der oberen Grenze mischen sich einzelne Tannen und Fichten (*Pinus nigra, Abies Fraseri*) bei; endlich von 2000 m an deckt die Berge der dunkle Wald der beiden Nadelhölzer, umsäumt von dem über mannhohen, dunkelblätterigen Rhododendron maximum und der Zwergere (Ahnus viridis).

Die kühlere nördliche Hälfte der Laubwaldregion von 39° an nördlich, die ich im Herbst 1885 der Länge und Quere
Die Waldungen von Nordamerika.

nach durchreiste, beherbergt eine Reihe von ihr typischen Laubbäumen (dieselben, welche die südlichen Alleghanies von 1500 m aufwärts bewohnen). Hier liegt auch die Heimat der leichtsamigen Laubhölzer, wie Ahorn, Birken, Weiden, die hier nicht nur in größter Zahl, sondern auch in größter Vollkommenheit aufwachsen. An geeigneten, sandigen Örtlichkeiten vertreten den Laubwald Föhren, die von den Arten im

Süden verschieden sind; in ständig feuchten Niederungen stehen Chamaecyparis, auch Tsuga, die Hemlockstanne, welche weiter nach Norden hin auch den normalen Böden eigen ist, virginischer Wachholder und ausnahmsweise auch die Weymouthskiefer; selbst die Vertreter der Tannenregion, die Weiß- und Schwarzfichte, die Balsamstanne finden in dem nördlichen Teile dieses Laubwaldes bereits günstige Verhältnisse in den kalten sumpfigen Niederungen: es liegt dort auch zugleich ihre südliche Grenze.

Hier beginnt auch zuerst die Morgennefröte der Erhaltung und Verbesserung des Waldes für eine neue, dem Walde und dem Volke gleich nutzbringende Ära aufzudämmern. Wie überall in der Welt, offenbart sich auch hier, daß erst eine gründliche Verwüstung des Waldes zur Waldschonung und Bewirtschaftung führt.

1) Amerikanische Reisebilder: Skizzen aus den Staaten Wisconsin, Milwaukee 1879.
Die kalten Nächte, in denen allerorts die Feuer von den zusammen- geschleppten Baumstämmen auf den „clearings“ aufloderten, waren kalt, und morgens überzog kräftiger Reif die Häuser und Gefilde. Je weiter nach Norden aber, dem Lake Superior entgegen, um so milder wurde wiederum das Klima; die Eichen, Walnüsse, Ulmen, Birken, die im Zentral-Wisconsin schon völlig kahl dastanden, fand ich am Seeufer noch in Herbstfärbung. Vorwiegend grau-grüne Farbentöne säumten die Höhenzüge — die unendliche Schar der Weymouthskiefern und Hemlockstannen; gegen den Abhang herab gelbe Streifen von Pappeln und Birken oder orange- und blutrote Flächen von Zuckerahorn und Roteichen.

Die großen Binnenseen sind Reste einer einstens tief ins Land vom Atlantischen Ozean her eingreifenden Meerzunge. Bei ihrem Zurückweichen blieben diese großen Binnenmeere, die allmählich ausgestift wurden, und blieben ausgedehnte, sandige Bodenausformungen zurück. In dieser Zunge, welche die Nordstaaten der Union und die südliche Hälfte von Kanada umfaßt, stocken wiederum Föhrenarten, welche um so mächtiger herrschen, je mehr sandige Beimengung im Boden überwiegst. Hier liegt das Dorado der White Pine, der Wey-

Durchstreift man das atlantische Waldgebiet in der Richtung von Osten nach Westen, so nimmt die Kraft des Wuchses, das bunte Gemisch der Arten allmählich ab; durch größere Boden- und Luftfeuchtigkeit begünstigt, entfaltet sich im Tale des oberen Mississippi nochmals die alte Schönheit und das bunte Gemisch der Baumarten; aber schon ehe man diese Oase betritt, hat man von Osten her mehrere trockene Hügelreihen mit niederem strauchförmigen Eichen — scrub-oaks — zu durchwandern; hier liegt tatsächlich für diese trockene Höhenlage schon die natürliche Grenze des Hochwaldes. Überschreitet man den Mississippi, so wechselt solche Struacheichen mit Kiefern, wo sandiger Boden auftritt; immer größer werden die Flächen, welche Gras überzieht; sie fließen allmählich zusammen, und endlich ist alles Graslandschaft, so weit das Auge reicht; hier im Norden des atlantischen Waldes ist die natürliche Grenze der Prärie durch Feuer kaum merklich verschoben worden; dagegen gehört die südlich gelegene gegenwärtige Grenzzone der Oak-openings entschieden noch zum früheren Laubwalde. Das natürliche Übergangsgebiet vom Hochwalde zur Prärie, die Struachegetation, fehlt; und gerade dies scheint mir zu beweisen, daß im Süden des atlantischen Waldes die gegenwärtige Grenze desselben nicht die ursprüngliche, die natürliche sein kann. Die Ursache, weshalb im Süden die Graslandschaft, die Prärie, sich plötzlich meilenweit in den Wald vordrängt, ja bereits von 90° w. L. an vielfach überwieg, muß anderen als klimatischen Einflüssen zugeschrieben werden. Schuld daran dürfte die Nähe der ursprünglichen Prärie sein, über die alljährlich Feuer dahinrasen; wo sie zuerst auf den Wald stießen — jedenfalls war es verkümmerner, standenförmiger Wald —, versengten sie anfangs nur den Rand; das nächste Feuer fand bereits reichliche Nahrung an dem toten Waldsaume; aus dem Bodenfeuer wurde ein Waldbrand, den erst heftige Regengüsse auslöschen. Auf dem verkohlten Boden entstand reichlicher Graswuchs. Jeder folgende Waldbrand fand reichlichere Nahrung, bis der Wald verschwunden und Gras an seine Stelle getreten war. Prärie,
Der Ursprung auf solche Ursachen zurückgeführt werden muß, kann wiederum in Wald umgewandelt werden, und in der Tat entsprießt und gedeiht auch dort überall Wald, wie die großen Anpflanzungen in den Weststaaten beweisen. Daß der Mensch, der wohl jedes Feuer im Walde und auf der Prärie auf dem Gewissen hat, diese Prärie künstlich geschaffen, beweisen auch die einzelnen vom Feuer verschonten alten Bäume und Baumgruppen (oak-openings); auch das Vorhandensein von Wald auf den östlichen Flussoberflächen, während die westlichen, gegen die Prärie gelegenen ihres Waldes durch Feuer be- rautet wurden, stützt die Theorie von der Erweiterung der Prärie durch Feuer.

d) Der Nadelwald der gemäßigt kühlen Region.

Die wichtigste Holzart der kühleren, nördlichen Lagen ist die Weißfichte (Pinus alba); sie dringt am weitesten von allen östlichen Nadelhölzern nach Norden vor, stockt dort in reinen Waldungen von ungeheurer Ausdehnung selbst auf Boden, der schichtenförmig ewiges Eis enthält; gelangen dort — nördlich vom 57. Grad an — die Wurzeln dieser Fichte auf eine gefrorene Erdschicht, so weichen sie darüber hinein mehr oder weniger gleichmäßig in eine Felsenplatte; wo Flußstäler mit etwas wärmeren Verhältnissen dieses hügelige Binnenland durchfurchen, tritt die Weißf-
fachte zurück; die Balsamrinne, Weiden, Erlen, Balsam- und Zitter-
pappel, die blendend weißfründige Kahn- oder Nachenbirke erfüllen das
Tal und die sonnigsten Hänge; die Schwarzfichte bekleidet die kühlen
Seiten: an Stelle der Weißfichte tritt in den Küstengebirgen die
Rotfichte.

Nach Süden hin treten zu ihnen andere Nadelholzarten, die dort
ihre Nordgrenze finden, wie Thuja, Tsuga, Juniperus; in warmen, ge-
schützten Lagen gesellen sich einzelne Roteichen, Zuckerahorn, Ulmen
und Eschen zu einem Laubwalde zusammen, der nach Süden hin an
Anzahl und Breite zunimmt; schon innerhalb der nördlichen Kiefernzone im
Bereiche der großen Seen werden die typischen Vertreter der kühlen
Region, die Fichten und Tannen, zu inselartigen Beständen auf kalten
nassen Böden zusammengedrängt.

In forsttechnischer Hinsicht stehen die nordischen Waldungen an
Vielseitigkeit ihrer Produkte, nicht aber an finanzieller Güte derselben
gegen die Laubwaldungen der wärmeren, südlichen Zone zurück; ihr
Wert ist fortwährend noch eine steigende Größe, dank der fort-
schreitenden Erschöpfung der südlich gelegenen Vorräte an Nadel-
hölzern.

Bis jetzt haben die Kanadier vorzugsweise in den wärmeren
Strichen ihres Landes gewirtschaftet, und zwar ganz nach amerika-
nischem Muster; die enormen Vorräte an Fichten, Weymouthsföhren,
Tannen- und Hemlockstamtholz und die billigen Arbeitskräfte ge-
statten es, Holz in großer Menge trotz des Eingangszolles über Land
und zu Wasser nach den Vereinigten Staaten zu exportieren. Im
Norden und Westen liegen noch gewaltige Vorräte unerschlossen für
spätere Generationen, die, solange Überfluss vorhanden ist, gerade so
unwirtschaftlich wie ihre Vorfahren handeln werden.

Die nordamerikanische Prärie.

Zwischen dem atlantischen Wald und der eigentlichen Prärie
schiebt sich als natürliches Bindeglied eine Strauchvegetation von
solchen Holzarten ein, welche östlich von der Prärie unter günstigen
Feuchtigkeitsverhältunissen zu hohen Bäumen erwachsen. Wo dieser
Strauchwald fehlt, ist er durch das Feuer zerstört worden; das ist auf
der atlantischen Seite überall der Fall, wo Hochwald in Gruppen oder
kleineren Flächen, gleichsam mitten in der Prärie mit steilem Rande
aufwachsend, sich erhebt. Auszumehmen sind hiervon nur jene
sumpfigen Ortlichkeiten und Flusssufer in der südlichen Prärie, welche
ebenfalls steil aus der Grassteppe emporragenden Hochwald, meist
Sumpfzypressen (Taxodium distichum) beherrschen. Auf der west-
lichen Seite der Prärie vereinigt sich dieselbe allmählich mit den Ab-
dachungen des Felsengebirges. Dort fehlt auch der typische Strauch-
wald; im Gras- und Staudenwuchs stehen isoliert mächtige Bäume, welche weiter aufwärts zum Walde sich zusammenschließen; dort hat auch das Feuer den Wald noch kaum auf seine feuchteren, regenreicheren Standorte zurückgetrieben.

Die Prärie scheidet die atlantische Flora von der pazifischen besser, durchgreifender, als wenn an Stelle der Prärie ein Meer von gleicher Breite sich dazwischen schöbe. Obwohl die Prärie nur eine durchschnittliche Breite von 500 km aufweist, ist keine Holzart, selbst die leichtsammige Pappel, nicht imstande, diese durch trockene Luft ausgezeichnete Scheidewand zu übersteigen. Die Frage nach dem Ursprunge der Prärie ist in europäischen und amerikanischen Schriften schon oft bearbeitet worden. Die einen nehmen an, es war alles Wald, und durch die nomadisierende Lebensweise der Ureinwohner Amerikas, der Indianer, sei der Wald vernichtet worden, indem diese den Wald niederbrannten, um Gras für die Büffel zu gewinnen. Diese Ansicht hat sehr viel für sich und ist zweifellos richtig für die Frage der Ausbreitung der Prärie auf Kosten des Waldes.

Daß es tatsächlich auf der Erdoberfläche Ortlichkeiten gibt, die seit dem Diluvium mit Gras bedeckt sind, ist nicht zu bezweifeln; wo die relative Feuchtigkeit der Luft während der Vegetationszeit unter ein gewisses Minimum — etwa 50% — sinkt, da ist kein Wald möglich, denn die Luft in den höheren Schichten ist zu trocken, als daß eine zarte Pflanze — der junge neue Längstrieb eines Baumes ist stets eine einjährige, zarte Pflanze — in ihr emporwachsen könnte. Die Verdunstung des Wassers aus den Blättern und Trieben ist rascher, als durch die Wurzeln Ersatz zugeführt werden kann; nur eine unmittelbar über dem Boden, im Taubereiche desselben liegende Vegetation — Gras, Kräuter oder niedriges Strauchwerk —, ist existenzfähig. Auch der ungekehrte Fall kann eintreten; die Luft mag genügend Feuchtigkeit enthalten, aber trotzdem nichts oder zu wenig Niederschläge (etwa 40 mm) an den Boden abgeben, dessen anliegende Vegetation alljährlich die heiße Glut des Sommers versengt; solchem Wechsel in Temperatur und Feuchtigkeit ist ebenfalls nur das Gras mit seinem unterirdischen Stocke gewachsen; wo beide Faktoren zusammenhelfen, Luftfeuchtigkeit und Bodenfeuchtigkeit fehlen, da fehlt in der Regel auch jeder Pflanzenwuchs; das ist die Wüste, das sind die wahren bad lands, die deserts.

Man hat immer die absolute Niederschlagsmenge während des Jahres angezogen und versucht, mit ihr allein das Fehlen des Waldes zu erklären; ich glaube, die relative Feuchtigkeit spielt dabei eine ebenso große Rolle wie jene; der östliche Teil der Prärie erhält über 600 mm jährliche Niederschläge, über 200 mm mehr als die mit Kiefern bedeckte norddeutsche Tiefebene; auch die kalifornische Prärie zwischen Coast Range und Sierra erhält im Jahre etwa 5—600 mm,
aber fast die ganze Regenmenge fällt in den Monaten November und Dezember; je gleichmässiger Regenmenge und Luftfeuchtigkeit während des ganzen Jahres verteilt sind, um so günstiger sind die Bedingungen für den Wald; je größer dabei die relative Feuchtigkeit, um so höher wächst der Wald, insbesondere der Koniferenwald empor; so gewaltig beeinflusst die konstante Luftfeuchtigkeit den Höhenwuchs, daß die übrigen Faktoren eines Standortes, welche seine Gütequalität bedingen, geradezu untergeordnet erscheinen. Es ist bereits nachgewiesen, daß in jenen Teilen der Prärie (östlicher Teil der Prärie, kalifornische Prärie), in denen relative oder absolute Feuchtigkeit groß genug sind, nach der künstlichen Begründung des Waldes dieser durch seine konservierende Eigenschaft sich erhalten und auf natürlichem Wege sich wieder verjüngen kann.

Ich pflichte der Ansicht jener bei, die an die Ursprünglichkeit der Prärie in einem kleineren Umfange glauben, die aber eine ganz beträchtliche Ausdehnung derselben durch Feuer nach Osten hin annehmen: diese Ausdehnung wird um so wahrscheinlicher, als gerade zur größten Trockenheit, zur Zeit der großen Präriebrände — September und Oktober — die Westwinde vorherrschend sind.

Dem Auge erscheint die Prärie nicht als ungeheure Ebene, in der die Schweite, wie am Meere, erst durch die Krümmung der Erde abgeschnitten wird; sie ist stets schwach wellig, teilweise selbst hügelig, im Norden nur mit hohem Grase bedeckt, dessen Wachsen und Verwesen allmählich die Humusschicht bis zu 6' Tiefe angehäuft hat, reiner Humus, der alle organischen und unorganischen Stoffe enthält, welche die Kulturgräser, die Getreidearten zur vollendeten Entfaltung bedürfen. Im trockenen Zustande hat der Prärieboden keinen Zusammenhang, sondern zerfällt zu Staub; er absorbiert Wasser sehr rasch und verliert es ebenso schnell; im nassen Zustande ist seine Farbe schwarz, im trockenen grau; die oberen, halb verwesten Schichten verbrennen wie schlechter Torf, eine Menge Asche zurücklassend. Wird er geschmolzen, frittert er zusammen wie Schlacke wegen seines geöffneten Gehaltes an Kieselsäure; wie alle Böden reich an zersetzten vegetabilischen Stoffen, enthält er eine große Menge Ammoniak. Schon die Gleichmässigkeit des Bodens spricht, nach Fleischmann, dagegen, daß er je eine Waldvegetation getragen hat, selbst wenn dieselbe auch vor 1000 Jahren schon von Feuer vernichtet worden wäre. Nach Fleischmann ist es viel wahrscheinlicher, daß ein großer Teil der Prärie einstmals ein Binnensee war. Mit der fortschreitenden Vertiefung der Flüsse trocknete das gewaltige Wasserbecken aus; in der Mitte desselben konnten zuerst Wasserpflanzen sich ansiedeln, große Mengen vegetabilischer Stoffe wurden angehäuft; später dann änderte sich die Vegetation, grasartige Pflanzen traten auf, und jede der folgenden
Generationen lebte von den organischen Stoffen der vorausgehenden, da sie den Urboden nicht mehr erreichen konnte.

In dieser östlich vom Felsengebirge gelegenen Prärie besitzen die Vereinigten Staaten einen Schatz, der, wie Fleischmann sagt, nicht übertrüfen wird an Wert und Wichtigkeit von allen wertvollen Metallen im Innern der Erde. Nur soweit die Alkalien in solcher Menge sich finden, wie zum Beispiel im Südwesten, wo sie als weiße Salzkruste aus dem Boden herausblühen, ist kein Pflanzenwuchs möglich. Wer im Herbst die nördliche Prärie durchreist, dem erscheint die gewaltige Fläche schmutzig-gelbbraun; aber stundenlang fährt der Zug über schwarzen Boden hinweg, dem die Präriefeuer, meist aus Muwillen oder durch die Lokomotive angefacht, rasen alljährlich auf Hunderten von Quadratmeilen dahin, empfindlich schadend, wo sie auf in Kultur genommenes Terrain übergreifen. Nicht selten fährt der Zug durch einen erstickenden Rauch, zu beiden Seiten prasselt das Feuer in seinem raschen Laufe hoch empor.

Die nördliche Prärie ist zum weitaus größten Teile eine Grassteppe, dessen Flora insbesondere das Buffalogras, Buchlö dactyloides, Munroa squarrosa, Vasaya comata und viele andere Gattungen und Arten zusammensetzen.

Die Prärie westlich von den Rocky Mountains ist viel trockener, und die breiten, steppenartigen Erweiterungen innerhalb der Berge erhalten oft kaum 40 mm während des Sommers und 100 mm Niederschläge während des ganzen Jahres, und die relative Feuchtigkeit während der Vegetationsmonate sinkt auf 50, selbst 40%.

Die Prärie steigt von Osten nach Westen allmählich zu einem Hochplateau an, das in Minnesota mit etwa 400 m beginnt, bis zu 600 m in Dakota sich erhebt und mit etwa 1000 m in Montana sich an die Rocky Mountains anlehnt.

Der südlichen Prärie fehlt in ihrer östlichen Hälfte der Buschwald, wie erwähnt; aber in ihrer westlichen Hälfte erscheint ein dornreiches, niederes Gestrüpp, besonders von schmetterlingsblütigen Holzpflanzen, von denen viele nach Westen und Süden zu Halbbäumen aufwachsen.

Mayr, Fremdländische Wald- und Parkbäume.
Kleine Opuntien liegen am Boden, die prächtige Yucca canaliculata breitet ihr dunkles Haupt hoch über die Umgebung; andere Yuccas mit schmalen, graziösen Blättern geben der Landschaft einen eigenartigen Reiz. Bei Sabinal, also fast unter dem 100. Grad w. L. erhebt sich aus dem Sumpfe noch einmal eine majestätische Gruppe von Taxodien, aber an Stelle der lang von den Ästern flatternden Tillandsia der atlantischen Waldregion ist eine andere Tillandsia mit kurzem, dickem Vegetationsstocke, geeigneter für ein trockeneres Klima, getreten. In den kleineren Flußbetten, wasserlos zur trockenen Zeit, sickert in der Tiefe doch noch so viel Feuchtigkeit — einem unterirdischen Strome vergleichbar —, daß niederer Laubwald Wurzeln fassen kann; überall tritt der nackte, mineralische Boden in der hügeligen Landschaft zutage.

Die Phantasie eilt voran und malt sich die Ufer des Rio grande in den reizendsten Farben, endlich ist er erreicht, die Enttäuschung ist vollständig — ein schmutziger, gelber, kleiner Fluß, unwürdig des volltönenden Namens, kaum einzelne verkrüppelte Bäume an den Ufern; die Landschaft ist bergig geworden, aber so wie die Prärie nicht zu Ende ist, wenn man im Norden das Felsengebirge erreicht hat, so wenig ist sie im Süden mit dem Eintritt in die bergige Landschaft abgeschlossen.

Auch die südliche Prärie steigt plateauartig an, aber nie zwängt sich die Bahn durch enge Täler, die mit frischem Tammengrün den ersten Grus vom westlichen Walde brachten. Die Gebirgsstöcke, welche eine Fortsetzung der Rocky Mountains darstellen, stehen isoliert, breite Plateaus treten dazwischen: immer seltsamer wird das Bild, um so fremdländischer für den, der zum erstenmal die Heimat der Baumkakteen, jener merkwürdigen Vertreter des trockenen-heißen Klimas,
Die Waldungen von Nordamerika.

Die Bergflüsse von Osten berühren in ihrem obersten Laufe mit einem spärlichen Wasserfaden den Rand dieser Graslandschaft; in der Vegetation markiert diese Punkte das Auftreten von isolierten immergrünen Eichen oder Zypressen, je nach der Süd- oder Nordseite eines Hanges; die Eichen scharen sich weiter hinauf zu Gruppen, in den Tälern zu einem kontinuierlichen, wenn auch lockerer Walde zusammen; winterkahler Laubwald tritt dazwischen. Kiefern gesellen sich bei; über 2000 m, wo auch die Douglasie hinzukommt, dürfte das Klima der kühlen Laubwaldregion (dem Fagetum) nahekomen.

In Yuma überschreitet man den Colorado-Flufs, nur 15 geographische Meilen oberhalb seiner Mündung in den Meerbusen von Kalifornien: 30 Meilen westlich liegt der ungeheure Ozean, der Feuchtigkeitsspender: aber nichts in der Pflanzenwelt verrät die Meeresnähe: die
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Abb. 8. Riesenaktus (*Cereus giganteus*) in der südlichen Staudenprärie.
Nach amerik. Photogr.
feuchte Luft vom Meere schneiden vorliegende Berge ab, die trockenen heisse Luft von Nordwest, vom Colorado-Desert, streicht über tier- und pflanzenlose Wasteneien, über Sumpfe, deren Ufer schneeweisse Alkalien ausblühen, über niedere Strauchgruppen der erwähnten Prärie flora.

Endlich betritt man, westwärts eilend, das Land der Sehnsucht-Kalifornien, das vor Jahrzehnten die Goldräuber, heute alle jene anzieht, welche das lieblichst Klima der Welt oder das Yosemite-Tal oder die Riesenbäume der Sierra kennen lernen wollen. Durch ganz Kalifornien zieht sich zwischen dem Küstengebirge und der Sierra Nevada eine Grasprärie. Was aus ihr durch die Tätigkeit des Menschen bereits geworden ist, habe ich schon angedeutet: blühende Niederlassungen mit Feldern, Waldanlagen und Obstgärten. Da die Nieder schlagsmengen innerhalb dieser Prärie für das Aufwachsen von Bäumen zu gering sind, so ist ohne künstliche Bewässerung weder Obst- noch Waldanlage möglich. Schließlich sich aber der einmal gepflanzte Wald, so erhält er sich selbst ohne weiteres Zutun, indem er die notige Feuchtigkeit durch Beschattung des Bodens gegen ausdörrende Winde und die versengenden Strahlen der Sonne sichert. Der Frühling, die Blütezeit der Obstpflaume, fällt in den Dezember und Januar; die reifen Früchte werden gerntet, wenn im Osten an der Atlantic unter dem gleichen Breitengrade Obst- und Baumblüten zur Bestäubung sich öffnen. Wer Ende Mai von den mit reifen Früchten beladenen Gärten des sonnendurchglühten Kaliforniens (wörtlich „der heiße Ofen“), dessen Gras versenkst, dass Getreidefelder eben abgerntet werden, seinen Blick aufwärts und ostwärts erhebt, dem schimmern die schnee gekrönten Häupter der Sierra entgegen. Dort oben weichen eben die Schneemassen zurück, um den Wald in diesen Höhen der Sonne und den wärmeren Lüften des Frühlings freizugeben. Jeder, der das Yosemitetal besucht, beobachtet den Wechsel in der Jahreszeit; ist unten im Tale später Sommer und Herbst (Mai, Juni), so zieht oben unter den Tannen und Mammutbäumen der Frühling ein; ist unten im Tale der Frühling ins Land gegangen (November), lagern sich oben im Gebirge Schneemassen auf die bereits in Winterschlaf versunkene Baumwelt. Unten im kalifornischen Tale scheinen bei dem köstlichen Klima die Pflanzen aller Florengebiete aufwachsen zu können; je nach dem Grade der Bewässerung, den man gibt, kann man in diesem herrlichen Klima alles ziehen; die an die feuchte, salzige Brise des Meeres gewohnte großfrüchtige Zypresse (C. macrocarpa) wächst so rasch empor wie die im dürren, heißen Mexiko heimische Schinus; die australische Eucalyptus treibt das ganze Jahr hindurch, in einem Jahre bis zu 5 m Höhe emporschließend; die australischen, gerbstoffreichen Akazien, die Palmen, Yucca, Pandanen gedethen mit einer Kraft und Wuchsgeschwindigkeit, die in der Heimat dieser Pflanzen nicht größer sein kann; Kern- und Steinobst mit feinem Aroma, Trauben und Orangen
beladen die Gärten der rasch heranblühenden Farmen; die Atmosphäre ist genügend mit Feuchtigkeit gesättigt für Baumwuchs jeder Art, aber die Niederschlagsmenge ist besonders zur Zeit des höchsten Sonnenstandes so spärlich, die Sonnenstrahlen so dörrrend heifs, daß selbst die Prärie-gräser bis zum Wurzelstock absterben.

Kaum aber hat der Regen einige Tage herabzuströmen begonnen (November), so bricht der Frühling an; die Berge und Täler überkleiden sich mit prächtigem Grün, die Gärten füllen sich mit Blumen und Wohlgerüchen, selbst Bäume mit Ruheknospen beginnen sich zu regen.

Wer frisch von Europa kommt, erkennt nur Sommer und Frühling im Wechsel der Jahreszeiten, während der länger Ansässige auch von einem Winter spricht, in welchem alles grün und blüht. Die kälteste Zeit in San Francisco (nur 8° C. kälter als die heißeste Zeit) fällt sogar in den Juli, wenn durch das Goldene Tor dichte Nebelmassen eindringen und sich tagelang in die Täler legen, so daß in den Wohnungen Kaminfeuer instand gesetzt wird.

Der pazifische Wald.

Der pazifische Wald ist nicht, wie der atlantische Wald, ein breites, ununterbrochenes Band, das von Norden nach Süden verläuft; Prärie, wie die ebenerwärmte kalifornische, drängt sich zwischen die waldbekleideten, der Küste parallel streichenden Gebirgszüge; die feuchten, über dem Stillen Ozean gesättigten Luftmengen dringen als Westwinde in den Kontinent ein, bei dem Zuge über das Land hinweg auf zwei, stellenweise drei parallele Gebirgszüge aufstößend. Bei dem Aufstieg
Die Waldungen von Nordamerika.

zur Pafshöhe des ersten Gebirgszuges wird der feuchte Luftstrom stetig abgekühlt, ein Teil der Feuchtigkeit wird zu Nebel und Regen kondensiert; sobald die Pafshöhe erreicht ist, senkt er sich, erwärmt sich, wird relativ trockener, die Nebel lösen sich auf. Dieses Gesetz ist von größter Wichtigkeit für die Existenz der Gebirgswaldungen und zeigt seine Wirkung darin, daß beim Fehlen anderer Feuchtigkeitsquellen, Wald auf der Seeküste der Berge in der Höhe beginnt, wo die Nebelfbildung in der Regel vor sich geht und auf der anderen Seite, Landseite da endet, wo die Nebel sich wieder auflösen. So trägt z. B. das nördliche Coast-Range-Gebirge Nordamerikas auf seinem Westabhang üppige Waldvegetation, die auf der Ostseite des Gebirges, nahe der Pafshöhe, wieder der Graslandschaft der Prärie das Terrain überläßt.

Überschreitet ein vom Meere kommender Luftstrom mehrere der Küste parallele Gebirgszüge mit sukzessive wachsender Pafshöhe, so fand ich auf Grund zahlreicher Beobachtungen gerade hier im Westen Nordamerikas, von Britisch-Kolumbien bis Mexiko, daß der Wald im zweiten Gebirge in einer Höhe beginnt, welche der Pafshöhe des ersten Gebirges entspricht, unterhalb dieser Linie aber stets Prärie herrscht, daß ferner der Wald im dritten Gebirgszuge mit einer Erhebung auftritt, welche wieder der Pafshöhe des zweiten Gebirges entspricht, wenn nicht etwa die Abnahme der Temperatur bei gesteigertem Erden Stunden der Waldvegetation überhaupt eine Grenze setzt; daraus folgt ferner, daß, wenn das zweite oder dritte Parallelgebirge niederer als die Pafshöhe des vorausgehenden ist, das betreffende Gebirge waldlos sein muß, wenn nicht etwa Flüsse, Seen u. dgl. einer lokal begrenzten Waldvegetation genügend Feuchtigkeit liefern.

Die Westküste Nordamerikas ist unter dem 42. Grad n. B. in drei der Küste parallel laufende Gebirgszüge gegliedert. Der Küste des Stillen Ozeans am nächsten läuft das Coast-Range-Gebirge, das kaum bis zu 900 m sich erhebt; es kondensiert aus dem feuchten, warmen Westwinde eine große Menge Wasserdampf (1250 mm Niederschlag pro Jahr und 75 mm während der vier Monate Mai bis August inklusive) bei durchschnittlich 75 % relater Feuchtigkeit pro Jahr und 70 % relater Feuchtigkeit pro Vegetationszeit; dichter Wald bedeckt von der Küste an das Gebirge, in dessen gegen Wind geschützten Lagen der Wald in Höhen und Massen sein Maximum erreicht. Der Nordabhang dieses Bergzuges hat nur in der Nähe der Pafshöhe noch Wald; unterhalb dieser Linie liegt die Graslandschaft, die Prärie mit einzelnen isolierten Eichen. Das zwischen diesem Gebirge und der zweiten Kette, dem Cascade-Range, liegende Terrain ist eine weiche Landschaft mit einzelnen Bergen unter und über 900 m Erhebung; Berge, die mit ihren Spitzen über 900 m reichen, tragen über dieser Linie Wald: solche, welche diese Grenze nicht erreichen, bedeckt Prärie mit einzelnen Eichen, Kiefern und Strauchwerk.
Am Kaskadengebirge steigt die Prärie bis etwa 900 m in die Höhe, wo mit einem Male mit dieser Horizontalkurve wieder Wald in seiner ganzen Fülle sich entfaltet. Der Wald überschreitet kaum die Pafshöhe dieses Gebirges bei 1200 m, so tritt die Prärie wieder an seine Stelle. Um Angaben über Regenmengen und Feuchtigkeit im Waldbereiche zu geben, fehlt es leider im Westen Amrikas noch an geeigneten Stationen, die dort, wo Prärie und Wald so hart aneinander grenzen, für die Wissenschaft und Praxis wichtige Resultate liefern müßten; der Osten ist hierzu weniger geeignet, da an der Berührungs- linie von Prärie und Wald sich entweder ein ziemlich breiter Gürtel strauchartiger Vegetation einschiebt oder die Grenze überhaupt eine künstliche ist. Zwischen dem Kaskadengebirge und den Rocky Mountains liegt wieder Prärie.

Im Felsenengebirge beginnt der Wald bei etwa 1200 m Erhebung, einer Linie, welche wiederum der Pfafshöhe der Kaskadenkette entspricht. Bei etwa 2700 m Höhe findet der Wald unter dieser Breite, infolge der Temperaturabnahme, überhaupt seine Grenze. Östlich von den Rocky Mountains dehnt sich eine ungeheure, nach Osten geneigte Ebene aus, die große Prärie, die, hart an die Berge sich anschließend, 250 mm Wassermenge im Jahre und 130 mm während der vier Monate Mai bis August, in welche die Hauptwachstumsperiode fällt, empfängt. Die relative Feuchtigkeit pro Jahr beträgt 50 %; pro Vegetationszeit etwa 45 %. Nach Osten hin herrscht die Prärie so weit, bis der vom Süden, vom Golf von Mexiko, oder vom Osten, vom Atlantischen Ocean kommende Luftstrom wieder genügende Feuchtigkeit für Boden und Luft bringt, um die Existenz einer Waldflora zu ermöglichen.

Entprechend den Temperatur- und Feuchtigkeitsverhältnissen steht der Wald des Felsenengebirges jenem der Küstengebirge in jeder Hinsicht nach. Die Binnenlands-Douglasie oder die bläue Douglasie erreicht im Felsenengebirge in ihrer besten Leistung nur 45 m während des Zeitraumes von 190 Jahren, während die Küsten-Douglasie unfern der Küste schon mit 80 Jahren dieselbe Höhe besitzt; mit 150 Jahren kann sie dort ein Baum mit 80 m, mit 400 Jahren ein solcher von 100 m sein. An der Küste und im Kaskadengebirge nehmen alle Holzarten gigantische Dimensionen an: die Tannen, Föhren, Pappeln, Thujen, Eichen werden zu Riesen von 70 m Höhe; die Nadeln sind länger, die Früchte viel größer, als die gleiche Holzart tiefer im Kontinent hervorbringt. Alles aber übertreffen die beiden Sequoien, welche mit mehr als 100 m Höhe noch um 30 m die höchsten Spitzen der sie umgebenden Tannen und Zuckerkiefern überragen.

Tritt man von Osten her, nach langer Fahrt durch die von der Sonne versengte und vom Feuer ver Kohlte, Prärie, in das Gebirge ein, so erscheint anfangs der Wald auf die Nordhänge allein beschränkt, ein Wald, der in seinem allgemeinen Bilde die Erinnerung an den
Wald der europäischen Alpen wachruft. Die Lärchen, einzeln und ihre Umgebung überrasgend, leuchten in goldgelber, herbstlicher Färbung aus dem dunklen Grün der Douglasien hervor; die wärmeren und extremeren Südhänge überzieht die grangrüne, mächtige Gelbkiefer (*Pinus ponderosa*).

Man näher sich dem Meere um eine halbe Tagereise, da tritt von der Nordseite her der Tannenwald über die Gipfel der Berge nach der Südseite über; die Föhre ist auf den schmalen Streifen zwischen Tannenwald und Prärie zusammengedrängt; wird das Tal enger, dann ist alles überfüllt von Douglasien und Lärchen, zu denen sich die westliche Weymouthskiefer (*Pinus monticola*) gesellt; an den felsigen Ufern der Gebirgsbäche erscheinen zwei neue Holzarten, eine Thuja und Tsuga, niedere Bäume hoch oben im Gebirge, aber rasch mit dem Abstiege an Grösse wachsend; erweitert sich das Tal, dann ziehen die genannten, Luftfeuchtigkeit verlangenden Arten sich wieder zurück, die Gelbkiefer oder selbst die Prärie tritt wieder an ihre Stelle.

Da mit einem Male öffnet sich eines der lieblichsten landschaftlichen Bilder, die mein ziemlich verwöhntes Auge ja erblickte; die Bahn betritt das Ufer des himmelblauen Sees Pend d’Oreille; von dichtbewaldeten Bergen eingefasst, reich an grünen Inseln, nicht breit und ständig die landschaftlichen Bilder wechselnd, ist diese 100 km lange blaue Wasserfläche vielleicht der entzückendstes See, den die Union besitzt; diese Perle bleibt, da sie den Indianern als Reservation zugewiesen wurde, die, in rote Tücher gehüllt, ihr Leben mit Fischfang und Nichtstun verbringen, in ihrer Naturschönheit unverdorben.

Der Einfluss dieser gewaltigen Wassermenge auf eine Verzögerung des Herbstes und jedenfalls auch des Frühjahres ist unverkennbar. Hier an den Uferhängen waren die Lärchen noch grün, die unmittelbar nach dem Verlassen des Seebeckens wieder in goldgelber Farbe glänzten; die Thuja ist dort in der feuchten Atmosphäre und auf dem feuchten Grunde besonders mächtig; sie liefert vortreffliches Nutzholz, das man zur Erbauung einer langen Brücke über einen Seitenarm des Sees benutzt hat.

Eilt man weiter nach Westen, so ändert sich mit einem Male die ganze Landschaft; Berge tauchen auf mit sanften Wölbungen, die Täler weniger eingeengt, der Boden von vorwiegend sandiger Beschaffenheit — Douglasie, Lärche, Thuja und Tsuga sind verschwunden, die Gelbkiefer tritt auf und eine zweite, kurznadelige Föhre (*Pinus Murrayana*), die mit der östlichen Banksiana nahe verwandt ist und dieser in allen Stücken so parallel geht wie in diesen Örtlichkeiten die Gelbkiefer (*ponderosa*) der atlantischen Rotkiefer (*resinosa*).

Das Terrain senkt sich, die Kiefernwaldungen öffnen sich mehr und mehr, lösen sich in Gruppen und endlich in einzelne auf der angrenzenden Prärie zerstreute Individuen auf; man ist unter die Grenz-
linie, 1200 m, geraten. das Klima wird warm, aber trocken; der herrliche Wald ist zurückgeblieben, und alles ist wieder gelbbraune Prärie, so weit das Auge reicht.

In dieser trostlosen, welligen Graslandschaft erhebt sich ein vulkanisches Mittelgebirge, die Blue-Mountains; reichliche Wasserläufe aus der Nebelregion der Berge durchrieseln die Täler und erfüllen sie mit üppigem Baumwuchs. Bei 1200 m Erhebung betritt man in diesem Gebirge wiederum die eigentliche Waldzone, einen Wald, der dem in Montana im Höhenwuchs entschieden überlegen ist. Als der höchste Baum ragt aus Fichten, Douglasien und Tannen empor die westliche, pfeilschaftige Lärche (Larix occidentalis) mit 45 m Höhe; auf den sandigen und sonnigen Plateaus erhebt sich die Gelbkiefer bis zu 40 m, während die Murrayföhre in vielen reinen Beständen die feuchten, kalten, moorigen Einsenkungen überzieht.

An die Stämme der Bäume in den Rocky Mountains, besonders der raubkorkigen Douglasie, heftet sich eine hellgelbgrüne, auffällende Strauchflechte von etwa 5 cm Länge; hier in den Blauen Bergen näher der Feuchtigkeitsquelle, dem Stillen Ozean, flattert eine lange, braune Bartflechte von den Ästen der Bäume.

Zur Zeit, als ich diese Berge bestieg (Mitte Oktober), war wochenlang wolkenloses Wetter vorausgegangen; der heftige Nachtfrost verschwand überall, wo die Sonne auftrat; im Schatten aber blieb die Bodenfläche fest gefroren.

Regierungsberichte und Versicherungen der Reisenden stimmen darin überein, und eigene Anschauung kann es bestätigen, dafs viele Quadratmeilen dieser herrlichen Bergwälder verkehlt sind, und man darf sich glücklich schätzen, während der trockenen Zeit (Herbst) von der ganzen Landschaft überhaupt etwas zu sehen; denn es gehört zu den alljährlichen Erscheinungen, dafs über die Staaten Montana, Washington und Oregon wochenlang dichter Rauch sich legt, der wie Nebel jeden Ausblick verschließt; so wird in den dortigen Waldungen gewirtschaftet.

Hand in Hand mit dem eben geschilderten Wechsel in der Waldvegetation ging, als ich im Oktober 1885 diese Fahrt unternahm, auch eine Veränderung des Witterungscharakters; östlich von den Bergen
Abb. 9. a Larix occidentalis mit b Silbertanne (Abies concolor), Riesenthuja u. a.; ein Waldbild in dem oregonischen Hochgebirge. Bureau of Forestry photogr.
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

und in den Bergen war wolkenloser, klarer Himmel mit kräftigen Nachtfrösten; kaum bog man in die Täler des Kaskadengebirges ein, so zeigten sich kleine Wölkchen, die weiter nach Westen hin zusammenflossen und endlich den ganzen Himmel mit bleigrauen Wolkenmassen überzogen; unter Tags löste sich das Gewölke wieder auf, hat somit nur während der Nacht die Abkühlung, die Nachtfröste, verhindert, das Klima gemildert.

Bureau of Forestry photogr.

Im Unterlaufe des Columbia, wo das Tal sich verbreitert, sowie an den Tributärfüssen desselben auf dem reichen, aus vulkanischem Gestein hervorgegangenen Boden gesellen sich zu den riesenhaften Douglasien Eichen, Thujen, Tsugen und Tannen, endlich Pappeln, Laubbäume, die mit 60 m Höhe den berühmten Rasamalas (Liquidambar Altingiana) von Java an Größe gleichkommen.
Die Waldungen von Nordamerika.

45

Nur ein paar Breitengrade nördlich, am Puget Sound, wo das Meer in vielen Armen tiefer in das schwach hügelige Land eindringt, da liegt in dem feuchten, gemäßigt-warmen Klima das Optimum der Douglasien, der Thuja, der Tsuga u. a.

Diesen Wald übertrifft kein Nadelwald der nördlichen und südlichen Halbkugel an Flächenausdehnung, und nur die Waldungen der Sequoias kommen ihm an Höhenentwicklung gleich.

Ich habe nicht nach Riesendouglasien gesucht, konnte aber gelegentlich mehrmals 80 m, selbst 90 m konstatieren; die Tsuga, die Großtanne, die Sitkafichte reihen sich mit 60 m und darüber an, und die kleinste Baumriesin, die Thuja, erreicht noch 55 m Höhe.

Hier liegt das Gros der westlichen Nutzholzproduktion und -verarbeitung; das Material liefert in erster Linie die Douglasie.

Bei uns ist es ein Segen für den Wald, wenn eine Bahn ihn erschließt, in Amerika ist es in der Regel sein Untergang. Viel schlimmer

Blickt man über eine steile Wand in die Tiefe: Wald stockt auf allen Bergen, in allen Tälern. Wald überzieht die ferne Ebene bis zur Küste, und nach Osten hin ist wiederum alles Wald, so weit die Sehkraft reicht. So schrieb ich 1890: schon heute sind Ebenen und Täler
Nach amerik. Photogr.
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.
der Landwirtschaft überlassen, der Wald zerklüftet durch Feuer und Besiedlung.

Wendet man sich vom Puget-Sound wieder nach Süden, rasch bleibt der schöne Wald zurück, die weibliche Landschaft ändert ihren ganzen Charakter; wo der Boden sandig wird, treten wieder Föhren (Pinus) auf, Prärie drängt sich dazwischen; der Grund liegt klar vor Augen. Im Westen gegen die Feuchtigkeitsquelle, das Meer zu, hat sich ein Gebirge, das Coast Range, vorgeschoben.

Man muß die Pafshöhe dieses Gebirges, von Osten nach Westen vordringend, überklettern, in einer mühsamen Tour, um die Heimat einer Holzart, der Lawsons Scheinzypressen (Chamaecyparis Lawsoniana) zu finden, welche viele europäische Forstwirte kultivieren, ohne daß sie etwas über ihre Heimat wissen. Denn kein Forstwirt, der nach mir Amerika bereiste, hat die Heimat dieser seltenen Holzart besucht.

Kaum hat man die Pafshöhe des Küstengebirges im südlichen Oregon überschritten, so erscheint neben 90 m hohen, aus den Schluchten emporragenden Douglasien die Chamaecyparis Lawsoniana. Als ich Ende Oktober 1885 die Tour unternahm, hatte leider bereits der Winterregen eingegangen; Dora, damals eine einsame Ansiedlung in einem fruchtbaren Tale auf der Westseite der Berge, war endlich in tiefer Nacht erreicht. Wie überraschte da das Bild, das sich dem neugierigen Auge am nächsten Morgen bot; alles war verändert, nur der bleigraue Himmel nicht. Die immergrünen und strauchartigen Umbellularias waren unten zu mächtigen Bäumen geworden, die sich an den Flussufern zu dicht geschlossenen, aromatisch duftenden Wäldern vereinigten; die eichelartigen Früchte fielen eben zu Boden, ein Leckerbissen für die Schweine; auf den Ästen und Stämmen lagerten dichte Moospolster, in denen auch noch eine reichliche Farnkrautflora genügend Nahrung fand, und nahebei, auf sonnigen Hängen, standen bereits einzelne Law-sonien mit 50 m Höhe.

Noch waren mehrere kleinere Bergrücken zu übersteigen; die immergrünen Castanopsis mengten sich zwischen die Nadelhölzer mit pfeilgeradem, mäßig hohem Schaft, langsam erwachsen unter dem ziemlich dichten Dache der Kronen; Rhododendron, so mächtig wie im Osten, Berberis Aquifolium und andere Immergrüne gesellen sich zu den Sträuchern; steigt man an den Bergen abwärts, so verschwindet die Thuja an den Bachufern, die Lawsonie oder Lawsons Scheinzypressen tritt an ihre Stelle; endlich liegt vor den Augen eine schwachwellige Landschaft, reichlich durchzogen von seenförmigen Erweiterungen der Flüsse, von Brakwasserpfützen, die die Flut anstaut, und tief in das Land schneidenden Meeresarmen, und in weiter Ferne schimmert in unvergleichlichem Blau der große, aber nie stille Ozean; das ganze Küstengebiet, über das das Auge hinschweift, ist das Optimum der Lawsonie.
Näher dem Meere gewinnt die sandige Beimengung im Boden allmählich ab; die Zahl der Douglasien und Fichten nimmt allmählich ab, jene der Lawsonien zu. An die Nähe des Meeres gebunden, ist das Verbreitungsgebiet der Lawsonie ein beschränktes; die Küste des südlichen Oregon, wo sie in optimo gedieth, kennzeichnet ein sehr gemätsigt-warmes Klima, die Nordgrenze der subtropischen Waldlandschaft: Dahlien standen noch Ende Oktober in voller Blüte in den Gärten, die Feige (*Ficus Carica*) gedeiht im Freien und reift Früchte, ja selbst der Eucalyptus bleibt unberührt von den geringen Frösten des milden Winters. Dort und im Norden Kaliforniens wird die Lawsonie höher geschätzt als jeder andere Nutzbaum; doch auch hier mußte der Besitzer einer großen Sägemühle, die fast ausschließlich Lawsonienholz verarbeitet, zugestehen: Millions of acres are burnt, das heißt das Feuer durchlief sie, wenn es überhaupt so viele Acres von Lawsons Scheinzypressen gibt.

Als die ersten Weißs im herrlichen Walde der Sierra und des Kaskadengebirges ankamen, war von den enormen Vorräten an Holz nur ein bestimmtes Sortiment von einigen Werte, nämlich astlose Stammstücke der Zuckerföhre; sie wurden zu Dachschindeln aufgespalten. Die nach Schindeln suchenden Leute waren vielfach die ersten Weißs, die den majestätischen Gebirgswald im Westen Americas betraten. Das Ziel ihrer unheilvollen Besuche war die Zuckerkiefer, die dort wegen ihrer Spaltbarkeit und ihres beispiellos zylindrisch-geraden Schaftes schon damals als die beste Holzart galt; aber nicht jeder Baum war brauchbar, es sind gewisse Standorte, die offenbar die Geradfaserigkeit eines Holzes beeinflussen. Um diese aufzufinden, hat diesen so vielgepreßten Pioniere der Zivilisation im wilden Westen nicht das Herz geblutet, als sie Stamm für Stamm, Millionen von Stämmen mit der Axt anhieben, um einen etwa einen Fuß langen und einen halben Fuß dicken Holzspan herauszunehmen und auf seine Spaltbarkeit zu prüfen. Ergaben sich günstige Resultate, so wurde der Baum gefällt, ein paar Meter aus dem besten Teile ausgeschnitten und zu Schindeln verarbeitet; der Rest von etwa 40 m Schaftlänge blieb umbenutzt liegen, vertrocknete und bot für Böswillige und Sorglose eine willkommene Gelegenheit, Feuer anzulegen. Dafs sich das Herz eines Forstmannes bei dem Anblick eines solchen Vandalismus empörte, ist selbstverständlich. Gerne füge ich hinzu, dafs schon vor 20 Jahren alle, mit denen ich an Ort und Stelle diese grätzliche Verwüstung besprechen konnte, offen ihre Entrüstung darüber kundgaben. Alle Bäume begannen die grofsen, tiefen Wunden zu überwallen, die meisten ohne Erfolg, denn jahrelang war das Innere des Baumes der Einwirkung von Luft, Wasser und den Pilzen preisgegeben. Diese vor 60 und mehr Jahren angehackten Zuckerkieferriesen sind es, welche heute mitten im Walde scheinbar ohne alle Ursache plötzlich zusammen-
stürzen, nachdem ihr Inneres durch Pilze in eine bräune, lockere, haltlose Masse verwandelt wurde.

I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

sich mit dem Klima auch das Waldbild. Reichliche Wasserläufe durchfurchen die Berghänge und Täler; wohltuende Frische empfängt den durch die staubige Landstraße und die Erschütterung der langen Wagenfahrt ermüdeten Reisenden; die Bäume schließen sich enger zusammen. Dougasiën (*Pseudotsuga Douglasii*) und Jeffreys Föhre (*Pinus Jeffreyi*) gesellen sich jenen bei. Allerorten sprost bald in dicht geschlossenen Gruppen, wo eben der Boden größere Frische zeigt, bald in isolierten Individuen verschieden alter eine Waldgruppe empor von Zucker- und Gelbföhren, Tannen, Heyderien, eine Jugend,

![Bild](https://example.com/image.jpg)

die jeden Laien erfreut, jeden Forstmann, der aus der Jugend das Bild eines erwachsenen Waldes sich zu gestalten vermag, befriedigen muß. Aber seltsam muß es, für jeden Mitteleuropäer wenigstens, klingen, wenn man sagt, daβ diese Waldjugend im Yosemite-Tal ihre Existenz in erster Linie der starken Polizeimanschaft verdankt, die das Nationaleigentum seit Jahrzehnten geschützt hat gegen Holzdiebe und Strolche, gegen Jäger und Touristen, die alle teils aus Sorglosigkeit, teils aus Böswilligkeit dem Walde gefährlich werden durch das Feuer, das ihren Fersen folgt.

„Inspiration Point“ haben die Amerikaner die erste Stelle benannt, welche beim Abstieg ins Tal einen Blick in das gelobte Land gewährt,
Die Waldungen von Nordamerika.

In dieses Hochplateau haben in vorglazialen Zeiten gewaltige Wassermassen ein Tal von fast 1000 m Tiefe ausgewaschen, so weit das granitische Gestein weich und leicht zerstörbar war. Der Härtegrade des Gesteines entsprechend, mussten sich an den steilen Seitenwänden dieser Erosion groteske, bald Zackige, bald abgerundete Türme, Dome und Kuppeln ausbilden, welche heute die eigenartige Umrahmung des Tales bilden. Von den einstens gewaltigen Erosionsströmen sind heute noch tüchtige Bäche übrig, welche, vom Plateau herabkommend, mit zerschmetterten Wasserstrahlen in das Tal einstürzen. Für den unten im Tale stehenden Beschauer aber ergibt sich das Phänomen, dass diese Wassermassen von den Rändern der Schlucht, gleichsam wie vom Himmel herab, in die Tiefe stürzen.

Ist das Hochplateau mit seinen Fichten und Tannen klimatisch dem Nordhange der Alpen bei 800 m Elevation, Südschweden und Norwegen, den baltischen Ostprovinzen gleich, so beträgt das fast senkrecht darunterliegende Yosemitetal noch die letzten Vertreter der subtropischen Flora, Lorbeerwäschte, immergrüne Eichen, immergrüne Manzanita, die sich an die Wasserfälle ankluemm, um in ihrem feinzerstübbten Gischt Schutz gegen Frost zu finden. Das Tal selbst ist erfüllt mit winterkahlen Eichen, Ulmen, Pappeln, Ahorn, mit Douglasitannen, Heyderien und Föhren; die Hauptbäume aber, die Big trees oder Sequoia gigantea, die jeder in dem warmen, geschützten Tale er-
Die Waldungen von Nordamerika.

wartet, sind dort nicht heimisch: es ist ihnen das Klima dort viel zu warm; sie liegen auch nicht oben am erwähnten Plateau, denn dort ist es ihnen wiederum zu kalt. Man steigt am Ausgang des Tales aufwärts zur halben Höhe des Plateaus, wendet sich seitwärts in eine luft- und bodenfeuchte Mulde (Mariposa-Hain), um Bäume, Lebewesen zu sehen, die mehrere tausend Jahre alt sind, in ihrem innersten Kerne mehrtausendjähriges, gesundes Holz tragen und heute noch an ihrem Kolossalkörper weiter bauen.

Abb. 16. a Erwachsene Sequoia gigantea, 105 m hoch; b junger Sequoia; c Zuckerföhre (Pinus Lamellicornis); d Alis camachii, 70 m hoch. Fresno Cy. Californien.

Kaum jünger an Jahren, kaum geringer an Höhe und Umfang als die Big trees der Sierra Nevada sind die Riesen der kalifornischen Küste, die Red Woods, die Sequoia sempervirens. Ausschließlich auf das Coast-Range-Gebirge, also die Region mit der größten Luft- und Bodenfeuchtigkeit, beschränkt, erfüllt dieser prächtige Baum die Täler und Schluchten in geringer Erhebung über dem Meere, begrenzt die Ufer der Bergflüsse und steigt in manchen Cañons, die nach Südwest gegen das Meer hin geöffnet hin, vielleicht bis in die Region des gemäßigt-warmen Waldes empor. Feuchtigkeit der Luft, warme Tage, kühle Nächte ohne Frost, das ist jahraus, jahrein das Klima der
Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Gegend, in der dieser Baum lebt. So sehr durchtränkt sich während der Regenzeit das kräftige, sandig-lehmige Erdreich mit Feuchtigkeit, daß die Ausbringung der schweren Nutzstämme auf Schlitten geschehen muß, die mit breiten Kufen auf dem schlammigen Boden dahingleiten.

Der Zufall führte mich 1885 in ein solches Tal mit noch unberührttem Sequoiabestande, der zugleich in seinem gesamten Bestande einen guten Durchschnitt repräsentieren dürfte: eben war man daran, die stärksten Stämme herauszuschaffen; der Bestand war fast rein aus Sequoia zusammengesetzt, nur einzelne Douglasien fanden sich vor:

Abb. 17. Waldbild der Sequoi seqoiiirens (Red wood) an der kalifornischen Küste.

Von Prinz Georg von Bayern photogr.

als Unterholz fristete der kalifornische Lorbeer, einzelne *Acer circinatum* ein mehr strauchartiges Dasein in dem tiefen Schlusse.

Aus der Messung einer größeren Anzahl von Stämmen ergab sich ein mittlerer Umfang von 6,9 m, sowie eine mittlere Höhe von 84 m; ein Baum mit 9,3 m Umfang hatte 88 m Höhe.

Die Waldungen von Nordamerika.

In einem geschützten Tale steht ein Baum, die größte der Sequoias, die erhalten wurde. Nach drei Messungen, die ich von verschiedenen Seiten 1885 vornahm, ergaben sich 94, 96 und 92 m Höhe, so dafs wohl 94 m der Wirklichkeit am nächsten kommt; bei 70 m Höhe begannen die ersten großen, grünen Äste; dürre Äste waren nicht vorhanden. Der Umfang über der Anschwelling in 2 m Höhe betrug 14,2 m. Die auf S. 59 beigegeneene Tuschskizze des Baumes zeigt den Riesen mit im Höhenwuchse abgeschlossener Krone, mit einer tiefrüssigen gedrehten Borke, an welcher das Feuer emporgeleckt hatte, glücklicherweise nur die Außenschichten verkohld. Nach 17 Jahren (1903) sah ich den Baum wiederum. Bei der Abrundung der Krone, bei der Unregelmäsigkeit der borkigen Rinde habe ich es unterlassen, eine abermalige Messung vorzunehmen, da die inzwischen eingetretenen Veränderungen zweifellos kleiner sind als die Fehlerquellen bei der Messung der Höhe und des Umfangs des Baumes. Nunmehr umgibt den Riesen auch eine Umzäunung, welche weitere Verstümmelungen des Baumes durch Feuer und Menschenhände fernhält.
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.
Die Waldungen von Nordamerika.

Abb. 20. Der Riese (Sequoia sempervirens) bei Santa Cruz (Kalifornien), links Douglasie, 72 m hoch, rechts jüngere Sequoia, 74 m hoch.
Wer San Francisco besucht, versäumt nicht einen Ausflug nach Monterey zur Besichtigung einer herrlichen Wald- und Strandszenerie, die durch die Vegetation einer Zypresse (*Cupressus macrocarpa*) ein eigenartiges Gepräge erlangt hat. Diese merkwürdige, wertvolle Art steht an den gefestigten, granitisch-felsigen Ufern des Stillen Ozeans, so daß jahraus jahrein die salzige Brise durch ihre Zweige streicht.

![Bild von Sequoia sempervirens](image)

Der heftige Wind, ständig von einer Seite wirkend, drückt sie zur Seite und verhindert die Ausbreitung von Ästen nach dem Meere hin; viele alte Bäume liegen ganz daniieder, und nur die Krone mit einem Gipfel erhebt sich. Der feine Meeresgisccht tropft ständig von den sparrigen, mit flatternden Bartflechten behangenen Ästen, deren Unterseite eine rote Alge überzieht. (Siehe Abbildung bei der Holzart selbst im VII. Abschnitte.)
Der Nadelwald von Fichten und Tannen, der in der südlichen Sierra von 2800 m, in der nördlichen von 1000 m aufwärts anhebt, erreicht, nach Norden hin sich senkend, in Alaska die Meeresküste.

Von dort an erstreckt sich das kühle Waldgebiet, unter dem Einflusse des japanischen Meeresstromes, an der Küste entlang bis zur Behringsstraße und im Innern des Landes in geschützten Tälern und Berghängen nordwärts bis zur Mündung des Mackenzie-Flusses; überall auf dem Wege nordwärts und östlich berühren sich die Vertreter der pazifischen Waldregion mit solchen des atlantischen Waldes mit gleichen klimatischen Ansprüchen.

In Europa liefert das Föhren-, Fichten- und Tannengebiet das Gros der Bau- und Sägenutzholzer; in Amerika tritt einstweilen noch der Wert dieses gewaltigen Nutzholzvorrates zurück; mit der Zunahme der Bevölkerung, der Ausstockung der von wertvolleren Holzarten noch okkupierten wärmern, landwirtschaftlich besser benutzbaren Gelände, mit der Ausnutzung und Verwüstung der zugänglicheren Waldungen werden auch diese Waldungen an Nutzwert gewinnen. Es steht aber zu erwarten, dafs durch rücksichtslose Untnahme des nutzbarsten Holzes, durch eine regelloser betriebene Alpenweidewirtschaft auch hier das Beste an Holz und Boden zuerst ruiniert werden wird, ehe eine pflegliche Behandlung dieser Waldungen sich von selbst aufdrängt.

Als eine Fortsetzung des Waldes des Felsengebirges ist der nordmexikanische Wald aufzufassen; allein es gesellen sich so viele neue Holzarten aus dem benachbarten mexikanischen Gebirge hinzu, dafs die Ausscheidung eines
Die Waldungen der Alten Welt, Europa und Asien.

Die Ähnlichkeit in den Umrissen der Neuen Welt (Nordamerika) und der Alten Welt (Europa — Asien), der Parallelismus der Hauptgebirgßzüge, Felsengebirge einerseits und zentralasiatisches Gebirge anderseits, welche die Rückgrate der beiden Kontinente darstellen, die Lage unter denselben nördlichen Breitegraden lassen erwarten, daß auch in der Verteilung der Waldregionen wenigstens in großen Zügen eine Übereinstimmung besteht.

kälte drückt sie nach Süden; in Finnland liegt sie unter dem 64. Grade, im europäischen Rußland unter dem 62. Grade; vom Ural an senkt sich die Grenze allmählich durch Sibirien hindurch bis zum 55. Grade und selbst südlicher. Erst bei Annäherung an den Pazifischen Ozean und seine Meerzubachen hebt sich die Waldgrenze, da ihr größere Wärmemengen von den Südwestpassaten zugeführt werden, wiederum bis zum 60. Grade.

Der atlantische Wald der Alten Welt, der europäische Wald.

Vom Atlantischen Ozean kommende Luftwirbel, barometrische Minima, schleudern mit Feuchtigkeit gesättigte Luft ins europäische Festland; nirgends stellen sich diesen Luftströmen größere, querliegende Gebirgszüge entgegen: die Hauptstöcke, die Pyrenäen und die Alpen, liegen in der Stromrichtung; die kleinen Gebirge, wie Vogesen, Schwarzwald, bayrischer Wald, Harz, sind teils nicht hoch genug, sicher nicht ausgedehnt genug, um die Feuchtigkeit der einströmenden Luft so weit zu Niederschlägen zu kondensieren, daß den im Windschatten liegenden Landstrichen ungenügende Feuchtigkeitsmengen übrigblieben, die sich waldflose Gebiete, Steppen, anschließten müßten. So war ursprünglich ganz Europa in seiner ganzen Ausdehnung mit Wald bedeckt, und wenn heute der Mensch mit allem, was in seinem Gefolge kommt, aus Europa entfernt werden könnte, in einem Jahrhundert wäre wiederum alles Wald: freilich brauchte es mehrere Baumgenerationen, mehrere Jahrhunderte, um den ursprünglichen, vom Menschen teils be seitigten, teils ganz veränderten Wald wieder in seiner ursprünglichen Form und Zusammensetzung zurückzuführen.

Bilder eines Urwaldes sind nur auf höheren, unzugänglichen Bergen, im kühleren Norden, im wenig erschlossenen, bergigen Südostern von Europa zu finden; von Urwaldresten, welche durch die Minifizenz einzelner, wie des Fürsten von Schwarzenberg zu Schattawa in Böhmen, erhalten werden, sei hier abgesehen.

Unter dem Einfluß dieser Tätigkeit hat sich in Europa die Waldflora bereits gründlich verändert: die ursprüngliche Verbreitung der Holzarten, eine Kenntnis, die für unseren Zweck der Holzartenparallele behufs Anbau aufsereuropäischer Holzarten von fundamentaler Bedeutung ist, ist nur noch mit großen Schwierigkeiten festzustellen: wenigstens haben meine Untersuchungen über diesen Punkt in Süddeutschland ergeben, daß die physikalischen Atlanten, die Florenwerke über diesen Punkt noch zahlreiche Irrtümer enthalten. Die Fichte und Föhre, die beiden Hauptnutzholzarten, haben weit über ihre ursprüngliche geographische Verbreitung hinaus Anbau gefunden, bald in klimatisch günstigen, bald in ungünstigen Verhältnissen, bald auf entsprechenden, bald auf unpassenden Böden.

Es ist ein für den Anbau fremdländischer Holzarten wichtiger Umstand, daß diese in ganz Mitteleuropa in Waldverhältnisse geraten, zumeist Kahlfächenbestand, in denen sie in ihrer Heimat bisher nicht aufgewachsen sind, wie ja auch die einheimischen mitteleuropäischen Holzarten heute zumeist unter ganz anderen Bedingungen sich emporarbeiten müssen, als dies zur Urwaldszeit der Fall war.

Deshalb gelangen auch die Fremdländer bald auf kahle Flächen mit allen Unbildern dieser Standorte, bald auf ausgenutzte Böden, bald mitten unter die raschwüchsigen Kulturpflanzen, mit denen sie nun den Wettlauf beginnen, wobei zumeist schon beim Start alle Odds auf Seiten der fremden Holzarten sich befinden.

In Nordeuropa überwiegts noch die Waldbenutzung gegenüber Waldbau und Waldpflege, die dort einstweilen noch als zarte, aber hoffnungsvolle Keimlinge um Licht und Boden kämpfen. In Südeuropa

Mayr, Fremdländische Wald- und Parkbäume.

Die Abschnitte über Klima und Holzartenparallele, über Anbaufähigkeit und Anbauwürdigkeit fremder Holzarten erfordert ein tieferes Eingehen auf die Waldverhältnisse von Mittel- und Nordeuropa, so dafs obige allgemeine Schilderung des europäischen Waldes einstweilen genügen möge.

Der pazifische Wald der Alten Welt.

der ostasiatische Wald.

Wenn aus dem Zustande des Waldes und der Intensität einer geregelten Waldwirtschaft ein Schlufs auf die Entwicklungsstufe einer Nation zulässig ist, dann wären die Bewohner jener Länder, in denen die Entwaldung in vollem Gange, ehe nur das Verständnis für Erhaltung, Pflege und Kultur des Waldes erst im Aufkeimen ist, im allmäßlichen Erwachen begriffen: die Bewohner eines Landes, das so weit entwaldet ist, als es für die Erziehung von Nährstoffen nötig, im übrigen aber Wald trägt, der erhalten und gepflegt oder sogar neu begründet wird, wo er bisher gefehlt hat oder vernichtet wurde, stünden vorwärts strebend auf hoher Entwicklungsstufe, während wiederum Nationen, deren Wald bis auf die entlegensten Berghöhen zurückgedrängt wurde, denen selbst die Vorstellung von Wald und die Kenntnis seiner Segnungen eine historische Erinnerung geworden, als solche zu bezeichnen wären, deren Blüte bereits zurückliegt, die in ihrer rückschrittlichen Bewegung nicht mehr die Kraft besitzen wieder aufzubauen, was in längst vergangenen Zeiten von den Vorfahren vernichtet wurde. Sind diese Deduktionen richtig, so hat ein Volk, dessen Wald zur Ausbeutung Fremdlingen überlassen wird, die Hoffnung auf Entwicklung durch eigene Kraft aufgegeben. Dies ist die traurige Lage der Koreaner: die Japaner stehen mit ihrem geregelten Waldzustande, ihren Aufforstungen auf der vollen Höhe einer Entwicklung und zivilisatorischen Tätigkeit, während die Chinesen mit dem zum größten Teile aus dem Reiche der Mitte verschwundenen Walde ihre Blüte weit zurück in die Vergangenheit datieren müssen: das schließt nicht aus, dafs sie durch Anstofs von außen zu einer neuen, in ihrer Größe noch ungeahnten Blüte sich emporrigen.

Diesem Monsune, der gerade zur Zeit der vegetativen Tätigkeit der Pflanzen Luft und Boden mit Feuchtigkeit sättigt, verdankt ganz Ostasien seinen Reichtum an Nutz- und Schmuckpflanzen; er hat einstens, vor Beginn der vernichtenden Tätigkeit der Menschen, ganz Ostasien bis ins kalte Sibirien mit einem zusammenhängenden breiten Waldbande versehen; erst tausend Kilometer landeinwärts verliert der Regenmonson so viel von seiner befruchtenden Feuchtigkeit, daß er imnägende Niederschläge für das Aufwachsen von Bäumen, ja selbst unreife Wassermengen für eine Grasprärie mit sich führt; dort ist der nackte, vegetationlose Boden, dort ist die Sandwüste Gobi der Mongolen, Schamlo der Chinesen.

Allen drei Nationen ist gemeinsam, daß ihr Hauptnahrungsmittel Reis ist. Der Reisbau ist chinesischen Ursprungs; wir müssen im Geiste 5000 Jahre zurückwandern, um auf die ersten Anzeichen von Reiskultur in China zu treffen; von China aus hat sich der Reisbau und Reisgenuss mit der mongolischen Völkerwanderung nach Westen, Osten und Süden verbreitet; Hindu, Malaien sowie die Mongolen leben fast ausschließlich von Reis. Man rechnet, daß für mehr als 750 Millionen Menschen Reis die Hauptnahrung bildet. Die Reiskultur verlangt überwemmte Felder und eine ergiebige Düngung mit Nährsalzen, welche sich mit dem mineralischen Schlamm der Felder rasch verbinden, so daß eine Auswaschung und Entführung der Nährsalze durch die fortgesetzte Bewässerung ausgeschlossen ist. Zu diesem Ende ist der menschliche Dünger, den die Mongolen mit einer peinlichen, Augen und Nase fortwährend beleidigenden Gewissenhaftigkeit einsammeln, weniger brauchbar als Dünger, der aus verwesenden Pflanzenstofien, in erster Linie frisch entfalteten Blättern und der Rinde dünner Zweige, frei wird. Von diesem Material aber verschlingn die Felder der anspruchsvollen Reis-

Ich trage kein Bedenken zu behaupten, dafs in erster Linie diese Gründüngung der Reisfelder, somit die Reiskultur es war, um derentwillen in China fast sämtliche Berge bis zu den entfernt liegenden Riesengebirgen im Oberlauf der Ströme dieses Reiches, in Japan die Hälfte der Berge, in Korea die den Städten und Dörfern zunächst liegenden Bergzüge entwaldet wurden. Im geraden Verhältnisse zu diesen Waldvernichtungen stehen die schon bei den Waldungen von Nordamerika genügend besprochenen Folgen: China hat weitaus am schwersten unter ihnen zu leiden. Wenn es irgendwo auf der Erde ein klassisches Land gibt, um die Wirkungen der Entwaldung in ihren extremsten Formen studieren zu können, so ist es China: nirgends kann die Bedeutung des Waldes für die Bewässerungsverhältnisse eines Landes besser geprüft werden als in China, denn dort ist der Wald seit mehreren tausend Jahren von den ausgedehnten Gebirgen im Süden, von großen Ebenen und Gebirgen im Norden hinweggeschlagen worden, zur Gewinnung von Bau- und Brennholz, oder zur Erziehung von Buschwald für die Düngung der Reisfelder, oder zur Aufzucht landwirtschaftlicher Gewächse.

Japan wird, wie China, während der sommerlichen Regen von Zeit zu Zeit von Hochwasser katastrophen heimgesucht. Dieselbe Erscheinung, die im Riesenreiche China in großartigstem Maßstabe sich äußert, wiederholt sich in kleineren Japan in entsprechender Verkleinerung.

In Japan kommt als ein günstiges Moment hinzu, dafs dank einer größeren Luftfeuchtigkeit die Beseitigung des Waldes nur selten eine Abschwemmung des Bodens, bis der nackte Fels zutage tritt, im Gefolge hat. Es bleibt ein niederer Wald, ein Strachwald zurück, der alle 2—5 Jahre für die Gründüngung der Reis- und Simsenfelder abgesichtet wird: dieses Strauchwerk bildet mit dem manns hohen Grase (*Imperata*) die eigentliche Hara. Mustert man diese Hara näher, so ist man überrascht, wie wenig Spezies wirkliche Sträucher sind; die meisten sind vielmehr mit den Baumarten des benachbarten Waldes identisch: Birken, Pappeln, Erlen, selbst Eichen, Edelkastanien, Magnolien, Hain- und Rotbuchen bilden, kaum manns hoch, die Hauptmasse, und seltsam
Die Waldungen der Alten Welt, Europa und Asien.

genug fruktifizieren so reichlich wie normal erwachsene Bäume, mit denen sie in der Tat, weil Stockausschläge, gleichen Alters sind. Dafs diese Strauchprärie jederzeit und leicht wieder in Wald überggeführt werden könnte, bedarf keines Beweises. Bis zu einem gewissen Grade reguliert auch die Hara die im Überschüfs fallenden Niederschläge; sie mildert die Folgen der Entwaldung, steigert aber ganz außerordentlich die Feuersgefahr. Gegen diese anzukämpfen ist eine der schwersten Aufgaben, welche sich dem Kultivator in Japan bieten. Es war übrigens überraschend, wie viele Aufforstungen von öden Bergen während der 20 Jahre, in denen ich dreimal japanische Berge durchwanderte, unternommen und geglättet waren.

Korea steht in seinem südlichen Teile klimatisch, floristisch und geographisch Japan am nächsten; seine nördlichsten Provinzen tragen den kontinentalen, extremen Charakter der benachbarten Mandschurei und des nördlichen Chinas. Das mittlere Stück von Korea ist am stärksten entwaldet, es ist am dichtesten bevölkert, und für die Kultur von Reis muß der Buschwald die Düngung liefern.

Da den Waldgebieten der drei Nationen die gleichen klimatischen Grundbedingungen für Pflanzenwuchs gemeinsam sind, so darf es nicht überraschen, daß auch das Produkt von Boden und Klima, die Floren der Waldungen dieser drei Nationen, eine sehr enge Verwandtschaft aufweisen muß. Trotzdem die Böden die denkbar größten Unterschiede in ihrem Ursprung und ihrer Zusammensetzung zeigen, fußt dennoch auf ihnen eine einheitliche Pflanzenformation; dieselben Holzarten, welche in Nordchina auf Lößboden erwachsen, gedeihen in Japan auf vulkanischen Böden und finden sich in Korea auf Boden, der zum größten Teile aus Verwitterung des Urgebirges entstanden ist. Erst mit dem Klimawechsel tritt eine Änderung der Waldflora ein.

I. Der japanische Wald.

Dem chinesischen Waldes gegenüber ist der japanische unter

1) Ch wird wie tsch, sh wie sch, j weich dsch, z wie surrendes s gesprochen: dreisilbige Wörter haben den Akzent auf der ersten Silbe, also Chishima, Osaka, Tokio.
günstigeren Wuchsbedingungen. So groß ist die Feuchtigkeitsmenge in Niederschlägen und in der Luft über das ganze Inselreich hinweg, dass nirgends aus Mangel hieran Wald fehlt; selbst im Zentrum der größten Insel Hondo ist die Abnahme der Luftfeuchtigkeit nur gering, da ja im Zentrum wiederum durch das Ansteigen des Geländes zu einem Hochgebirge und durch die dadurch bedingte Zunahme der Feuchtigkeit ergänzt wird, was durch die größere Entfernung vom Ozean verlorengegangen ist.

Nur die Hochplateaus von Zentraljapan sind trocken genug, um Weintrauben zur Reife zu bringen, ehe die Früchte faulen und schimmeln, wie dies in der Nähe der Küste, insbesondere im Süden des Reiches regelmäßig, eintritt. Auch für andere Obstarten, wie Kern- und Steinobst, wird das feuchtwarme Treibhausklima der südlichen und mittleren japanischen Küste verhängnisvoll; sie schließen in Blätter und Äste. Der europäische Birnbaum, in den edelsten Sorten gepflanzt, entwickelt doppelt so große Blätter, fast noch einmal so lange Triebe, meist aber gar keine Früchte und wenn solche, dann ist in diesen das Aroma verlorengegangen. Das feuchte japanische Klima hat die vegetative Tätigkeit und Leistung der Pflanze begünstigt, das Ergebnis der europäischen Züchtung aber, die Grosträchtigkeit, die Frucht-ergiebigkeit, das feine Aroma zurückgedrängt, den Baum wiederum zum Wildling gemacht.

In Japan wird, besonders in der Nähe von Tokio, eine Birne in Lauben gezogen, welche viele Hektare überdecken; die Birne ist rauh, dickschalig und apfelförmig, von verführerischem Geruch, doch ohne alles Aroma, Zuckerwasser in einer Form, die nur an heißen Tagen als Erfrischung annehmbar erscheint.

Wenn trotz der großen Feuchtigkeitsmenge auf allen drei größeren Inseln Prärie sich findet, die nicht von Menschen verschuldet, sondern schon ursprünglich vorhanden gewesen ist, dann müssen besondere Ursachen in Wirksamkeit treten, und diese glaube ich zu finden in einer
spezifischen Bodenbeschaffenheit und in dem physiologischen Verhalten gewisser Präriepflanzen, in erster Linie des Zwergbambus.

Unvergleichlich gefährlicher für den Wald als die Gürtelprärie sind die Bambuswildnisse; von der Südspitze des Reiches bis zu den Kurilen drängen sich undurchdringliche Dickichte von Zwergbambussen, im Süden bis 4 m, im Norden kaum 1 m hoch in die Bergwaldungen ein: es ist schwer festzustellen, wieviel davon ursprünglich bereits vorhanden war, sicher aber ist, daß der Wald überall vor dem Bambus zurückweicht: so dicht verschlingen sich die Wurzeln sowie die unterirdischen Schossen (Rhizome), so dicht entsprossen den letzteren die oberirdischen Halme, daß kein Baum, kein Strauch dazwischen aufkommen kann. Bei häufigen Erdbeben fliechten sich die Japaner in die Bambusdickichte, weil sie glauben, infolge des dichten Wurzelgeflechtes könne sich die Erde nicht spalten. Wo immer der Mensch einen Wald mitshandelt oder ganz entfernt, da ist ab bald der Zwergbambus zur Stelle.

Das Blüte- und Fruchtjahr des Bambus tritt für eine bestimmte Art desselben, für alle Individuen gleichzeitig, wie bei dem nahe verwandten Getreide ein; der Bambus stirbt infolgedessen ab, soweit er herrscht: über ganze Provinzen erstreckt sich der gelbe Tod dieses wuchernden und holzigen Grases. Nun werden die Flächen frei für Waldsämereien, aber gleichzeitig fällt auch der Same der Würgpflanze für die aufkeimenden Holzwuchse aus. Anfänglich sind auch die Bambuskeimlinge zart, alljährlich aber wächst die Zahl und die Dick der ober- und unterirdischen Sprossen, und ehe noch die im langen Werdegang der Naturverjüngung aufwachsenden Waldpflanzen einen den Bambus beschattenden und damit erdrückenden Vorsprung erlangt haben, ist das HalmDickicht wiederum zu hoch und zu eng geworden für die zurückbleibende zartere Waldjugend. Hier hilft nur eine auf die Bambusblüte folgende Pflanzung mit kräftigem Materiale zur Wiederbesiedlung der Fläche mit Wald. Der Zwergbambus ist

Nur in der warmen Region Japans gibt es Bambusarten, die zu Nutzholz aufschießen; sie kommen aber aus China und Indien. Mosotake, der wichtigste und größte von allen Halmbäumen Japans, soll nur alle 150 Jahre zur Blüte kommen und dann absterben. Japan liegt aber so sehr außerhalb seines natürlichen Klimas, daß er bis heute, zum Segen Japans nicht zum Blühen gekommen ist. Im wärmsten Standorte des Bambus auf japanischem Boden, den Luchu-Inseln und den Südspitzen von Kyushiu und Shikoku, maß ich selbst Durchmesser bis zu 23 cm und Höhen bis zu 20 m. Moso ist wohl nur an den südlichsten Punkten von Europa anbaufähig; aber andere Bambusarten von geringerer Dimension, aber ebenfalls ausgezeichnet durch Tragkraft, Höhe, Raschwürzigkeit und durch außerordentlich vielseitige Verwendbarkeit könnten sehr wohl im ganzen europäischen Süden geprüft werden; nur vor den Zwergbambussen, welche bis in die Region der Fichten und Lärchen vordringen, muß ernstlich gewarnt werden. Eigentlich zählt aber der Bambus, obwohl er Holz, selbst Nutzholz liefert, nicht zu den Bäumen und nicht zu den forstlichen Nutzpflanzen; zu letzteren nicht, weil er unmittelbar am Hause oder noch am Felde kultiviert wird. Es dürfte diese eigentümliche Erscheinung auch damit zusammenhängen, daß die eben aus dem Boden sich als spitze Knospen erhebenden neuen Sprossen der kräftigsten Arten als Gemüse nicht unähnlich dem Spargel gestochen und genossen werden. Wird der die Erde wie einen Maulwurfshügel emporhebende Sproß nicht verspeist, so wächst er zu einem Halme von 20 m empor mit unglaublicher Schnelligkeit. In meinem Garten zu Tokio, das ist bereits die kühlsste Region, in der Moso kultiviert werden kann, befestigte ich wiederholt neben der sehr scharfen Spitze des emportreibenden Schöfs-
lings einen in Halbmillimeter geteilten Maßstab. Blickte man auf die Spitze des Bambus mit einer Lupe, so sah man diese deutlich über die Teilstiche hinweggleiten wie den großen Zeiger einer Taschenuhr über die Minutenstriche.

Die Hauptnutzhölzer Japans unter den Nadelhölzern ist die *Cryptomeria japonica*; sie gibt ein weiches, leicht zu bearbeitendes Holz, leichter wie die europäische Fichte, Föhre oder Tanne, aber dauerhafter als diese. Wenn man liest, daß die japanischen Häuser der großen Erdbebengefahr wegen ganz aus Holz erbaut sind, daß die wenigen Geräte des japanischen Haushaltes aus Holz gefertigt sind, daß das Brennmaterial für die Küche, für die Heizung der zahllosen öffentlichen und Privatbäder Holzkohlen sind, denkt man sofort an den außerordentlich großen Holzverbrauch. Allein der Japaner baut seine niederer Häuser aus dem schlechtesten Material, das zugleich wegen der großen Feuersgefahr den Vorzug der Billigkeit besitzt; hierzu dient die Kryptomerie, die schon im Alter von 30 Jahren zu Bauholzwecken gefällt wird.

Für die Kryptomerienwäldernungen mit kurzem Umtrieb bestimmt das Feuer den Preis der Ware, den Zeitpunkt der Fällung und die Rentabilität der Wirtschaft. Der Wald wächst so lange fort, bis sein Holz nötig wird infolge einer großen Feuersbrunst, welche die Holzhäuser einer im benachbarten Gelände liegenden Stadt in wenigen Stunden in Asche verwandelt hat. Jahrhundertelang gingen die Preisschwankungen parallel mit der Häufigkeit der Brände in Städten und Dörfern. Von der Zahl und Größe der Feuer in einem Lande, dessen Häuser aus Holz sind, dessen Bevölkerung von morgens bis abends eines offenen Beckens mit glühenden Kohlen bedarf, hat man in einem Lande ohne Erdbeben, mit Steinbauten und geschlossenen Feuerkörpern keine Vorstellung. Waren doch bis vor kurzem in einem japanisch geschriebenen Führer für die Hauptstadt Tokio die Fremden darauf hingewiesen, daß sie nicht versäumen sollten, während der Nächte die großen Feuersbrünste zu besichtigen. Es ist eine allgemeine Sitte der ärmeren Familien, nachts die wenigen Habseligkeiten zu einem
Bündel zu schmücken, um sofort beim Ausbruche eines Feuers oder bei heftigem Erbeben der terra firma das gefährliche Heim mit seinen Holzwänden und Papierfenstern und seiner wegen der heftigen Stürme schweren Bedachung sofort verlassen zu können. Die Wohlabenderen bergen ihre Kostbarkeiten in kleinen Gebäuden, Kura, welche nur aus Steinen oder, wo diese mangeln, aus Lehm erbaut sind.

Wenn auch im Süden des Reiches, auf der Insel Yakushima, wo die Kryptomerie ihre Südgrenze findet, ein außerordentlich feinringiges, starkes, kostbares Material dieser Holzarz gewonnen wird, wenn auch im Norden des Reiches auf Akita, wo selbst noch Urwaldungen dieser Holzarz in großer Menge stocken, Kryptomerienholz stärkster Dimensionen über ganz Japan zu größeren Bauten verfrachtet wird: die Hauptmasse des benötigten Holzes liefert ein Kahlschlagbetrieb der in reinen Beständen gepflanztten Kryptomerien, und zwar liegt der größte Teil dieser Waldungen in den Händen von Privaten.

Aber jeglicher Baum wird in Japan wertvoll, sein Produkt zum Nutz- und Schmuckholz von unglaublich hohem Wert, sobald an ihm irgend eine Abweichung vom normalen Wuchs nur im Gefüge des Holzes auftritt. Wimmeriges, maseriges Holz, kropfförmige Auswüchse,

Im Jahre 1886 wurde zu Kioto der prächtige Tempel Higashi Honganji erbaut. Die Säulen, welche das Dach mit seiner kunstvollen Innenvorverkleidung tragen sollten, waren aus Keakistämmen (*Zelkova*) ausgeschnitten; spiegelglatt und fein gehobelt ragten sie 15 m empor bei einem gleichmäßigen Durchmesser von 80 cm. Die lebenden Stämme hatten somit mindestens 1,5 m Brusthöhen-Durchmesser; was vereinte Menschenkräfte fortbewegen können, zeigte sich hier deutlich: um einen solchen Stamm von Kissi nach Kioto zu transportieren, mußten 10—15 000 Mk. aufgewendet werden: die Stämme waren Gegenstand von Bauern; trotzdem war es nötig, für die Herstellung des Tempels 2 Mill. Mk. durch Bettel und Stiftungen von Verehrern Buddhas zusammenzubringen. Jede Holzsäule maß 7,5 fm und wog 3750 kg. Um diese gewaltigen Lasten aufzurichten, erwiesen sich die Seile aus Palmfäser (Shiro), aus Papierfäser (Bronsometia) oder die Schöflinge der Schlingpflanzen Wistaria, Actinidia als nicht genügend haltbar; es wurden Taue aus Menschenhaaren geflochten, pechschwarz, armdick, die Gabe von Männer und Mädchen des Landes.

Gegenüber den bisher genannten Holzarten treten alle übrigen Baumarten in ihrer Gebrauchs- und in ihrer Verarbeitungsmenge zurück.

In Akitai Ken (bei Ishiwaki) findet sich mitten in einem Föhrenwald ein großer Stein, auf dem der Pflanzer die ganze Geschichte des Waldes beschrieben hat. Sie lautet: In der Temno-Zeitrechnung vor 200 Jahren habe er mit seinem Bruder 7 Millionen Bäume gepflanzt; nach seinem Tode wurden von einem anderen Bruder noch 150000 Pflanzen gesetzt.

Diese höher gelegenen Waldungen aber bilden mit den im Norden, besonders auf der Insel Eso, aufgespeicherten Holzvorräten hochwichtige Reserven für die kommenden Geschlechter.

sitzen die Japaner, bis sie genügend erwärmt sind zu neuer Tätigkeit, in ihrer eisigen, fast stets lebhaft bewegten Winterluft.

Es war mir Ende 1885 und während des Jahres 1886 vergönnt, als erster europäischer Forstwirt die japanischen Waldungen zu durchforschen, und meine Freunde in Japan, voran Dr. Yaroku Nakamura, haben alles aufgeboten, um mir einen Einblick in die allgemeinen und forstwirtschaftlichen Verhältnisse des Landes zu ermöglichen.

Die Perle des japanischen Nutzwaldes umschließt eine Hochgebirgslandschaft im zentralen Japan, Kiso 1) genannt. Es ist hochberühmt durch das Vorkommen von fünf wertvollen Nadelhölzern (Kiso-no-goboku), nämlich: Hinoki (Chamaecyparis obtusa), Nezuko (Thuja japonica), Sawara (Chamaecyparis pisifera), Hiba (Thuja pisifera) und Koyamaki (Sciadopitys verticillata). Diese Baumarten bilden reine Bestände von geringer Ausdehnung; zumeist sind sie einzeln oder als Gruppen im winterkalten Laubwalde eingebettet, über den sie mit ihren dunkelgrünen Kronen hoch emporragen. Aber der Laubwald ist ihre Wiege: unter seinem lockerem Schluße arbeiten sie sich langsam, aber sicher empor, bis sie das Kronendach durchstechen und nun mit gewaltigem Zuwachs an Länge und Stärke zu Riesenstämmen heranreißen, während das Laubholz für die Reinigung der Stämme von den Ästen sorgt. Allein so manche Lücke im Laubwalde hat sich geschlossen, ehe noch eine Nadelholzjugend Fuß fassen konnte; so manche Jugend ist dem Feuer zum Opfer gefallen. Die Natur verjüngt am schönsten den Wald, wo sie es auch ist, die ihn nützt; wenn der Mensch eingreift durch

1) Da man im japanischen Kiso nicht Kiso spricht, so schreibe ich das Wort wie man es ausspricht.

2) Eine treffliche Schilderung dieses Waldgebietes hat Forstrat Dr. E. Grassmann in den Sitzungsberichten der ostasiatischen Gesellschaft 1890 veröffentlicht.

Mayr, Fremdländische Wald- und Parkbäume.
Flössen gebunden, gleiten sie auf dem Kissogawa langsam in endlosen Zügen nach Nagoya, dem Hauptstapelplatz für Holz aus dem Zentrum des Inselreiches.

Die Kultur des Kerzenbaumes (Hase) Rhhus succedanea, der aus China stammt, hat in letzter Zeit an Bedeutung verloren. Auf der südlichen großen Insel findet man den Kerzenbaum in lockerem Hainen der Früchte wegen kultiviert. Aus den Sämereien und ihrer wachsartigen Umhüllung
Die Waldungen der Alten Welt, Europa und Asien...

Abb. 22. Japanische Laublinse (Fagus crenata) im Staaten- (Nieder-) wald zu Hirohita.

H. Mayr, Ph. photograph, 1884.
wird Öl geprefst, aus dem die japanischen Kerzen gefertigt werden. Eine Art Niederwald ist endlich die Teestande; durch das fortwährende Abpflücken der frischen Triebspitzen entstehen abgerundete, dunkelgrüne Büsche, zwischen welchen der Boden peinlich unkrautfrei gehalten wird. Der Tee, mit einem eigentümlichen, den meisten Europäern nicht angenehmen Aroma, gedeiht am besten auf kalkreichem Boden; mit Strohmatten werden die zarten Mairiebe gegen verspäteten Frost geschützt.

Waldbau und Waldbenutzung sind in Mitteleuropa nachgerade unzertrennbare Begriffe geworden; ein Bild der Benutzung des japanischen Waldes mag aus den vorausgehenden Zeilen entnommen werden; was zu seiner Erhaltung, Wiederbegründung und Pflege geschieht, verdient volles Lob, volle Beachtung, wenn auch der Erfolg noch nicht der Nutzung die Wagschale hält. Man vermutet allgemein, dass es mit dem Waldbau in Japan nicht besonders gut bestellt sein müsse, weil deutsche Forstwirte nach Japan berufen werden und japanische Forstwirte zum Studium nach Europa kommen. Es entspricht vollkommen einem Charakterzuge des japanischen Volkes, insbesondere seiner führenden Elemente, auch auf diesem Gebiete auf der ganzen Welt Umschau zu halten, um das Beste herauszulesen und für den eigenen Wald nutzbringend zu verwerten. Die ersten japanischen Forstwirte, welche deutschen Boden betraten, Herr Matzuno und Dr. Nakamura, Dr. Honda, Dr. Shiga u. a., welche zugleich als die Pioniere der neueren Waldwirtschaft in Japan gelten müssen, brachten zum ersten Male Sämereien zahlreicher japanischer Waldbäume nach Deutschland, aus denen heute, nach 20 Jahren, hochwichtige Studiumsobjekte für den Anbau fremdländischer Holzarten geworden sind.

Hauptinseln hinweg hat die Kryptomerie im wärmeren winterkahlen Lanbwald, dessen Klima das Vorkommen der Edelkastanie kennzeichnet. das Castanetum, an meisten Boden gewonnen: überall wird sie kulti-
viert, überall sind eigene Methoden der Erziehung aus Samen, Methoden
der Pflanzung und deren Schutz ausgebildet worden: bald wird gesät.
bald mit Pflanzen die kahle Fläche bestellt, bald werden einfache
Stocklinge in den Boden gesteckt; wird eine andere Holzarz zur Krypto-
merie gesellt, so ist es zumeist Hinoki (Chama, obtusa). Was aber ganz
besonders hervorgehoben zu werden verdient, ist eine seit Jahrhunderten
gehandhabte Durchforstung, und zwar in einer Methode, die erst
in der allerjüngsten Zeit im fürstlich so hochentwickelten Deutschland
sich durchzuringen beginnt, die Durchforstung nach der Stammgüte
ohne Rücksicht auf Schlusstdurchbrechung. Die japanische Durch-
forstungsmethode der Waldungen im schmalen Quellengebiet des
Yoshinogawa, der Provinz Yamato und Kii verlangt 14 Jahre nach der
Pflanzung die Herausnahme der schlecht geformten oder ungünstigen
Stämme, und zwar das erstmal bis zu 10% der Gesamtzahl. Alle
zehn Jahre wird die Entnahme der schlechtesten Individuen wieder-
holt; auf schlechterem Boden beginnt erst mit 20 Jahren die erste
Durchforstung.

Eng verknüpft mit der Behandlung der Waldungen und Bäume
ist die Liebe der Japaner zu Bäumen, insbesondere wenn sie Blumen
tragen. Die Europäer, wenigstens wir Deutsche, schwärmen für den
Wald, die Japaner begeistern sich für den einzelnen Baum. Die
einzelne Blume fesselt den Japaner und hält ihn fest in sinniger Be-
trachtung: eine Zusammenhäufung zu einer Farben- und Geruchs-
mosaik, zu Blütensträußen oder Blumenparten ist ihm unverständ-
llich: der Wald, nicht der forstliche, sondern der natürliche Wald, mit
seiner unendlichen Vielheit von einzelnen Objekten für die Beschaunung
und Ergötzung der Europäer, erdrückt den Japaner. Er kennt und
liebt ihn nicht: er ist die Heimat der wilden Tiere, die jedoch alle
gefühlte Art sind. So sehr der Japaner farbenprächtige Blüten be-
wundert, sein volles Entzücken, seine stetige Freude und geistige Be-
schäftigung sind Bäume oder Baumgruppen, zumal wenn sie Blumen
tragen. Vor dem alten morschen Strunke eines Kirschbaumes versinkt
er in traurige Bewunderung: er setzt ihn in eine kostbare Vase, mit
dem Wunsche, der Baumstummel möge mit dem Aufgebote seiner
letzten Lebensgeister einen blumentragenden Zweig entwickeln: ihn be-
schauend wartet er gleichsam auf das neue Leben: seine Phantasie sieht
bereits die Blüte: sein Geist ist losgelöst von den Gedanken des Alltags-
lebens, er ruht. Zur Erzielung solcher Eindrücke bedarf es für den
Japaner gar keiner Blume: er nennt deshalb Baumstrünke, die noch ein
paar Blütenzweige entwickeln, ebenfalls „Blumen“ — „hana“: blüten-
lose Zweige von Föhren, Bambus sind ihm Blumen: ja die Föhre

Abb. 23. Ungefähr 50 Jahre alte Schwarzföhre (Pinus Thunbergii) in Gestalt eines Baumes der windgepeitschten Küste erzogen.
H. Mayr gezeichnet, nach jap. Abbildung.

Indem sie Sorge trugen, daß das Bäumchen nicht leben und nicht sterben, daß es vielmehr in seiner engen Behausung hungern und däristend 100 Jahre verbringen und kaum einen Meter hoch werden konnte. Aber der lange Mühe Lohn ist durchaus kein häßlicher, verküppelter Zwerg, sondern das getreue verkleinerte Abbild des frei erwachsenen, knorrigen, kraftstrotzenden Baumriesen.

Die Größe resp. Kleinheit des japanischen Gartens verlangt eine besondere Sorgfalt, um über diesen Fehler hinwegzutäuschen: ein kleiner Garten, der die zusammengedrängte Übersicht eines großen enthält, erscheint dem Japaner unnatürlich; ein kleiner Garten mit großen Felsblöcken, großen Bäumen ist ihm ein Unding; Baumzwerge

86 I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Abb. 24. Sogenannte 100jährige Hinoki (Chamaecyparis obtusa), das Bild eines Baumes, der auf hoher Felsenkante erwachsen.

H. Mayr gezeichnet.

1) Monographie der Abietineen des japanischen Reiches, von D H. Mayr. 1890.
2) Sprich Mme.
Die Heimat der fremdländischen Wald- und Parkbäume.
den Japaner wiederum Blumen sind. Das Jahr nimmt Abschied mit
dem bunten, gelb, scharlach bis blau rot gefärbten Ahorn; ja selbst im
Winter fehlt es nicht an Reizen, wenn Schnellflocken gleich Blüten
auf das dunkelgrüne Blattwerk der Palmen, Zypressen, Bambusse, der
immergrünen Eichen und Lorbeer gewächse fallen. So schmückt der
Japaner seinen Garten, seine Freude, seinen Stolz, seine Erholung,
seinen Park, in dem nach europäischen Vorstellungen das Wichtigste
fehlt — der Schatten.

Zur Beurteilung der heimatlichen Verhältnisse der nach Europa
verbrachten japanischen Holzgewächse ist es nötig, die Baumarten
nicht nur als japanische Wertobjekte zu betrachten, sondern dieselben
auch in ihrer natürlichen, ursprünglichen Verteilung im Lande nach
klimatischen Regionen, Bodenausformungen kennen zu lernen. Auf
die horizontale Einengung der ganzen japanischen Baumflora von den
Tropen bis zur Polarregion durch den warmen Golfstrom im Süden
einerseits, den kalten Gegenstrom im Norden anderseits habe ich be-
reits hingewiesen. Es entspricht dem insularen Charakter des japa-
nischen Klimas, daß auch nach der vertikalen Richtung hin die Vege-
tationszonen schmälere Bänder umfassen, als dies auf anderen Bergen,
insbesondere des Kontinentes, beobachtet werden kann. Die Einengung
der Zonen wird noch gefördert durch den schroffen Klimawechsel an
isoliert stehenden, hoch aufstrebenden Bergen, deren Japan in seinen
Vulkanen die herrlichsten Beispiele bietet.

An der Nordküste des Binnenmeeres (Seto-no-umi), das die großen
Inseln Hondo, Kiusiu und Shikoku scheidet und in zahllosen Buchtan,
gleich denen Süditaliens und Griechenlands, in die felsigen Inseln vor-
springt, erhebt sich aus dem Waldgebiete, das ursprünglich den immer-
grünen Laubwald der subtropischen Region beherbergte, mit weit aus-
ladender Basis, zuerst allmählich dann immer steiler werdend, der
unvergleichliche Fuji, Fuji-no-yama, Fujisan, der heilige Berg, den
Pilger in weißen Gewändern besteigen, um in dem kleinen Tempel
am Krater des erloschenen Vulkans zu beten und zu opfern.

Es soll noch alte Kartenskizzen geben, in denen der Fuji nicht
eingezeichnet ist, so daß seine Erhebung in eine bereits historische
Zeit fällt. Seit mehr als hundert Jahren aber galt er als erloschen;
seine Wände sind längst, soweit eben Wald möglich ist, mit Grün
bekleidet; nur der oberste Kegel ist kahl, nicht nur wegen der häufigen
Stürme, die dort hausen, sondern wegen des vielfach noch unverwitterten
Lava- und Aschen bodens und aus Mangel an genügender Wärme. Nach
meinen Barometermessungen, welche ich in den Jahren 1886 und 1890
ausführte, ragt der Gipfel mit 3300 m bis hart an die Grenze des
ewigen Schnees empor; in einer Spalte der Nordseite des Kraters liegt
in der Regel mehrere Jahre hindurch Schnee, bis ein abnorm günstiger
Sommer auch diesen abschmilzt. Der Anblick des Fuji ist einzig schön

Auf einer soliden Basis von mächtigen Lavablöcken baut sich der Vulkan auf; eisigkalte, starke Quellen, vom Sickerwasser aus den geröllreichen Wänden des Berges gespeist, berieseln das Kulturgebälde und die spärlichen Reste einer ehemals üppigen, immergrünen, großblätterigen Baumwelt; reich durchsetzen diesen Wald baumnässige Cephalotaxus, Juniperus, Torreya: Kryptomerie und Zypressen haben als Kulturgewächse eine Heimat gefunden. Beginnt man von Süden die Wanderung den Berg hinauf, so tritt man schon bei 200 m Erhebung aus diesem Gürtel erhöhter Fruchtbarkeit für land- und forstwirtschaftliche Gewächse heraus in eine Grasslandschaft, eine Prärie oder Steppe, vorwiegend aus Imperata-Gras gebildet. Dazu kommt noch niederes Buschwerk von Laubhölzern teils der eben durchwanderten, teils der höher gelegenen Gewächszone. Am Anfange dieser für Getreidebau sehr wohl geeigneten Grasflächen begegnet man noch einzelnen Baumgruppen; höher hinauf aber verbirgt Rofs und Reiter ein endloses Gewoge von Imperata-Gras wie die Alangalang-Wildnisse auf den Vulkanen von Java. Über den Ursprung dieser Gürtelprärie (Suso-no) am Fuji wie auch auf den übrigen japanischen Vulkanen habe ich bereits früher die erklärenden Angaben niedergeschrieben; sie nimmt am Fuji auf der Südseite einen Saum von 4—5 km Breite ein und umspannt einen vertikalen Abstand der Grenzlinien von 700 m; auf der Nordseite des Berges sinkt die Präriebreite auf 2 km, der vertikale Abstand der Ränder auf 400 m. Die von der Prärie nach
oben und unten hin in den Wald vorspringenden Grasungen beweisen, daß die Steppe im Vordringen begriffen ist. Hier wie überall, wo Steppe an den Hochwald direkt austost, drängen sich die Steppengräser durch ihre bodenverschließende Bewurzelung und ihre dichte oberirdische Sprossung an den Waldsaum heran, der immer weiter zurückweicht; jedes Feuer, das auf der japanischen Prärie so häufig ist wie auf der amerikanischen, fördert die Steppe und schädigt den Wald.

Bei 1120 m nehmen die Eichen ab, die Buchen zu; ihnen gesellt sich eine Tanne bei, Abies homolepis, einzelne Fichten, Picea hicolor und Picea Hondoënsis; diese beiden Fichten entdeckte der bekannte Reisende J. Veitch, als er im September 1860 in Begleitung des damaligen englischen Gesandten Alcock den Fujisan bestieg. Von einer Fichte sammelte er die Zapfen, von der anderen entnahm er die Zweige; Lindley konstruierte aus beiden Teilen eine Fichte unter dem Namen Abies Alcockiana! Das Veitch-Lindleysche Kunst-
produkt war verhängnisvoll für die Benennung der beiden Fichten geworden. Die Konfusion ist jedoch geschleichtet durch das nähere Studium der beiden Holzarten gerade an diesem klassischen Standorte, worüber Ausführliches in meiner Monographie der japanischen Abietineen enthalten ist.

Eine Schilderung des Abstieges des Berges würde keine neuen Baumarten, keine neue Anordnung der Waldvegetation ergeben; das kühlere Klima der Nordseite drängt naturgemäß alle Zonen weiter nach abwärts, Feuer greifen weniger tief in den Wald ein, der Windschatten fördert den Wald zu höherer Entwicklung und buntem Artengemisch.

Obwohl der Fujisan unmittelbar an der großen Fremdenroute Kobe-Yokohama sich erhebt, wird er doch nur selten bestiegen; die Ursache liegt nahe: statt einer bequemen Zahnradbahn schlechte Pferde oder die eigenen Füße, statt üppiger Verpflegung schmutziges Nachtlager und Pilgerkost geringster Sorte.

Nach dieser Richtung hin ist dagegen Fürsorge getroffen für die Reisenden nach Nikko, zur Grabstätte der ersten Shogune des japanischen Reiches: stundenlange, breite Alleen aus Kryptomerien, japanisch
Die Waldungen der Alten Welt, Europa und Asien.

Abb. 26. Buddhakloster in Chusenji bei Nikko; hinter dem Tempel stehen zwei Koreazübeln (Pinus koraiensis) mit 32 m Höhe und 0,94 m Durchmesser.

H. Mayr photogr.

Die Waldungen der Alten Welt, Europa und Asien.

Abb. 27. Kryptomerienhain mit Palmenzypressen (C. javana, idem), welcher das Kerchmahl des Shoguns-Jasen umrahmt.

Mayr, Fremdländische Wald- und Parkbäume.
Den schon erwähnten Chusenjisee, etwa 1000 m über dem Meere oberhalb Nikko gelegen, umsämtet eine idyllische, von der Tätigkeit des Menschen nur wenig betroffene und zerstörte Waldlandschaft, unberührter Wald von Buchen, Eichen, Ulmen, Linden, Birken, Ahorn, einzelnen Tannen: nur in der Nähe des buddhistischen Klosters sind Lärchen, Kryptomerien, Taxus und andere Baumarten gepflanzt worden.

Als ich Mitte Oktober 1889 dieselbe Waldregion, bis zum Gipfel des Berges durchstreifte, da war in der oberen Buchenzone volle Herbstfärbung, die Lärchen der Fichtenregion hatten bereits ihre Nadeln abgeschüttelt; die in der Nähe des Sees von den Mönchen gepflanzten Lärchen prangten in prächtigen orangeroten bis schwefelgelben Tönen: nur die im wärmeren Tieflande bei Nikko zwischen Edelkastanien und Walmüssen gepflanzten Lärchen hatten noch ihren hell-blau-grünen Nadelschmuck. Wie oben am Nantaisan verhalten sich die Lärchen am Fujisan, am Asama, mit einem Worte auf allen Bergen Zentraljapans, und da gibt es noch ernsthafte Pflanzenzüchter in Europa, welche behaupten, das Klima von Mitteleuropa sei der Lärche — nicht warm genug!

Mehrere Tagereisen in der Jinriksha nordwärts ändert sich das Bild, das Land und Volk, Wald und Fluren bieten: Klima und Boden
Die Waldungen der Alten Welt, Europa und Asien.

Abb. 28. Japanische Lärchen (*larix leptolepis*) am Füße des Nantaisan; Gipfel nordwärts geblasen, durch Feuer geschädigt.

H. Mayr photogr. 1888.

Die Kryptomerie bei Akita ist zum grössten Teile im lockeren Schlusse eines Laubwaldes erwachsen; selbst in höheren Lagen, in denen die Edelkastanie zurückbleibt und dafür Eichen und Rotbuchen eintreten, sind sowohl hier in Akita wie an anderen Punkten des natürlichen Vorkommens dieser Holzart, z. B. auf den Bergen von Shikoku, schöne Exemplare noch im lockeren Bestande eingesprengt. Zwei bis drei Hügelreihen von der Küste entfernt, wo die Kraft des Windes gebrochen ist, die Schneemengen aber als Schutz für die

![Abb. 29. Natürlicher Vorkommen der Kryptomeria (Cryptomeria japonica) im Laubwalde von Nordjapan. H. Mayr n. d. N. gez.](image-url)
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Abb. 39. Mischwald von japanischer Rotbuche mit Cryptomeria japonica; Shikoku.
H. Mayr photogr. 1889.
zweifeln; die ausführenden Beamten von damals waren noch keine Forstleute, nur Jäger und Schläger.

Die Kryptomerie erreicht dort in 150 Jahren eine durchschnittliche Höhe von 40 m; als 2,2 m lange Rundlinge gleiten die Blöcher auf den spärlichen Wasserfäden, von den Felskanten und der stets abweisenden Sapine arg zerschunden, gegen die Ebene hinab, wo sie an den großen Holzlagerplätzen von Toyoka und Nibuma gesammelt werden. Da die Stücke alle gleiche Länge haben, werden sie nach dem Umfang verkauft: viele der starken Stücke sind vorzüglich spaltende Falßware, vieles gibt Bretter, Schindeln, selbst Bauholz für die niederen Häuser; dabei ist die Luft erfüllt von dem eigentümlichen Geruche des Holzes. Längere Baumstämme erreichen auch auf den primitiven Landwegen, auf ungeschlachten Karren von Stieren gezogen, die Küste.

Weiter nach Norden gabelt sich die Insel in zwei weit ins Meer vorspringende Landzungen: das Klima nimmt insularen Charakter an, es wird wiederum milder in seinen Extremen; der Laubwald behält seinen Charakter bei, aber an Stelle der Kryptomerie tritt eine sehr wertvolle Holzarbeit, die prächtig dunkelgrüne, unterseits weisgefleckte Thujaopsis dolabrata, die Hiba der Japaner. Der Übergang aus dem Gebiet der Kryptomerie in jenes der Hiba ist deutlich wahrnehmbar, selbst wenn man die Augen verschließt, am Geruch der Hölzer. Der Wohlgeruch des Hibaholzes ist besonders stark, so dass Dörfer, die aus ihrem Holze erbaut sind, auf einen Kilometer Entfernung durch ihren Geruch sich verraten. Das feinringige Holz dient zu allen Zwecken; als Unterlage für eine besondere Sorte von marmorierten Lackwaren ist es in Aomori hoch gewertet. Der Baum hat nur einen Fehler in der Heimat wie in der Fremde — seine Langsamwüchsigkeit. Dieser Fehler aber verbessert sich im höheren Alter; meine Messungen ergaben: im 60. Lebensjahre Durchmesser in 1,5 m Höhe nur durchschnittlich 14 cm, Höhe 8 m; mit 100 Jahren 30 cm und 15 m, mit 140 Jahren 60 cm und 20—30, ja ausnahmsweise selbst 40 m! Die Hiba ist besser ausgerüstet für den Kampf mit den Laubhölzern; sie erträgt starke Beschattung, so dass ihre Jugend sich überall sehr reichlich einstellt; sie bildet reine Bestände, die wiederum reichlich von aufwachsender Jugend erfüllt sind; ja, wo ein Zweig der Hiba die Erde berührt, schlägt er Wurzeln und erhebt sich zum selbständigen Baume. Die Hiba ist forstlich trotz ihrer Langsamwüchsigkeit eine hochwertvolle Holzarbeit; nur Feuer und die Rodelhähne können Bestände dieser Holzarbeit ruinieren und ihre Wiederkehr verhindern.

Die nördliche große Insel Eso (dies ist die richtige Aussprache und damit auch Schreibweise des Wortes; Yezzo und Yesso sind Entstehungen, die niemand mehr aussprechen kann) bildet mit den nach Nordosten hin gelagerten Kurilen oder Chishima-Inseln einen politischen Verwaltungsbezirk unter dem Namen Hokkaido; die meisten Japaner

Der Küstensaum von West-Eso ist kühler als das höher liegende Binnenland: denn an der Küste wird die für die Pflanzenwelt entscheidende Temperatur während der Vegetationszeit durch die Wassernähe herabgedrückt. In dem Saumwalde an der Küste überwiegen Rotbuchen, Erlen, Birken: schon bei geringen Erhebungen an der Küste mischt sich jenen die Tanne von Eso und Sachalin (Abies sachalinensis) bei; feuchtkalte Einsenkungen am Ufer betritt die Fichte von Eso und Sachalin (Picea ajanaensis) zusammen mit Erle und Birke; wo der Boden sandige Ausformungen zeigt, da fehlen merkwürdigerweise die zwei nadeligen Föhren, die doch sonst überall auf der nördlichen Hemisphäre auftreten; fast scheint es, als ob ihre Stelle vertreten würde durch eine Eiche (Quercus dentata), die Kaisereiche. Auf dem vulkanischen Sande des immer rauchenden Komagatake kann nichts mehr gediehen als die genannte Eiche; je nach der Bodenfrische bleibt sie ein Strauch oder erhebt sich zu einem angesichts der Bodenqualität immerhin beachtenswerten Bestande. Die Kaisereiche erwächst auf besseres Boden zu einem mächtigen Baume: zusammen mit anderen Eichen (Quercus crispula, grossiserrata) und mit der Magnolia bildet sie die auffallendste Erscheinung im Laubwalde von Eso. Die mittleren, vielfach ebenen und von Flüssen reichlich durchzogenen, der Meereskühle im Sommer entärteten Gebiete von Eso sind ein wahres Dorado für die Laubhölzer. Es ist keine Übertreibung, wenn man für die Beschreibung des jungfräulichen Waldes von Zentral-Eso Worte gebrannt, die man ebensogut für den tropischen Wald verwenden könnte. Zwar bleiben Edelkastanien, Zelkowa und andere das wärmste Laubwaldgebiet an zeigende Holzarten bereits fern, allein die großblätterigen Magnolien, Acanthopanax und Cercidiphyllum, die Eiche, eine pflilgeradschaftige Kirsche (Prunus Shiuri), Eschen, Linden, Ahorn, Ulmen, Hainbuchen,
I. Abschnitt. Die Heimat der fremdländischen Wald- und Parkbäume.

Abb. 31. Maximovics-Birke (Betula Maximovicziana) im Laubwald von Eso.
H. Mayr photogr. 1889.
Die Waldungen der Alten Welt, Europa und Asien.

Balsampappeln und mehrere Erlen und Birken, unter denen die Maximovies-Birke durch ihren vollendet walzenförmigen Schaft Königin ist, bilden in bunter Mischung einen Urwald, dem vor allem die Ungleichheit im Alter seiner Glieder typisch ist. Nur eine Holzart sucht man vergebens, die Rotbuche: sie fehlt hier wie im ganzen Norden von Eso, sicher nicht durch Feuer vernichtet, wie Dr. Honda in seinen „Zones forêtières“ vermutet, denn diese Waldungen hat noch keine Feuer durchrast, und selbst wenn dies der Fall gewesen, so wäre schwer verständlich, daß durch das Feuer nur die Buchen vernichtet wurden, während alle übrigen Holzarten verschont blieben. Den Raum zwischen den Schäften füllen Halbbäume der genannten Arten und Großträger aus, wie der weifsblühende japanische Flieder, Pfaffenkäppchen, Viburnum, Hamamelis, Hollunder, Weiden und Erlenbüsche; von Baum zu Baum schwingt sich eine kletternde Hortensie (Schizophragma hydrangeoides) und überschüt tet abgebrochene Äste der Baumpriesen mit blendend-weißen Blüten: großblätteriger Wein räumt sich bis in die obersten Baumkronen, um dort seine Blätter im Lichte entfalten zu können: doch das Seltsamste von allem ist die weifs- und rotblätterige Actinidia polygama; an sonnigen Waldsäudern überwuchert diese Pflanze Stämme und Kronen der Bäume, als hätten diese selbst Tausende von weifs- und roten Blüten in ihr grunes Laubwerk eingestreut: dem üppigen jungfrülichen Boden entsprossen riesige Heracleum, Polyganum, Peta-sites, Aroideen, Farne, in deren Dickicht Reiter und Pferd verschwinden. Nirgends in Japan, wo Laubhölzer sich finden, fehlt die Schmarotzer-Mistel; auf den drei südlichen großen Inseln befallt sie besonders Edelkastanien, Zür geln (Celtis), Prunus, Rotbuchen, Linden; auf Eso aber ist ihr Lieblingsbaum die Kaisereiche (Quercus dentata), deren Beständen sie durch die bis kübbigroßen Anschwel lungen an Schaft oder Ästen einen häßlichen Anblick verleiht.

Bei Erhebungen von 500 m erlaubt in diesem Laubholzmeer sofort die Kraft des Waldes: die Zahl der Holzarten sinkt bis auf wenige, die Sachalintanne herrscht vor, und weiter hinauf tritt zu ihr eine Fichte, um mit einem Walde die oberste Baumgrenze abzuschließen, der täuschend den höhergelegenen Waldungen der mitteleuropäischen Gebirge, wie Schwarzwald, Bayerischer Wald, Nordalpen, ähnlich sieht.

Fremdländische Wald- und Parkbäume.

Ost-Eso und die Kurilen liegen eingebettet an dem kalten, antarktischen Meerstrom, der von der Behringstraße nach Südwesten und Süden der sibirischen Küste und den Kurilen entlang streift. Der im Sommer wehende Südpassat, in wärmeren Regionen mit Wasserdüften gesättigt, trifft auf die kalte Luftschicht über dem kalten Strom; die Folgen sind gewaltige Nebelbildungen, welche tage-, ja wochenlang anhalten; immer neue Nebelmassen, durch den feinen Regen alles erkältend, wälzen sich von Süden heran an die Küste von Eso und den Kurilen. Wochenlang bleibt die Temperatur während der Zeit, welche die heifste sein sollte, zwischen 8 und 10° C. und drückt so die Wärmesumme, welche den Pflanzen der Küstenregion geboten wird, derart empfindlich herab, daß dort bereits Fichte und Tanne das Meeresniveau erreichen; ja die südöstliche Küste der Kurileninseln Murop und Urup sind durch die Nebelmassen während der Vegetationszeit so sehr abgekühlt, daß unter einer Breite von 50° bereits die polare Baumgrenze mit einer kriechenden Zürbe (Pinus pumila) erreicht ist.

In Ost-Eso gibt es nur einige Reitpfade, die von der Küste hingewogen in das Innere führen. Zunächst geht es unter Führung von Ainos immer hart am Meeresufer entlang auf dem durch das Wasser erhärteten Sand; ununterbrochen rollen donnernd die Wogen des größten Weltmeeres, das umfert der Insel seinen tiefsten Abgrund mit 10,000 m erreicht, gegen die Küste; die letzten Schammkronen verlieren sich unter den Hufen der Pferde, die Spuren sofort wieder mit Sand verschüttend; die feine salzige Sprüh, welche die Meeresbrise ins Land trägt, überkrustet allmählich Rofs und Reiter mit glänzenden Kristallen; der Mund kostet Salz, und alle Metallgegenstände verfärbien sich. Hinter Felsen versteckt und gegen den Anprall der Wogen geschützt, liegen große Holztschenklen, eine Strecke strandeinwärts ärmliche Holzhütten für einige japanische Familien, die sich der Seetanggewinnung widmen. Die handbreiten, braungrünen, über 15' langen Tangbänder werden aus dem Meere gefischt und nebeinander in den heißen Sand zum Trocknen gelegt. Zu Bündeln zusammengerollt, werden sie nach China verfrachtet, wo sie das Salz und Gewürze der ärmeren Volksklassen vertreten.

Endlich biegt der Weg vom Strand ab landeinwärts. Vom Schaum der Meerwellen bis zur ersten Hügel- oder Dünenreihe führt der Pfad an einer sanften Abdachung empor durch einen wahren Rosengarten.
schrill zirpende Zikade stürzt aus den Baumkronen auf den Nachen und seine Bewohner, als wollte sie in grimmigem Hasse ihr Eden gegen die Eindringlinge verteidigen. Doch trotz aller Schönheit und Vielgestaltigkeit ist dieser Urwald einsilbig in seiner Sprache, die er gegen über dem Walde im Westen der Insel zum Beobachter spricht; die Rotbuche ist verschwunden; an ihre Stelle treten mehrere Birkenarten, und je weiter man der Nordküste sich nähert, um so mehr nehmen die Birken überhand; schließlich gegen die Küste zu sind es Birken, welche dem Walde den heiter-sonnigen Charakter aufprägen. Wo Wald vernichtet wurde — auch das kommt so weitab von den menschlichen Wohnungen auf Eso vor — haben den Boden Futterpflanzen für die halbwild umherirrenden Pferde, Zwergbambus und ein manns hoher Staudenklee, *Lespedeza*, in Beschlag genommen.

lärche als Varietät der dahurischen beschrieb, noch der Pflanzenammler Pater Faurie haben die Heimat der Kurilenlärche zu Gesicht bekamen.

überreich an Schwefel. Schwefeldämpfen, ja selbst an schwefeligen Säuren ist, in einer Atmosphäre, die schweflig-saure Dämpfe bis zur Vernichtung der übrigen Baumwelt mit sich führt, gerade die alpinen oder polaren Pflanzen erscheinen und gedeihen können, das ist noch heute nicht aufgeklärt. Die Frage steht mit einer anderen Erscheinung sicher in Zusammenhang.

Im Jahre 1871 brach der Vulkan Shiranesan im mittleren Japan aus; er trug, da er jahrhundertelang geschlummert hatte, bis zu seiner obersten Spitze einen Wald von Fichten, Tannen, Lärchen, zwischen denen in kühlen Schluchten an der Nordseite des Berges, am dumpfenden Felsspalten und im schwefelhaltigen Saure die Kriechzübel sich angesiedelt hatte. Unterhalb dieser dunkelgrünen Waldzone schloß sich der von Harafeuern stellenweise arg zerklüftete Laubwald an. Der Ausbruch bestand in heißen, mit schwefeliger Säure versetzten Dämpfen, die hoch emporgeschleudert zu Wolken sich verdichteten, aus denen Regengüsse auf die Waldungen herabstürzten; die dem Boden hierbei zugeführte schweflige Säure tötete den ganzen Wald der oberen Bergregion; als ich 15 Jahre später, 1886, die Stelle besuchte, fanden sich von den Fichten und Tannen noch spärliche Reste vor, dagegen ragte über dem vegetationslosen, braunen Grund die mit dauerhaftem, roten Kernholze versehene Lärche empor; nur der Splint und die Bezweigung waren an ihr verwittert. Doch ganz vegetationslos war der Boden nicht; der Krummholzkiefer hatten die schwefeligen sauren Wasser und Dämpfe nichts geschadet, sie war der Katastrophe entgangen, wo sie nicht von heissen, dem Vulkane entstammenden Wassern verbrührt worden war. Und 15 Jahre nach diesem Ausbruch starben am Waldesrande unter den Laubhölzern noch fortgesetzt Bäume ab; so lange äußern dem Boden zugeführte Gifte ihre verderbliche Wirkung auf die Pflanzenwelt. Aber allmählich werden auch sie ausgelangt und in die Tiefe geführt, und neuer Wald entsproßt langsam und mühsam aus den Ruinen des untergegangenen Geschlechtes; dieses aber verwest und schafft dadurch Nahrung für kommende Generationen.

Stößt aber mit der Explosion des Gases der Vulkan auch noch Sand und Asche in großer Menge aus, so wird der Wald nicht nur vernichtet, sondern auch unter den Aschenmassen begraben; der Zerfall der Schäfte in Kohlensäure, Wasser und Mineralsalze wird unter dem teilweisen Luftabschlusses aufserordentlich verlangsamt, eine Umwandlung in Kohle setzt ein. Solche jahrhundertelang im Schösse der Erde eingebetteten Stämme nehmen in ihrem Holze zunächst eine silbergraue Färbung an, wobei Struktur und Festigkeit des Holzes erhalten bleiben (sich Tafel X. 24). Solches Holz, unter dem Namen Jindai in Japan verwendet, steht besonders hoch in Ehren und wird als Schmuckware höher bewertet als gesundes normales Holz der
Die Waldungen der Alten Welt, Europa und Asien.

Tiefer und länger in den vulkanischen Sanden eingebettet liegen die Reste von Hölzern, welche nicht mehr grau, sondern bereits mit einer braunen bis fast schwarzen Farbe in Braunkohle übergegangen sind. Auch bei diesem, Mmoregi, Holz aus der Götterzeit, genannten Schmuckhölzern, welche besonders in der Nähe von Sendai gewonnen werden, ist die Struktur deutlich erhalten; durch langsames Trocknen erhärtert die anfänglich weiche Masse, aus der allerlei kleinere Gebrauchs-, Schmuck- und Nippgegenstände des japanischen Haushaltes geschnitten werden. Bringt man aber derlei Gegenstände aus der luftfeuchteren japanischen Heimat in das lufttrockenere Europa oder gar in einen geheizten Raum, so trocknet die harte, braune Masse abermals aus schwindet und zerklüftet sich, ja zerfällt in mehrere Teile. Diese Baumgeneration ruht lange unter der Erde; sie ist mit der heutigen Baumwelt nur noch verwandt, nicht mehr identisch; das Mmoregi stammt von einer Taxodinee, welche Holzarten den japanischen Boden zu derselben Zeit begrünten, als auch in Europa der Wald unter günstigeren Wärmeverhältnissen auf feuchterem Boden sich aus dem feinholzigen Geschlechte der Taxodineen aufbaute.

Die Waldregionen Japans.

Es ist wohl kaum der Hinweis nötig, daß die Waldregionen sowohl in Amerika wie in Asien und Europa nicht durch eine scharfe Linie abgegrenzt sind, daß vielmehr, da die Waldzonen zugleich Klimazonen sind, Ausbuchungen einer Zone an ihren Rändern naturnotwendig sind. Ein pflanzengeographisches Charakteristikum der Grenzvegetation ist aber bis heute noch nicht genügend erkannt worden, obwohl es zur Physiognomie des Waldes gehört und für die Naturgeschichte der Holzgewächse und damit auch für die Kultur derselben von Bedeutung ist. Es ist die Erscheinung, daß Vegetationszonen allmählich unter

Mayr, Fremdländische Wald- und Parkbäume.
die benachbarte kühlere oder wärmere Grenzvegetation als Halbbäume und Sträucher untertauchen, um schließlich in Buschform, als Bodenschutzbestand unter dem Schutze der Bäume der benachbarten Zone eine letzte Zwischensäule gegen die Umbilder der Witterung zu finden. So ist das natürliche Vorkommen der winterkahlen Bäume und Sträucher im wärmeren, immergrünen Laub- und Nadelwalde, das Bodenschutzholz von immergrünen Sträuchern unter dem kühleren, winterkahlen Baum- walde zu erklären.

Wenn der Japaner von einer wildwachsenden Pflanze im Gegensatz zu einer verwandten oder ähnlichen kultivierten spricht, dann setzt er Yama (Berg) vor den Namen der Pflanze: zum Beispiel Yama-urushi ist der wildwachsende Lackbaum (Rhus silvestris), im Gegensatz zum kultivierten Lackbaum (urushi) Rhus vernicifera; Yama-sakura ist die Bergkirsche (Prunus Pseudocerasus), im Gegensatz zu den zahlreichen buntblütigen Varietäten desselben Baumes, die in den Gärten, Straßens und Parks zu den Lieblingen des Volkes zählen.

Auf Grund meiner eigenen Reisen, die einen größeren Flächen- raum in Japan umfassen, als die beiden Japaner besuchten — Tanaka

Bezüglich der horizontalen und vertikalen Abgrenzung ist Honda mit Ausnahme unwesentlicher Namensänderungen (so spricht er mit Takashima von einer Ako-Feigengrenze statt einer tropischen) meinen Ausführungen gefolgt; er legt aber das Schwergewicht bei der Zonenabgrenzung auf die forstlich finanzielle Wichtigkeit der Zone, während ich in erster Linie bedacht war, die Naturgeschichte der Holzarten und ihre Anforderungen an das Klima durch die Bildung von Vegetationszonen zu fixieren, wie solche Kenntnisse eben für die waldbauliche Sparte der Forstwissenschaft unentbehrlich sind: nach Honda ist die Aufstellung der so wichtigen Waldgrenzzone der Krummhölzer unberechtigt, weil diese Zone forstlich wertlos sei. Meine Zonen enthalten nur Durchschnittsgrenzen für Höhe und Breite; Honda bringt für die Höhen reichliches Zahlenmaterial, wie sie ja für Japan interessant und wertvoll sein mögen, für Europa aber nur pflanzengeographischen.

1) Vergleiche die Waldungen von Nordamerika sowie die Monographie der Abietineen Japans 1890.
nicht biologisch-waldbaulichen Wert besitzen; für die Berechnung des Klimas hat Honda die Kalenderquartale Frühling, Sommer, Herbst, Winter gewählt. Um Legendenbildungen in Europa vorzunehmen, muß ich eines Irrtumes Hondas hier erwähnen: er rechnet die Kurilenlärche zur wertlosen, kalten Krummholzregion, weil sie ein niederer, wertloser Halbbbaum sei. Diese Legende ist japanisch und so alt wie die Kenntnisse der japanischen Forstwirte über die Kurilenlärche, welche die Japaner Shicotanmatzu heißen, weil sie von Shicotan die niederer, krüppeligen, an der Küste gewachsenen und vom Winde über den Boden hingelebsten Lärchen ihrem Geschmacke entsprechend beziehen. Aus diesem Vorkommen auf die Biologie und den forstlichen Wert der Lärche zu schließen, ist irrig; ich habe schon 1890 mitgeteilt, daß die Kurilenlärche nach meinen Messungen 22 m hoch wird, 1 m Durchmesser erreicht und wegen ihres rotbraunen, harten Kernholzes der wichtigste Nutzbaum der Insel Iturupp ist und sicher noch eine Rolle spielt wird, wenn die Inselwaldungen unter forstliche Benutzung und Pflege genommen werden.

Wie in Ostamerika das Anschlagen des warmen Golfstromes an die südlichsten Punkte von Florida und den vorliegenden Inseln einer tropischen Baumwelt die Möglichkeit bietet, über den Wendekreis des Krebses hinaus bis zum 26. Grad n. B. sich auszudehnen, so gestattet auch der an der Küste Ostasiens streichende warme japanische Golfstrom oder Kuro Shino, der schwarze Salzstrom,

a) eine tropische Flora,

entlang der Südostküste von Formosa bis zu den südlichsten Gruppen der Luchu- oder Riukiu-Inseln, nämlich der Yaeyama- oder Nambu-Gruppe unter dem 26. Grad n. B. Während der Vegetationszeit wehen warme, südlische, regengesättigte Winde; klare sonnige Tage sind auf dieser Insel auf die Zeit der Vegetationsruhe beschränkt, wenn der Nordpassat während der Monate November, Dezember und Januar so weit nach Süden vorstösst. In diesem riesenhaften Treibhause, als welches diese Inselgruppe bezeichnet werden muß, entsproßt der feuchten Erde nochmal das üppige Gemenge einer echt tropischen Baumwelt, reich an Palmen der Gattung Areca, Arenga, zahlreiche Ficus-Arten, Bischofia, Shitan oder Rotholz, Pterocarpus-Holz, das für die besseren Schnitzereien in China und Japan aufserordentlich gesucht wird; Kokutan oder Schwarzholz, das Holz einer immergrünen Diospyros oder Ebenholzart, wird als das kostbarste Material für Holzschnitzereien betrachtet; alle diese sind zugleich Angehörige des nordmalaiischen Waldes. Die Mangrove (Rhizophora Mangle) wächst noch an der Küste der Yaeyama-Inseln in ihren salzigen Pfützen, welche die Ebbe an der Küste zurückläßt; ihre strachlformige Entwicklung kennzeichnet überall auf der Erde das Ende der tropischen Vegetations-
Die Waldungen der Alten Welt, Europa und Asien.

b) Die subtropische Waldflora.

Die wärmere Hälfte dieser Waldzone mit ihren prächtigen Baumfarnen auf Formosa, Nafa und Oshima liegt weit ab von den großen japanischen Inseln; als ich vor 14 Jahren die mittlere Riikin-Gruppe besuchte, war die Verbindung mit kleinen Schiffen eine höchst mangelhafte; eine peinliche Polizei­kontrolle verfolgte damals den Europäer nicht nur in ganz Japan, sondern auch bis in die fernsten Inseln. Da der Seeweg zu den obengenannten Inseln an zahlreichen anderen Inseln mit tätigen, Wasserdämpfe und Schwefelsäure ausstossenden Kratern vorüber führt, so ist dieser Umstand wohl schuld, daß die ganze Inselgruppe als „vulkanischen Ursprungs“ bezeichnet wird. Das ist jedoch nicht richtig; die große Insel Oshima 1) ist aus buntem Sandstein, der Sand der Insel Okináfa ist aus zahllosen kleinen Muschel­fragmenten, der felsige Teil der Insel aus Kalkkoralen, Kalkschwämmen, aufgebaut. Die Küste dieser Inseln umsäumt eine Föhre, die bei näherer Betrachtung ihrer systematischen Verschiedenheiten in Blättern, Blüten, Zapfen, den Habitus des Wuchses als eine neue Art sich darstellt: Pinus Luchüensis; daran aber schließt sich ein wintergrüner, prächtiger Laubwald voll von Lianen, ein Wald, in dessen Bestand die spärliche Bevölkerung, die ethnographisch noch so wenig beachteten Luchuaner, noch kaum eingegriffen haben. An der Küste ist der Wald vielfach beseitigt zugunsten der landwirtschaftlichen Hauptprodukte der Inseln, das sind Zuckerrohr, Baumwolle, Reis und andere.

1) Ich bemerke, daß bei den dreisilbigen und den meisten mehrsil­bigen japanischen Worten der Akzent auf der drittletzten Silbe liegt, also Oshima, Tokio, Osaka, Nakamura, während fast alle Europäer, selbst die jahrelang in Japan ansässigen, den Engländern die üble Gewohnheit nachmachen, den Akzent auf die vorletzte Silbe zu legen, also Oshima, Osáka, Tokio, Nakamúra zu sprechen.
immergrüner Halbbaum, wird hier zum mächtigen Baume: der Boden überzieht die hellgrüne zierliche Moosart Selaginella, kletternde Lykopodiaceen ergreifen die untersten Äste der Bäume und Sträucher, um durch ihre Hilfe zum Licht zu gelangen; Bambus fehlt in solchen Waldungen ganz. Wo das dunkelgrüne, dicht beschattende Laubwerk der immergrünen Bäume auseinanderweicht, um Licht auch in das Innere des Blätter- und Lianengewirres einzulassen, da erfüllen den Raum die prächtigen, äußerst zierlichen Baumfarne: auf sandigen Bodenausformungen überwiegt die genannte Föhre, den Bäumen zu ihren Füßen aber decken die kurzen, dunklen Schäfte der Cycas revoluta, ein Bild, das an die Föhrchen und Zwergpflanzen von Florida erinnert. Opuntien und Agaven zerklüfteten die Mauern, welche die Eingeborenen um ihr Eigentum aufführen; die stelzfüßigen Pandane erhebt sich aus den Stümpfen am Meeresufer: auf den Ästen der Bäume aber lauert eine Schlange mit wuchtigem, breitem Kopfe, mit schillernder Farbe, wie das bunte Gemisch von Baumlättern und grellen Lichtreflexen der glänzend grünen Blätter, eine aufserordentlich giftige Schlange, die jeder Insulaner kennt und fürchtet, so dafs er kaum zu bewegen ist, auf Bäume zu klettern; ein unheimlicher Schutz für den Wald, der überdies sich selbst durch seine aufserordentliche Feuchtigkeit gegen Feuer zu sichern vermag. Es ist selten, dafs der Urwald sich in so unmittelbarer Nähe der menschlichen Wohnungen erhalten hat, wie dies auf Oshima und Nafa der Fall ist.

Mit der nördlichsten der Riuikut-Inseln, Yakushima, ist das Ende der Baumfarne erreicht: auf dieser Insel erheben sich höhere Gebirge; bei einem Aufstieg von der Küste hinweg mischen sich dem immergrünen Laubwaldes Baumgattungen bei, die erst in der weiter nördlich gelegenen kühleren Region des winterkahlen Laubwaldes zur vollen Größe sich entfalten; es sind dies die Arten Cryptomeria und Chamaecyparis obtusa, die beiden wichtigsten Nadelholzbäume des Inselreiches, und Zelkova Keaki, der wertvollste Laubbaum Japans, welche drei Holzarten auf Yokushina ihre Südgrenze finden.

Die kühleren Hälfe des subtropischen Waldes mit seinen immergrünen, dunklen, die Sonnenstrahlen grell widerspiegelnden Blättern begreift sich in die geringen Elevationen etwa bis 200 m von ganz Kinsyu, Shikoku und von der Hauptinsel Hondo noch die dem Binnenmeere anliegende Küste: eine Linie, welche Shimonomosaki mit dem Nordende der Kuanto-Ebene verbindet, in welcher Tokio liegt, kennzeichnet die Nordgrenze dieses Florengebietes.

In der Landschaft der immergrünen Eichen und Lorbeerbäume ist die japanische Nation am längsten angesiedelt; hier fand sie Boden und Klima und deren Produkte ihren Bedürfnissen am besten entsprechend. In diesem Gebiete liegt die ganze geschichtliche Vergangenheit: alle Umwälzungen im Staatsleben, die heftigsten Kämpfe

Abb. 32. Alter Kämpferbaum (*Cinnamomum Camphora*) auf Kiushiu.
H. Mayr photogr.

c) Der winterkalte Laubwald.

Schon im Gebiete der immergrünen Laubbäume gibt es Standorte genug, wie nördliche Expositionen, frischerer Boden, Nähe eines Meeres, das durch seine Buchtenbildung dem warmen Strome weniger zugänglich
Abb. 33. Palmwald (*Trachycarpus fortunei*) zur Gewinnung der Palmfaser.
H. Mayr photogr. 1891.

Der Edelkastanienzone (Castanetum)

fallen auf Kiusiu und Shikoku alle Erhebungen zwischen 500 und 1000 m zu; auf der Hauptinsel steigt die Kastanie bis zu etwa 800 m im Süden und 400 m im Norden; von der Insel Hokkaido gehören noch die tiefliegenden, wärmsten Gebiete im Südwesten der Insel hierher bis zu etwa 100 m Erhebung. Diese rasche Abnahme ist vor allem dem Einflusse des von Nordosten her an die Küste anschlagenden, kalten Stromes zuzuschreiben; dazu kommt noch die Nähe des grofsen Festlandes Sibirien, dessen Kälte im Winter häufige Nord- und Nordwestwinde tief ins Land tragen; in der Tat ist für die hohe Sommerwärme die tiefe Wintertemperatur ausschlagend.

In der Kastaniezone ist der Wald Japans ebenfalls schon sehr stark dezimiert; in den Bergen ist er größtenteils bis auf niederes Ge-strüpp, das alle anderen Jahre abgezogen wird, verschwunden; Gras und Bambus nehmen mehr und mehr überhand; nur die abgelegenen Distriktte beherbergen den Wald noch in seiner ursprünglichen, kraftvollen Entfaltung.
Zu den Füßen der Riesen des lockeren Laubwaldes der Keäki, Rofskastanien, Magnolien, Harigiri, Walmüsse, Kadsura, Eichen, Zürgeln, Ahornarten, Eschen, Ulmen, Pappeln sammelt sich ein großes Heer von Schling- und Kletterpflanzen. Sträuchern und Halbbäumen bis zu 15 m Höhe, deren oberste Kronenfläche wiederum die Grenze des astlosen Schaftes der vorgenannten edleren Holzarten bezeichnet; an der Nordgrenze dieser Zone, im südlichen Hokkaido, fehlt bereits die Keäki, die auf der Halbinsel nach den Buchen, freilich nur in geringwertigen Individuen, sich beirmengt; dagegen erwachsen die übrigen oben angeführten Laubhölzer noch auf der nördlichen Insel zu Stämmen, die an Schlankheit und Höhe denen der Hauptinsel wenig nachstehen. Außendend ist dieser Laubwald durch die zahlreichen grobschätrigen Bäume, die Magnolien, Harigiri und die Rofskastanie, von den Eichen Quercus dentata und grossiserata, die mit ihrem massigen Blattabfälle zusammen mit großen saftigen, annuellen Kräutern den Boden rasch bereichern.

Die Momita-Tanne erreicht in der Zone der Kastanie ihre optimale Entfaltung; das Auftreten der Buche bezeichnet die Nähe ihrer Kältegrenze. Sie bildet wenige reine Waldungen, höchstens Gruppen; gegenwärtig stehen meist die ästigen, schlechtschätrigen Individuen isoliert dem Laubwalde beigemengt. Die gewaltigen Dimensionen freilich, die die Momita-Tanne erreicht, nach meinen Messungen bis zu 46 m Höhe, ersetzen etwas, was dem grobfaserigen, ästigen Material an Wert gebricht. Im Innern der Berge gesellt sich zu den Laubwäldern, vielfach dieselben durch reine Bestände verdrängend, die Tsuga Sieboldii; wie ihre nordamerikanischen Verwandten erreicht diese Tsuga ihre volle Entwicklung auf mineralisch kräftigen Böden, in engen Bergtälern, hart an den Gebirgsbächen; von den Subtropen an streicht sie durch den ganzen Laubwald bis zum Auftreten der Buchenwäldern.
Wo die Kastanie bereits an Individuenzahl abnimmt, gesellen sich dem Laubwald bezw. den vorgenannten Nadelhölzern zwei Kiefern bei, die in ihrer Biologie und ihrem Bau den Sektionen Strobos und Cembra nahestehen: *Pinus Korensis* im Zentrum der Berge. z. B. in Kisso, ist eine völlige Cembra, freilich allen übrigen Cembras in ihren Dimensionen überlegen; sie ist nicht der unbedeutende Baum, für den man sie hält, sie erhebt sich in einem prächtigen, zylindrischen, astreinen Schaft bis zu 34 m; solche Dimensionen erreicht die *Pinus parviflora*, die eigentlich zwischen Cembra und Strobos steht, nicht.

Eine weitere Kiefer, die schon an der obersten Kastanienczone erscheint, aber erst innerhalb der Buchenregion am häufigsten auftritt, ist die japanische Weymouthskiefer (*Pinus pentaphylla*): während *Pinus parviflora*, die nach der japanischen Bezeichnung als Mädchenzürbel zu verdienste wäre, auf den höheren Bergen von Shikoku, Kiushiu und Honshiu lebt, erscheint die japanische Weymouthsföhre vom 35. Grad an im nördlichen Hondo und selbst noch im südwestlichen Eso. Von der Buchenregion aus greift diese Kiefer in einzelnen Individuen selbst in den Fichten- und Tannenwald über.

Die Buchenregion, das Fagetum.

Diese Region umfasst in Shikoku und Kiushu einen etwa 1000 m breiten Gürtel, nämlich von 1000—2000 m, wo die erste typische Vertreterin der kühlenden Tannenregion, nämlich die Veitchtanne, erscheint. Im mittleren Japan kann man die Grenze auf 1800 m, im nördlichen auf 1500 m im Durchschnitt feststellen; dort im Norden fehlt die Veitchtanne, aber das Auftreten einer anderen typischen Tanne dieser Zone, der *Abies Mariesii*, kennzeichnet die Grenze. In Hokkaido liegen die Verhältnisse etwas eigenartig: im Südwesten steigt die Buchenregion bis etwa 500 m empor, wo eine dritte typische Tanne der kühlenden Region, die *Abies sachalinensis*, erscheint. An der Küste tragen schon Erhebungen von kaum 100 m, ja kalte Sümpfe sogar schon unmittelbar an der Küste die typischen Tannen oder Fichten der folgenden Zone.

Im mittleren und östlichen Eso fehlt die Rotbuche, Birke tritt an ihre Stelle. In diesem Teile der Insel ist noch am meisten Urwald vorhanden.
Die Waldungen der Alten Welt, Europa und Asien.

d) Die gemässigt-kühle Region der Tannen und Fichten.

das Abietum bzw. Picetum.

In Kinsu ist dieses Waldgebiet gar nicht vertreten: in Shikoku trägt der höchste Berg der Insel, der Ishitzuchiyama, mit 2000 m Erhebung, an seinem Gipfel ein paar hundert Veitchtannen (*Abies Veitchii*): im mittleren Hondo (Hauptinsel) beginnt diese Zone etwa bei 1800 m und reicht bis 2500 m. Im östlichen Eso und auf den Kurilen steigt dieser Wald selbst bis zur Meeresfläche herab.

Auf die hohen Berge beschränkt, mit raschem Wechsel der Standorte und deren Faktoren, kann es nicht wundern, dafs die Fichten- und Taunenwaldungen von Hondo und den Kurilen den mitteleuropäischen, dunkelgrünen Nadelholzwaldben weder in Ausdehnung noch in Höhe und Reinheit der Schäfte, weder in Wachstumsleistung noch im forstlichen Werte gleichkommen.

Daran sind aber keineswegs die Holzarten an sich schuld, sondern vielfach geringwertigere Standorte, der lockerere Stand der Urwaldungen, die häufigen Bodenfeuer, vor allem die heftigen, die Berge hinaufrasenden Süd- oder Nordstürme: in gegen diese geschätzten Berg-
täler oder außerhalb der Sphäre ihrer größten Heftigkeit (Eso und Kurilen) erheben sich in unberührten Waldungen die japanischen Fichten und Tannen zu Dimensionen, wie sie auch ihre mitteleuropäischen Verwandten einstens, im Urwaldzustande, erreichten.

Auf Hondo sind die wichtigeren Holzarten dieser Zone wohl die Tsuga (Tsuga diversifolia) der vorigen Zone und die Lärche (Larix leptolepis); letztere bevölkert mit Vorliebe die rezenten, aus Augitophyren aufgeschütteten Vulkane und fehlt den meisten Urgebirgsstöcken; sie betritt die Insel Eso nicht; auf den Kurilen erscheint eine zweite Lärche (Larix kurilensis).

Eine Fichte (Picea hondoensis) bildet mit ein oder zwei Tannen (Abies Veitschii und Abies Mariesii) Mischwaldungen im mittleren Japan, einstweilen wertvoller durch den Schutz des Bodens gegen Abrutschung und Abwaschung als durch den Nutzen ihres Holzes; die beiden Fichten von Eso (Picea ajanensis und Glehni) sind jedoch zusammen mit der dortigen Tanne (Abies sachalinensis) die wichtigsten Großnutzholzproduzenten dieser Insel wie auch der nördlicher gelegenen Insel Sachalin.

Über den Tannen und Fichten erhebt sich in Zentraljapan ein nur schmaler, auf den Kurilen aber ein 1000 m breiter Gürtel eines Strauchwaldes, welcher

e) die alpine oder kühle Region der Krummhölzer

Alpinetum bezw. Polaretum

Wie die Holzarten, halten mit denselben auch ihre Bewohner, die Insekten und Pilze, gewisse Zonen ein; viele derselben streichen von Europa über Sibirien und die Mongolei nach Japan; der Schaden ist besonders, was die Insekten betrifft, nicht gering. Im Jahre 1887 brachte ich dem damaligen Professor Döbner in Aschaffenburg eine Flasche voll Waldinsekten mit, die ich während meiner ersten Reise in Japan von Ende Januar bis Ende August 1886 gesammelt hatte; Professor Döbner schrieb schon nach wenigen Tagen zurück: „Ich bin überrascht über die große Zahl von mit unseren Käfern identischen Arten“; inzwischen habe ich noch eine größere Zahl identischer

Mayr, Fremdländische Wald- und Parkbäume.

Die Waldungen der Alten Welt, Europa und Asien. 129

Damit habe ich in kurzen Zügen die Heimat der japanischen Holzarten von der tropischen Südspitze des Inselreiches bis zu den nördlichsten polaren Inseln geschildert: so manches, denke ich, hat für die Frage des Anbaues der japanischen Holzarten innerhalb und außerhalb ihrer Heimat Brauchbarkeit. Nichts ist in die Schilderung des japanischen Waldes aufgenommen, was ich nicht selbst beobachtet hätte. Das Material ist gesammelt auf den vielen Kreuz- und Quer-
zügen zu Fuß und im Handwagen, niedergeschrieben an Ruhepunkten im Walde, in einsamen Klöstern, Hütten und Dörfern, die weitab liegen von den großen Verkehrsstraßen. Dank der Unterstützung der Behörden Japans, vorab des mir seit 20 Jahren befreundeten Dr. Yaroku Nakamura, dank der außerordentlichen Höflichkeit und dem Entgegenkommen aller Schichten der Bevölkerung gelang es meinem fortgesetzten Prüfen und Forschen, Japan und sein Volk, seine Berge und seine Wälder so kennen zu lernen, daß ich den Ausspruch wagen darf, daß das vom japanischen Walde entworfene Bild der Wirklichkeit entspricht. Und mögen die Leser hierzu im Geiste aus eigener Phantasie noch an Farbe und Beleuchtung, an Mannigfaltigkeit und Üppigkeit, an würzigen Düften hinzufügen, so viel sie finden; mögen sie im Geiste den Wald beleben mit summenden, singenden, pfeifenden Leben, mit jagdbaren Tieren, wie sie den heimatlichen Wald bewohnen: sie werden immer noch innerhalb der Grenzen der Wirklichkeit verbleiben und dabei nur ergänzen, was nach dieser Richtung hin meiner eigenen Darstellung der Heimat der japanischen Holzarten an Naturreue gebracht.

Der koreanische Wald.

Für eine gründliche Durchforschung des koreanischen Waldes bot sich mir nie eine günstige Gelegenheit: was ich von den koreanischen Waldungen während meiner letzten Reise 1903 zu Gesichte bekam, waren nur Waldreste im mittleren Teile des Landes; aber diese genügten, um zu zeigen, daß Korea keine eigene Waldfora hat, sondern daß das mittlere und südliche Korea in Klima und Vegetation dem benachbarten Japan sich verwandt erwies. Korea wird von einem westlichen Zweige des Kuro Shino, der, vom Süden kommend, vorzugsweise die westliche Küste des Landes bespült, in seinem Klima bestimmt; ebenso entsendet der kalte antarktische Gegenstrom einen westlichen Ausläufer an die koreanische Ostküste. Wenn auch der feuchte Sommermonsun über ganz Korea sehr reichlich Regen ausgießt, der nördliche Monsun in heftigen Stößen kalte Luftmassen bis an die Südspitze des Reiches trägt, so rühmt sich doch Korea des Vorzuges, daß es das lieblichste, gesündeste Klima Ostasiens besitzt. Sicher ist nirgends an der Pacific vom Wendekreis des Krebses nordwärts der Winter angenehmer und für die Gesundheit zuträglicher als in Korea. Der milde koreanische Winter, der Mangel an Kälterückschlägen nach Beginn der Vegetationszeit verraten ihre Wirkung auch in der floristischen Zusammenstellung des Waldes; in seiner Üppigkeit, in seiner Höhen- und Massenentwicklung, welche dem japanischen Walde kaum nachsteht, wenn auch der koreanische Wald sich bis jetzt noch als artenärmer als der japanische erweist.

Das Holz der Föhre ist das wichtigste Brennmaterial; weniger sind es Spaltstücke der krummschäftigen Stämme, welche die Koreaner verbrauchen, als die Seitenäste des Baumes, ähnlich wie dies bei den Chinesen und Japanern auch üblich ist. Pferde und Stiere, die wichtigsten Lasttiere Koreas, bringen das getrocknete, langästige Material in die Hauptstadt.

Im südöstlichen und mittleren Korea ist der ursprüngliche Wald größtenteilsweggeschlagen und die Rotföhre an seine Stelle gesetzt
worden, so dass man Tempelhaine, alte Gärten und Parkanlagen aufsuchen muß, um Reste der ursprünglichen Baumwelt zu entdecken. So kann sich die Hauptstadt Sool (geschrieben auch Sōul) einer prächtigen Parkanlage rühmen, welche dem Besuche nun offen steht, nachdem die im Parke gelegene Residenz vom koreanischen Hofe verlassen wurde, um der traurigen Erinnerung an die Ermordung der letzten koreanischen Königin durch die Japaner zu entfliehen. Ebenso liegt im Süden der Stadt ein Park, der Namshan (Südberg) genannt; auch im benachbarten Pukhan, einem Waldtale zwischen hohen Felsen, liegen zahlreiche kleinere Parkpartien, welche sich nur aus Baumarten des ursprünglichen Waldes bevölkeren. Faßt man alle Arten zusammen, so ergibt sich eine sehr nahe Verwandtschaft der Baumwelt mit jener des mittleren Hondo; das Vorhandensein von Edelkastanien verrät auch die Klima-bezw. Vegetationszone, d. h. jene des wärmeren winterkalten Laubwaldes, der freilich zugunsten der Föhre überall zurückgedrängt wurde. Vor allem sind die Begleitbahnen der Edelkastanien wieder vollzählig vorhanden, nämlich Quercus serrata, glandulifera, variabilis; der wichtigste Laubholzbaum der ganzen Region ist auch in Korea Zelkowa Keaki; aus dem harten Nutzholze fertigen auch die Koreaner ihre wichtigsten Gebrauchsgegenstände, vor allem große Kästen und Kommoden zur Aufbewahrung der Kleider und wertvolleren Gegenstände. Ahorn (Acer pictum), Esche (Fraxinus longipespis), Acanthopanax, Pyrus-Arten waren ebenfalls reichlich im früheren Urwalde vertreten. An sonnigen Hängen findet sich der chinesische Wacholder (Juniperus chinensis) zusammen mit dem japanischen Juniperus rigida, und in den kühleren Regionen des Laubwaldes war auch eine Tanneheimisch, die, wenn auch ohne Früchte, doch mit Sicherheit als die japanische Abies homaloepis erkannt werden konnte. Auch der bis heute noch als heimatlos zu bezeichnende buddhistische Tempelbaum (Gingkyo biloba), mit seinem eigenartigen, mehr an eine Eiche als an einen Nadelbaum erinnernden Aufbau, fehlt in Korea nicht. Auffallend ist, daß Korea, ebenso wie Japan, als ein fruchtbares Land bezeichnet werden muß. Der japanische Fruchtbaum Diospiros kaki ist auch in Korea heimisch, wann auch dort durch Züchtung und Veredlung keine so schönen Fruchtformen erzielt wurden wie in Japan. Die an Strohhämmereinandergeriehten braunen, getrockneten Früchte sind kaum größer als die der wilden Art. Neben Kaki ist die Jujube (Zizyphus Jujuba) noch am häufigsten. In Japan ist dieser Fruchtbaum nur spärlich angebaut; in China dagegen ist er außerordentlich stark verbreitet; Korea steht auch in diesem Punkte zwischen den beiden Ländern. Aus dem Süden des Reiches kommt auf den Fruchtmart von Sool eine Nüsse, täuschend ähnlich der Pekangnüsse (Carya oliverformis) der Amerikaner. Von welchen Bäumen diese Frucht stammt, konnte ich nicht in Erfahrung bringen; niedere, aber sehr weite Strohsäcke sind mit Wal-
nüssen. *Ingnans regia*, gefüllt und beweisen, daß dieser Baum auch zur koreanischen wie zur benachbarten chinesischen Waldflora gehört. In Japan dagegen fehlt zwar der Baum, nicht aber seine Früchte, welche von Europa und Amerika aus eingeführt werden.

Das nördliche Korea ist mit seinen Tälern und Bergen, seinen Flüssen und Bächen, mit seiner dünnen Bevölkerung ein ausgesprochenes Waldland, zu dessen gewinnbringender Ausbeutung den Koreanern der Unternehmungsgeist zu fehlen scheint; wenigstens wetteiferten vor Ausbruch des Krieges Russen und Japaner im Erringen von Koncessions zur Ausnutzung der Waldschätze; wieviel dabei auch Politik mit im Spiele war, läßt sich aus dem Umstande entnehmen, daß die russischen und japanischen Holzarbeiter bei Ausbruch des Krieges sich als verdiente Soldaten entpuppten. Das nördliche Waldgebiet, zwischen zwei Meeren, und in seiner nordöstlichen Fortsetzung dem japanischen Meere entlang gelegen, nähert sich in seinem Klima dem der Insel Eso; dank der Meernähe und der Gebirge sind auch die nordöstlichen Teile von Korea weniger von einem schroffen Temperaturwechsel heimgesucht als die westlich anstoßende chinesische Provinz, die Manschurie, welche in ihrem östlichen Teile gebirgig, aber entwaldet, in dem westlichen Teile eben und entwaldet zugleich, somit den schroffsten Änderungen und Extremen in der Temperatur durch die Natur und die Tätigkeit des Menschen preisgegeben ist.

die Absichten der Russen und Japaner gerichtet. Laubholzhaine von
weniger Frische durchsetzt Juniperus chinensis mit der in Ostasien
außerordentlich weitverbreiteten Biota oder, wie sie die meisten
Reisenden nennen, orientalischen Thuje, der Biota orientalis; von Korea
aus streicht dieser Baum durch ganz China bis nach Turkestan, überall
ursprünglich, mehr aber noch gepflanzt als Schmuck der Gräber und
Tempelhaine.

Die Waldungen von China.

Die Forschungen der letzten Jahrzehnte haben eine so überraschend
große Zahl von Baumarten aus dem chinesischen Reiche aufgestöbert
und der wissenschaftlichen Beschreibung und Benennung zugeführt,
daß man schon heute vollberechtigt ist, den Gedanken anzusprechen,
dafs China von allen Ländern gleicher Klimalage auf der
nördlichen Hemisphäre sicher die reichste subtropische
wie winterkahl)e Laubholz-Flora beherbergt. Wenn wir da-
her nach fremdländischen Bäumen zur Bereicherung der floristischen
und forstlichen Schätze Europas ausblicken, so verdient, nachdem
amerikanische, japanische und sibirische Baumarten bereits in Europa
Eingang gefunden haben und dort wenigstens stellenweise einer systematischen,
ein sicheres Resultat versprechenden Untersuchung im Walde unterworfen werden, zunächst nun China unser vollstes Interesse.
Es dürfte wohl keinem Zweifel unterliegen, daß aus der chinesischen
Baumflora noch eine große Zahl von Schmuckbäumen und vielleicht
auch einige hochwichtige Waldbäume für Europa sich ergeben werden:
Wer aber China näher kennt, wird sich dem Gedanken nicht ver-
schließen können, daß die mehrtausendjährige, zumeist vernichtende
Beschäftigung des Menschen mit dem Walde wohl manche Hölzer aus
dem ursprünglichen Heimatlande verdrängt, ja manche wohl bereits
ganz ausgerottet hat. Welches Schicksal dem chinesischen Walde und
seinen Baumarten und mit dem Walde dem ganzen Lande unter der
ausschließlichen Herrschaft des Pfuges der in erdrückender Überzahl
Ackerbau treibenden Chinesen zuteil wurde, das mögen die nach-
folgenden Schilderungen der Heimat der chinesischen Holzarten be-
weisen. Schilderungen, für welche neben fremden Forschungen in erster
Linie eigene Beobachtungen während dreier Reisen in China, im süd-
lchen, mittleren und nördlichen Teile des Reiches, als grundlegendes
Material zur Verfügung standen.

Ist der Frühling auf seinem Zug, den er im Februar im Süden
des Reiches beginnt, anfangs Mai im nördlichsten Staate, in der Man-
dschurei, eingezogen, so erscheint sowohl dem im Süden wie dem im
Norden des Reiches auf einem erhöhten Punkte stehenden Wanderer
die ganze übersichtbare Landschaft mit Bäumen wohlbestanden; er
Die Waldungen der Alten Welt, Europa und Asien.

erhielten und pflegten den Wald, sie benutzten und begründeten ihn wieder, ganz ähnlich wie auch in Europa im Mittelalter die Klöster die größten Waldbesitzer und Waldbegründer waren; und um die Parallele noch zu vervollständigen, sind diese Klosterwaldungen in Japan wie in Deutschland vom Staat in Besitz genommen worden. In China sind Klosterwaldungen die letzten größeren Bauminseln in einer wald- und schattenlosen, dem Broterwerbe dienenden oder durch Graswuchs verdorbenen Landschaft.

Auf diesem Wege geht aus allen für Brennholzzwecke durchlöcherten oder kahlgeschlagenen Waldungen in China sowohl wie im übrigen Ostasien, im Bereich der Bambusse, eine Gras- oder Bambussteppe hervor. Der Süden von China erhält auch während des Winters reichlichere Niederschläge als der Norden: im Süden haben sich bis
heute reichlichere Spuren von Wäldern erhalten; zumeist freilich sind die zerstreuten, niedrigen, oft verstümmelten Rotföhren die einzigen Waldüberbleibsel auf dem mehr und mehr vermagenden, der Löfsdecke des Nordens entbehrenden Boden.

Woraus besteht die gelbe Erde? woher stammt sie? sind die Fragen, die sich uns zunächst aufdrängen. Die gelbe Erde oder der Löfs hat größte Ähnlichkeit mit dem Lehm in Farbe und chemischer Zusammensetzung, nicht aber in seinen physikalischen Eigenschaften; Lehm ist wasserundurchlässig, Löfs dagegen, von kleinkrümeliger Struktur und äußerst porös, saugt die Feuchtigkeit auf wie ein Schwamm, ohne dabei, wie Lehm, zu einem Brei zu zeröffsen; niemals, sagt Thiessen in seiner vorzüglichen Geophysik von China, zeigt der eigentliche Löfs eine Schichtung, nur eine bankartige Gliederung, wenn in gewissen Abständen feste Mergelknollen (bei uns als Löfs- kindeln, bei den Chinesen als Steinigungwer bezeichnet) sich ausbreiten, welche in horizontalen Lagen der Abwitterung und Auswaschung einen Widerstand entgegenstellen; so sind die Terrassenlandschaften von Südschansi entstanden. Eine weitere Eigenschaft des Löffes ist seine Neigung zur Zerkleinerung in senkrechten Wänden; niemals tritt Ab- böschung wie bei anderen lockeren, abschleimbaren Böden auf. Der Löfs läßt sich leicht zu äußerst feinem Mehl zerreifen und wird in größten Massen zum Spiel der Winde und Wasser, während er auf den Sträßen durch den Druck der Räder zu echten, zähflüssigem Lehm sich verwandelt; er enthält nur Reste von Landpflanzen und Landtieren.

Thiessen, der aus den Forschungsergebnissen englischer und französischer Reisenden und insbesondere aus dem hochberühmten
Werke unseres Landsmannes, des Freiherrn v. Richthofen, über China schöpft, sagt, daß eine Karte, welche die Grenzen des mit Löß bedeckten Teiles von China darstellen würde, fast das ganze nördliche China als zusammenhängende, ungeheure Lößlandschaft wiedergeben würde; Löß breitet sich über alle geologischen Formationen, nur die höchsten Spitzen der Berge freilassend; v. Richthofen sagt: „Das ganze Bodenrelief ist durch die Lößdecke nivelliert; der durch Staubstürme aufgewühlte Steppenboden hat Täler und Höhen unter seinem gelblichen Leichentuche begraben.“ Als „Leichentuch“ darf

man wohl nicht die gelbe Erde bezeichnen, die, stetig neues Leben hervorbringend, Millionen von Lebewesen Nahrung spendet. Auch die Theorie, daß Stürme den Steppenboden aufwühlen, forttragen und anderswo absetzen, hat wohl viele schwache Punkte. Richtig ist sicher, daß die enormen Lößmassen durch Stürme aus der nördlichen und nordwestlichen Mongolei ostwärts nach China getragen wurden; aber nicht aus einer Steppe, einer begrassten Fläche, sondern aus einer vegetationslosen Lößwüste kam die Erde. Aus einer Steppe, auf welcher die Graspflanzen mit ihren verschlungene, verdämmenden Wurzeln die Bodenteile wie mit einem dichten Geflechte

zurückhalten, kann selbst der heftigste Orkan keinen Boden aufgreifen und emporwirbeln. Das zeigt deutlich die amerikanische Steppe, aus der die Stürme vom Boden erst seit dem Beginn der Besiedlung der Steppe Staubwolken emporreifen. Nur so weit, als auf brachem Ackerlande, auf Wegen und Straßen die Steppenpflanzen fortwährend vernichtet werden, ist der Boden ungebunden und für den Wind beweglich. Im Ursprungslande des Loxses aber, in der nördlichen und nordwestlichen Mongolei, in der heutigen Wüste Gobi, bestand Wald zur Zeit, als das sibirische Tertiärmeer noch gegen die nördlichen Landmassen der Mongolei schlug; durch stetiges Zurückweichen des Meeres nach Norden hin, durch Freigabe der Landmassen, nahm die Feuchtigkeitsmenge im Zentrum der Mongolei stetig ab; der Wald ging allmählich in Steppe und die Steppe in vegetationslose Wüste über. Nun erst konnten trockene Stürme, die ebenfalls in dieser Zeit erst entstanden, einsetzen und die großartigen Bodenverwehungen hervorrufen. Waren es in früheren Epochen natürliche Faktoren, welche dem Löffboden das Bindemittel, die Vegetationsdecke, entzogen, so daß er aufgegriffen und entführt werden konnte, so ist es in der Gegenwart, im heutigen Nordchina, die Tätigkeit des Menschen, welche das Bindemittel, den Wald, Sträucher und Gräser, fortgesetzt beseitigt und so jene Faktoren auslöst, welche eine Bewegung der gelben Erde durch Wind und Wasser nach sich ziehen müssen.

Welche Mengen des vorzüglichen Ackerbodens in Form von Fluglöhs von den Staustürmen ins Meer hinausgetragen und so dem Lande
dauernd genommen wird, entzieht sich aller Berechnung: viel größer ist sicher die Bodenmenge, welche die Flüsse ins Meer tragen; was aber die Flüsse an Löss und Schutt mit sich führen, das war einstens im Innern des Landes nutzbringend gebunden, solange der Wald von den höchsten Bergen bis zum Gelben Meere reichte. Es ist eine ganz natürliche Erscheinung, daß während des sommerlichen Regenmonsuns die Flüsse steigen; aber daß sie regelmäßig und plötzlich zu Höhen anschwellen, welche Angst und Schrecken bei Millionen von Uferbewohnern verbreiten, daß sie mit Ackerländeren, mit Dörfern und Städten besäte Landesteile überfluten und, unbrauchbar für die Schiffahrt, dahinrasen, hier Land abtragend, dort Schotter und Schlick anfüllend, daß sie während der winterlichen Trockenzeit, mit Ausnahme der größten Ströme, zu unscheinbaren Wasserfäden zusammenschrumpfen, diese äußersten, regelmäßig wiederkehrenden Extreme hat die Tätigkeit des Menschen fertig gebracht durch Entwaldung der Ebenen und Berge. Die Wassermengen, die von den entwaldeten Gebirgen herabeilen, und zu denen sich die oberflächlich von Wegen, Straßcn und vom nackten Ackerlande abliefsenden Wasser hinzu­gesellen, stauen den Jangtze bei Hankau auf 13—15 m über sein winterliches Niveau an; gleichzeitig erreicht der Flufs eine Breite von 2 km; nach jedem Hochwasser ändern sich die Tiefenverhältnisse des Stromes, ändern die Dampfschiffe ihren Kurs. Ständig wechseln auch die Uferkonturen, die, vom Flufs unterwaschen, in die schlammigen Fluten stürzen; als die königlichen Prinzen Anfang März 1903 den Strom hinauf­führen, hatten Hochwasser der vorausgegangenen Regenperiode bei Chinkiang eine auf mehrere Kilometer lange unterwaschene, mit einem großen Dorfe und allem zugehörigen Gelände bezeichnete Ufer­strecke abgerissen; unmittelbar bei Nanking war kurz vor dem Besuche dieser Stadt eine mit schweren Steinquadern erbaute Quaimauer mit allen Gebäuden und einer Bodenfläche von 1 ha in den Flufs gesunken, wobei 200 Chinesen den Tod fanden; mißt man heute die Stelle, so stehen über der Einsenkung 40 Fufs Wasser; auf der ganzen Fahrt hinauf bis zum Mittellauf des Flusses wechseln seichte Stellen, über welche die Schiffe nicht mehr hinwegkommen, mit solchen von 60 bis 100 Fufs Tiefe ab.

Das ist aber immer noch der gutmütige Jangtze, die Pulsader des chinesischen Reiches; wie ganz anders wütet sein nördlicher Bruder, der Hwangho! Die Verheerungen, die dieser Riesenstrom mit seinen gelben Schlammfluten verschuldet, spotten aller Beschreibung, aller Vorstellung. Das Gebiet, das dieser Flufs durchheilt, war zuerst von den Chinesen okkupiert; seine Ebenen, seine Berge wurden zuerst entwaldet; er ist seit Jahrtausenden der Schrecken, die Geißsel von Nord­china, wegen seiner wechselnden Wassermassen zur Schiffahrt unbrauchbar. Die ersten, historisch beglaubigten Nachrichten von einer fürchter­
lichen Überschwemmung datieren aus der Regierung des Kaisers Shun. 2500 vor Christi Geburt; sie wurde mit der Noachischen Sintflut in Zusammenhang gebracht: durch von den Bergen herabgebrachte Ge-schiebe wurde der Fluß mehrmals zum Wechsel seines Laufes ge-zwungen; so wurde 1851—1853 die Mündung des Stromes volle 450 km nordwärts verlegt; 1886 versuchte der Strom wieder südwärts zu dringen, überschwemmte 50 000 qkm des am dichtesten bevölkerten, am besten bebauten Landes: Tausende von Ortschaften und Städten wurden überflutet, und nach chinesischen Berichten fanden sieben Millionen, nach sicher verbürgten Nachrichten mindestens zwei Millio- nen Menschen den Tod.

Wie aber äußern sich die Folgen der Entwaldung im Gebirge, wo das grösste Material von den kahlen Bergen heruntergewaschen und in nächster Nähe wieder abgelagert wird?

Die vierzehntägige Reitour der königlichen Prinzen ins höchste Gebirge von Nordchina, den Wutaischan, bot herrliche Bilder zum Studium der Folgen einer Bodenentblösung im grössten Umfange. Stundenlang bewegte sich der Ritt auf Sand und Lößsboden, der keiner landwirtschaftlichen Benützung diente; in Kilometerbreite zog sich
Diese Wüste ohne alle Vegetation hin; da kam mit einem Mal ein schmaler, klarer Wasserfaden, der verriet, daß sich die Reisenden im Überschwemmungstale eines Flusses befanden: das Bächlein, das zur Winterzeit überall durchrissen werden konnte, versank hier ganz im Sande; aber zur Regenzeit schwillt es zu einem Strome an, der das ganze Tal mit seinen trüben Wassern erfüllt.

Abb. 37. Zur Terrassenkultur entwaldete Berge in Nordchina; im Vordergrunde zur Brennholzgewinnung verstümmelte Pappeln.
Prinz Rupprecht von Bayern photogr. 1903.

Mayr, Fremdländische Wald- und Parkbäume.

Mit Trauer im Herzen verläßt man das Stückchen unverdorbener Natur, um wieder hinauszutreten in die von Menschen verbrochene Wildnis von Gießbächen, Schutthalden, Felstürzen, hinaus in die kahle Landschaft oder in eine endlos öde, Berg und Tal gleichmäßig überziehende Gras- und Struempfprairie. Auf unbestimmte Zeit hinaus wirken die zerrötenden Folgen der Entwaldung der chinesischen Berge noch fort; nirgends in China regt sich das Bestreben, durch Wieder-

Dem Beispiel einer gelungenen Wiederbewaldung mit allen Segmenten für Berge und Tiefeland und dem Gewinne auf volkswirtschaftlichem Gebiete werden sich die Chinesen nicht verschließen; denn auch dort ist mit dem Kriege eine neue Ära, die Morgenröte einer neuen Kultur angebrochen.

In keinem Lande der Erde ist es so schwierig wie in China, den ursprünglichen von Menschen unberührten Wald zu rekonstruieren, wie dies ja für die Feststellung des natürlichen Verbreitungsgebietes der Holzarz und damit für die Kenntnis der Biologie, d. h. der waldbaulichen Eigenschaften der Holzarten und der Systematik derselben von größter Wichtigkeit ist. Ohne diese Kenntnis ist es unmöglich, die Vegetationszonen zu bilden, ohne diese fehlt für Kultur und Erziehung einheimischer wie fremder Holzarten die naturgesetzliche Grundlage.

Der Kuenlun übertrifft alles, was in Europa an Gebirgen bekannt ist, durch seine Längserstreckung. Andere Gebirgszüge Chinas sind von so gewaltiger Ausdehnung, daß Europas Hochgebirgsländer, wie die Schweiz, ein paar hundertmal in ihnen Platz fänden; große Gebirgszüge, nebeneinander parallel laufend, scharen sich, bald von Südwesten nach Nordosten, bald von Norden nach Süden streichend, zu Systemen zusammen, als hätte das Antlitz der Erde beim Erkalten und Zusammenschrumpfen in tiefe Falten sich gelegt. v. Richthofen vergleicht solche Gebirgstalten mit den nebeneinanderliegenden Stäben eines Gitterrostes und nennt ein derartiges System wie z. B. solche im Südosten und im Südwesten des Reiches ausgebildet sind, Gebirgsroste. Verlaufen solche Gebirgszüge parallel dem Meere, so schließen sie eine größere Entwicklung von Flüssen direkt nach dem Meere hin an; parallele breite Täler sind äußerst fruchtbar; parallel laufende, schmale Täler, von sterilien Schneebergen eingefaßt, durchströmen im Südwesten des Reiches der Mekong, der Irawaddy; ja der Jangtze schließt sich diesen südwests sichenden Strömen auf eine beträchtliche
Länge an, um dann plötzlich zwischen Yunnan und Szchuen westwärts abzubiegen und nach vielen Stromschnellen und Katarakten bei Ichang in der Provinz Hupeh, tansend Kilometer oberhalb seiner Mündung ins gelbe Meer, das Hochgebirgsland zu verlassen und in ruhigem Laufe ins chinesische Hügelland überzutreten. Während der Jangtze Szchuen durchströmt, heimst er die größten Wassermassen von den zahlreichen Flüssen dieser Provinz ein.

So spärlich die Reste auch sind, welche das heutige China als Nachkommenschaft des ursprünglichen Waldes noch besitzt, soviel läßt sich doch entnehmen, daß es einstens bis ins innere Land der Mongolei und bis an die Felsenmauer von Thibet bewaldet war, daß dieser Wald in seiner Zusammenstellung und Verwandtschaft dem Walde am nächsten stand, welchem er auch in seinen klimatischen Verhältnissen am meisten gleich, das ist der Wald von Ostamerika. Würde daher in China die Aufforstung seiner kahlen Gebirge und Ebenen ins Bereich der gegen-
wärtigen Möglichkeiten gehören, man könnte keinen besseren Rat erteilen, als jene Holzarten zu benützen, welche es bereits besitzt, dann aber bei der Umschau nach fremden Holzarten das erste Augenmerk auf Holzarten des östlichen Amerika zu richten. In zweiter Linie erst können die Holzarten mehr insularen Waldgebiete, wie der pazifischen Küste der Neuen Welt (Westamerika) und der Alten Welt (Japan) in Frage kommen. Zu diesen mögen dann auch europäische Holzarten sich gesellen, wiewohl diese vor verwandten Holzarten anderer Erdteile nichts voraus haben als eine mehrhundertjährige Benutzung und als Folge hiervon eine größere Reklame.

Isohyle, ist die Waldgrenze erreicht: die Wärmesumme ist für den Wald zu gering geworden, nur niedrige, isoliert stehende Bäume, wie Birken, Föhren, Fichten und Lärchen, oder sträucherförmi ge Holzarten finden noch ihr Fortkommen: in seinem größten Verlaufe bewegt sich die sibirische Bahn in diesem Grenzgebiete. In Ostsibirien schliesst an die Baumreste sich eine eigene Krummholzflora, die kriechende Zährbel, als Vertreterin der Polarzone, der bis zur Ebene herabgewanderten alpinen Region an.

Die Vegetationszonen des chinesischen Waldes.

Durch Reisende in China, welche auf ihren Reisen die Gelegenheit zum Sammeln naturwissenschaftlicher Schätze benutzten, wie Augustine Henry, Fortune, Bunge, Hance, Bretschneider, Hancock, Maries, Farges, durch katholische Missionare wie P. Giraldi Farrie, David und andere sind zahlreiche neue Baumarten aufgefunden worden. Mit Hilfe dieser und meiner eigenen Beobachtungen läst sich nachweisen, dafs in China sowohl horizontal, d. h. von Süden nach Norden in einer Erhebung von etwa bis zu 200 m über dem Meere als vertikal, d. h. vom Meeresniveau bis zu den höheren Bergregionen, alle Vegetationszonen von den tropischen bis zu den letzten
Vertretern der Fichte, Lärche und Krummhölzer vorhanden sind.

Es ist jedoch tief zu bedauern, daß die Benennung der Arten zunächst, wie es bei den europäischen und amerikanischen Baumflora der Fall war und zum Teil heute noch ist, mit einer Unsicherheit und Konfusion beginnt, wie es eben nicht zu vermeiden ist, wenn nach unvollkommenen, vertrockneten Bruchstücken der Bäume, nach Herbariumsmaterial fernab von der Heimat der Holzart, ohne Kenntnis von der ganzen Entwicklung eines Baumes von seiner Jugend bis zum Alter, von seinem biologischen und geographischen Verhalten, über den Artcharakter des Baumes geurteilt wird. Dazu kommt ganz allgemein die vage, unklare Auffassung des Begriffes Art und Varietät, worüber in letzter Linie nur durch ein langjähriges Experiment im fremden Lande oder durch Studium im Heimatlande der Holzart entschieden werden kann. So kann die gegenwärtige Systematik der chinesischen Holzarten nur als eine vorläufige betrachtet werden, welche noch zahlreichen Änderungen unterworfen werden muß, bis sie die Bezeichnung „naturwissenschaftlich korrekt“, das Alpha und Omega jeder Systematik von Naturobjekten, beanspruchen kann.

a) Die tropische Vegetationszone.

An der Küste streichen die letzten Glieder des tropischen Waldes, z. B. die Mangrove (Rhizophora Mangle), bis Swatana, das genau unter dem Wendekreis des Krebses liegt. In der Aquatorialregion zu einem mächtigen Baum emporstrebend, sinkt die Mangrove bei Swatana zum Krummhölzer herab, zu einem immergrünen Strauch mit dunkeln, im Sonnenlicht lebhaft glänzenden Blättern, beladen mit Früchten, deren Samen noch an der Pflanze zu einer langen, grünen Wurzel auskeimen. Damals (25. April 1887) fielen gerade die Wurzeln mit den Keimknospen ab, so daß die Früchte am Baume verblieben, die scharfen, spitzen Wurzeln aber in der Schlammpfütze stecken blieben; die Pflanze vermehrte sich somit eigentlich nicht durch natürliche Aussaat, sondern durch natürliche Auspflanzung. Die rote Föhre, Pinus sinensis, greift noch mit ihren südlichsten Ausläufern in dieses Gebiet über, um auf geringerem Boden, besonders sandigen Ausformungen, die anspruchszerollen, typischen Holzarten der Zone zu vertreten. Es erscheint überraschend, daß an der chinesischen Küste die tropische Zone durch den schwarzen Golfstrom (Kuro Siwo) nicht noch einige Breitengrade weiter nach Norden, wenigstens in der Nähe der Küste vorgeschoben wird, wie dies auf Südformosa und den südlichen Riu-Kiu-Inseln der Fall ist. Allein an der chinesischen Küste dringt von Nordosten her der kalte resp. in dieser Breite kühle Gegenstrom zwischen Formosa und dem Festlande bis in die Nähe von Hongkong vor; bei Swatana hat sich seine Geschwindigkeit allerdings auf 1—1 km pro Stunde
herabgemindert. Die Nutzholzbäume der indo-malayischen Tropenflora, wie Bambusse, *Diospyros* (Kokutan), *Pterocarpus* (Shitan) und viele andere, sowie die Kokospalme, die Banane u. a. finden hier ihre Nordgrenze.

b) Die subtropische Waldzone der immergrünen Farne und der immergrünen Eichen.

Vom Wendekreis des Krebses nordwärts bis zum Kuenlun reicht diese Zone. Immer mehr zeigt sich, daß kein Land der nördlichen Hemisphere eine reichere subtropische Baumflora besitzt als China, wo freilich auch für die Entwicklung einer solchen Flora wie nirgendwo nördlich vom Äquator eine nötige Flächenraum und das nötige Klima gegeben sind. In China umfaßt der immergrüne Laubwald drei Viertel des am dichtesten bevölkerten und am besten bebauten Teiles des Landes. Im Süden des Reiches steigt diese Zone noch bis 1000 m. in den wärmsten Teilen durch zahlreiche Baumfarne charakterisiert: an der südlichen Abdachung des Kuenlun erreicht sie schon bei 200—300 m ihre Grenzen.

Immergrüne Eichen, welche die kühleren Hälften des immergrünen Laubwaldes kennzeichnen, zeigen deutlich, daß die chinesische Flora aus indischem, malaiischem, japanischen und zahlreichen autochthonen Holzarten sich zusammensetzt: neben *Quercus semecarpifolia* wachsen *Q. glauca*, *thalassica*; neben *Pasania cuspidata* und *P. formosana* auch *P. brevicaudata*, eine chinesische Art.

Dennoch scheint es, als ob unter all den immergrünen Bäumen, mit Ausnahme des Kampferbaumes, keiner wäre, dem als Nutz- oder Schmuckbaum für Südeuropa einige Bedeutung zuzuwenden wäre. Vielleicht ist unter den immergrünen Buxus-, Magnolia-, Ilex-, Tern-
strömia-, Lagerströmia-, Olea-, Camellia-Arten noch ein Nutz- oder Schmuckbaum von hervorragendem Werte verborgen.

In den Subtropen Chinas haben sich, wie in Nordamerika und Japan, einige Baumarten mit ausgesprochen vorweltlichem Habitus erhalten; die Cryptomeria japonica ist in den meisten mittleren Provinzen des Reiches nachgewiesen: Cunninghamia sinensis ist im Südosten noch heute ziemlich häufig; am Wege zum Kloster des Berges Kushan bei Futschan, auf den Bergen am Yungfu, einem Nebenflusse des Min, fand ich pfeilgerade Stämme dieses durch eine weiche, gelbrote Rinde und außerordentlich weiches und leichtes Holz ausgezeichneten Baumes. Er erinnert nicht an eine Tanne, sondern an eine Araucaria, besonders A. brasiliensis. Auch die im chinesischen Reiche allein heimische Keteleeriagattung, z. B. K. Fortunici am Berge Kushan, erinnert nur in den aufrechten Zapfen an die Tanne, im übrigen aber an hochaufgeschossene Torreyaarten, welche ebenfalls in China wohlbekannt sind. Am Yungfu- und Minflusse stehen im sumpfigen Ufer zahlreich Glyptostrobus heterophylla, die chinesischen Sumpfzypressen; vom Boote aus erschienen sie zuerst wie Kryptomerien; was von diesen Sumpfzypressen in der Nähe der Küste vorhanden ist, verdient kaum den Namen Baum, denn sie sind zur Gewinnung von Bremholz verstümmelt; sicher aber wachsen die Glyptostroben, wenn sie unbelästigt bleiben, zu Höhen auf wie das amerikanische nahverwandte Taxodium distichum, die amerikanische Sumpfzypresse. Auf schlechterem Boden, besonders den granitischen Kiesen der zahllosen Berge innerhalb dieser Zone, fehlt die chinesische Rotföhre (Pinus sinensis) nicht; wie ihre japanische Schwester P. densiflora, wird auch sie schon als junge Pflanze gestümmelt, jedoch so, daß ein paar Seitenzweige bleiben, die sich in die Höhe richten, bis sie abermals abgeschlagen werden; so entsteht eine Art Niederwald, wie ich dies für die japanische und koreanische Waldflora bereits beschrieben habe.

e) Die Region des winterkalten Laubwaldes.

Da im chinesischen Walde die für die wärmere und kühler Hälte dieser Zone typischen Holzarten, nämlich Edelkastanien und Rotbuchen, vertreten sind, so ist die Abgrenzung dieser beiden Gebiete wie der des gesamten winterkalten Laubwaldes nicht schwierig. Nördlich vom Kuenlun und an der Küste von Shantung nordwärts bis zum Rande der äußeren Mangolei und bis in die Mandschurei und das Amurgebiet hinein herrscht der Laubwald vor. Strenge Winter (—15 bis —25°), lang andauernde Kälte und Schneefälle, trockene Witterung sind die Signatur des Winters, auf den ein später Frühling folgt, der frei ist von Kälterückschlägen, wie sie im europäischen Waldgebiete so verderblich sind. Im mittleren und südlichen China liegt diese Gewächszone bei höheren Elevationen; es fehlen aber genügende
Die Waldungen der Alten Welt, Europa und Asien.

Angaben, um zahlenmäßig dieses feststellen zu können; für die Erkenntnis, ob und wo die Holzarten dieser Region in Europa anhängig sein werden, ist auch die Angabe der Elevation und des Breitengrades ganz gleichgültig; danach kann niemand das Klima beurteilen; es genügt zu wissen, ob die betreffende Holzart in Begleitung der Edelkastanie oder der Rotbuche wächst, um ihre Ansprüche an das Klima genügend genau zu kennen.

ringend; den Boden deckten im Lichtholzbestand 65 Rhododendron-Arten, zahlreiche Spieren, Rosen, Weißdorne, Pfaffenkäppchen und andere Sträucher und Halbbäume; aus dieser unerschöpflich scheinen-
den Fundgrube von Schmuckpflanzen für Garten und Park zu schöpfen, haben erst in jüngster Zeit Sammler und Reisende begonnen. Auf allen sandigen oder kiesigen Böden treten auch heute noch Föhren als Stellvertreterinnen auf; auf besseren Boden finden sich zwischen Laubbäumen Zypressen, Zürbelkiefern (Pinus Armandii und Koreensis), Libocedrus macrolepis, Eiben, bammartige Wacholder (Jun. chinensis); letzterer ist gegenwärtig zusammen mit Bitoa orientalis als Tempel- und Grabstättenbaum überaus beliebt; sodann Nuszweigen, Kopfeiben. Das Auftreten von Tannen (Abies firma [?]), von Goldlärchen (Pseudolarix Fortunei), endlich von Fichtenarten leitet über zu der im Süden ober-
halt, im Norden nördlich vom winterkalten Laubwald gelegenen

d) Region der Fichten, Tannen und Lärchen.

Von den Fichten ist die mandschurische P. Ajunensis zugleich eine japanische, soweit die Inseln Eso, Sachalin und die Kurilen in Frage kommen; P. bicolor konnte ich im Wutaigebirge nachweisen; eine neue Fichte, für deren Studium sich die wichtigsten Merkmale in einem mit Fichten erfüllten Waldtale feststellen ließen, und welche ich in einigen lebenden Exemplaren auch nach Grafrath verbrachte, habe ich Picea Mastersii benannt. Franchet beschrieb nicht weniger als vier neue chinesische Fichten, welche über ganz China, wo immer die Berge hoch genug sind, um eben in die Fichtenzone hinein-
zuragen, verteilt sind. Zu diesen kommt als achte chinesische Fichte P. Schrenkiana im Tienshan. Teils im Bereich des vorhin genannten Laubwaldes, teils dem eigentlichen Nadelwald gehören die chinesi-
schen Hemlocks - Tannen oder Tsugen an, von denen dumosa aus dem Himalaja, Siboldii aus Japan über Korea in den chinesischen Wald übergreift. Tsuga chinensis, yunnanensis sind, im Falle sich die Aufstellungen als richtig erweisen, rein chinesische Arten. Von Tannen
könnte ich trotz eifrigsten Spähens im Wutai- und Nankou-Gebirge nichts entdecken; die japanische Veitchii (wenn es nicht Sachalinensis ist) soll noch in der Mandschurei vorkommen. Andere Arten be-
schreibt Franchet. Zahlreicher als in irgendeinem anderen Wald-
gebiete mit entsprechend kühler Klimalage sind Lärchen vorhanden; es ist bis jetzt keine bekannt geworden, die in einer wärmeren Vege-
tationszone, als sie durch Buchen und durch Fichten gekennzeichnet wird, vorkäme. Wo Eichen wachsen, fehlen auch überall in China die Lärchen. Larix dolarica reicht in die Mandschurei herein; Larix
Griffithii aus dem Himalaya wurde bis in die Provinz Shensi verfolgt; ob daher *Larix chinensis* in dem zwischen diesem Gebiete liegenden Schichten wirklich eine neue Spezies ist, können wiederum nur vergleichende Studien aller Eigentümlichkeiten des lebenden Baumes in der Heimat der Holzart entscheiden; *Larix sibirica* wird aus der Mandschurei und Mongolei gemeldet. Es dürfte in beiden Fällen sich um Verwechslungen einerseits mit der *dahurica*, andererseits mit der von mir im Wutai aufgefundenen *Larix Prinzipis Rupprechtii* handeln, und selbst für Tibet wird eine eigene Lärche, *Larix thibetica*, erwähnt. Alle vorhergenannten Holzarten kommen, soweit die heutige Grenzung reicht, in reinen Beständen vor; auch die Lärchen sind hiervon nicht ausgenommen, alte Lärchenbestände sind aber stets locker, wie es eben das kühle Klima der Waldgrenze, welche in der Regel allein von Lärchen gebildet wird, mit sich bringt; wenn dort noch eine andere Holzart sich beigesellt, so ist es eine niedrige, isoliert stehende Fichte. Damit ist auch für den chinesischen Wald die

e) Region der Krummhölzer.

Die Waldgrenze, erreicht: auch Laubhölzer, strauchförmig wie Erlen, Birken, Weiden, Sorbus-Arten, gesellen sich dem allmählich auflösenden Walde bei und überkleiden schließlich nach obenhin als letztes, sogenanntes kriechendes Holzgewächs die höchsten Berge. Für die Mandschurei und Teile des nördöstlichen Sibiriens ist für diese Region eine kriechende typische Föhre vorhanden, die bereits für Japan genannte *P. pumila*, die kriechende Zärbel.

Die Waldungen des Himalaya.

Die Waldungen des Himalaya sind, verglichen mit jenen der nördlicher gelegenen Gebirge und Ebenen, ein pflanzengeographisches Problem dadurch, daß die kühlsere und kühlsste Waldregion nur noch Bruchstücke einer winterkahlen Baumflora beherrscht, daß vielmehr die immergrünen Baumarten, insbesondere immergrüne Eichen der Subtropen das ganze Klimagebiet der winterkahlen Bäume, das Castanetum und Fagetum, durchsetzen, ja sogar noch in die Zone der Fichten und Tannen sich eindrängen. Es scheint auf den ersten Blick paradox, daß Fichten und Tannen mit immergrünen Eichen in einem und demselben Walde sich zusammenschließen zu gegenseitiger Förderung, indem zwischen den lichtgestellten Fichten und Tannen mit Vorliebe immergrüne, in der Jugend stachelblättige Eichen als ein schützendes Unterholz sich einstellen, das schließlich sogar hauptständig werden kann. Es scheint gegen alle Erfahrungen und gegen alles Wissen zu sprechen, daß die Fichten und Tannen des Himalaya, aus der obersten Region, unfremd dem ewigen Schnee, gesammelt, nur in den wärmsten Teilen
des westlichen und im südlichen Europa zu gedeihen vermögen, da doch Hochgebirgs- pflanzen aus Hochgebirgsklima, nach europäischen Be- griffen wenigstens, vorliegen. Das Wunderbare, das dieser Erscheinung auf den ersten Blick anklebt, verliert sich, wenn man das Hochgebirgsklima der Südwestseite des Himalaya einem näheren Studium unterwirft!

Alle Süd- und Südwesthänge des Himalaya, dem vollsten Anprall des mit Feuchtigkeit gesättigten Sommer- oder Regenmonsuns ausgesetzt, sind mit außerordentlich großen Niederschlagsmengen und großer Luftfeuchtigkeit während der Hauptvegetationszeit gesegnet. Während der vier Monate Mai, Juni, Juli, August fallen bei 2220 m Erhebung im östlichen Himalaya 550 mm Niederschlag; die warme Luft mit 93% relativer Feuchtigkeit ist nahe an dem Sättigungspunkte. Im westlichen Himalaya fallen bei gleicher Elevation während gleicher Zeit volle 1080 mm bei 95% relativer Feuchtigkeit; die Erwärmung während des Sommers ist bedeutend geringer, als sie dem Breitengrade und der Elevation entsprechen sollte, denn Wolken- und Regenbildungen halten die Sonnenstrahlen vor einer allzu intensiven Durchwärmmung der Bodenoberfläche zurück. Wenn auch Messungen fehlen, so wissen alle Forstleute im Gebirge, ja jeder auch nur oberflächlich beobachtende Reisende, daß die inneren, d. h. die näher dem Rückgrat, dem Hauptstock des Himalaya gelegenen Täler, welche von Nordwesten nach Südosten streichen, wiederum trockner sind. Die vorliegenden Berge entziehen dem aufsteigenden Winde einen Teil seiner Feuchtigkeit: der Wind senkt sich wieder nach Überschreiten eines solchen Höhenzuges talabwärts, wird wärmer und relativ trockner. Die seltenen Nieder- schläge bedingen eine größere Wärme durch die Sonne. Auch während der Winterzeit wogen in den Bergen gewaltige Nebelmassen hin und her: wochenlang hängen sie gleichsam an den höheren Bergketten fest, jeden Ausblick hemmend und nur in den Tälern sich auflösend, so daß dort in den wärmeren Tälern die Ausstrahlung, die Abkühlung während klarer Nächte mächtiger ist als auf den höher gelegenen Kämmen.

Auf den Höhen selbst verhindern Nebel und hohe Feuchtigkeit die Ausstrahlung, so daß das bei 2220 m über dem Meerse und während des Winters die Temperatur nicht unter −4° herabsinkt. Leider sind keine Messungen der Temperatur in den inneren Tälern bekannt: aber daß dort der Thermometer wegen des klaren Himms und der größeren Trocknis ganz beträchtlich herabsinken muß, das beweist das Verhalten der dort wachsenden Holzarten und vor allem auch die Anbauversuche mit indischen Holzarten in Europa: es hat sich nämlich gezeigt, daß die aus den Tälern mit größerer Gesamt- wärme stammenden Holzarten in Mitteleuropa frosthärter sind, während die aus höherer Elevation, somit aus einem in Gesamt- wärme kühleren Klima entnommenen Holzarten außerordentlich frostempfindlich, ja fast gar nicht durch den Winter hin-
Die Waldungen der Alten Welt, Europa und Asien.

159

Durch Nepal, ein 700 km langes, aus politischen Gründen unzugängliches und nahezu unabhängiges Staatsgebilde, wird der Himalaya politisch und geographisch in einen östlichen, westlichen und zentralen Teil geschieden. Der Abstand zwischen der östlichen und westlichen Region ist so beträchtlich, daß in jeder Region ein verschiedener Typus in der Bevölkerung, im Klima, in der Flora und Fauna sich ausbilden mußte. Die östliche Region liegt südlicher und näher der großen Feuchtigkeitsquelle, dem Meerbusen von Bengalen; die westliche Region erhält ihren befruchtenden Regen vom Arabischen Meer, so daß während der trockenen Zeit feuchte Meeresluftstöße den östlichen Himalaya häufiger als den westlichen erreichen. Die Bewohner der indischen Ebene, die Hindu, haben zwar den Wald im Osten wie im Westen des Gebirges gleichmäßig mit Feuer, Axt und Weidetieren angefallen, bis es endlich der unermüdlichen Ausdauer, dem fortgesetzten Drängen und Stürmen der Pioniere der indischen Forstwirtschaft gelang, der englischen Regierung und den Eingeborenen einzige Maßregeln zum Schutze der Reste der Gebirgswaldungen abzuringen. Naturgemäß waren die in steilerer, höherer Region, über 2000 m gelegenen Waldungen noch am meisten von den zügellosen Anfällen der Bevölkerung verschont; was aber unter dieser Zone liegt, hat das Schlimmste über sich ergehen lassen müssen. Weniger hat der Osten gelitten, da die Bevölkerung spärlicher und seßhafter, das Hinterland Thibet durch fast unübersteigliche Höhen und tiefe Tal- schluchten abgetrennt ist, so daß noch heute der spärliche Handelsverkehr über die in ewigen Schnee gehüllten Pässe auf den Rücken der Schafe und der Yack-Stiere angewiesen ist. Der westliche Himalaya dagegen war mit seinen breiten Tälern des Indus und Sutledsch vom Hinterlande aus stets zugänglich; sie bildeten die Einfallstore für die von Norden und Nordosten einströmenden mongolischen Eroberer des fruchtbaren indischen Tieflandes, Eroberer, welche auf ihren Raubzügen nicht bloß die wehrhafte Bevölkerung in Sklaverei schleppen,
die Wehrlosen abschlachteten, sondern welche auch deren Niederlassungen, deren Felder und den Rest der noch vorhandenen Wälder verwüsteten: hier lag von alters her die Reibungsfläche zwischen der mongolischen und der indogermanischen Rasse; heute ist diese durch Europa weiter nach Osten verlegt worden.

Der östliche Himalaya.

Kein Forstmann und Botaniker, kein gebildeter Gärtner, der von Europa zu ernsthaftem Studium der außerordentlichen Mannigfaltigkeit der indischen Baumwelt ausgezogen ist, wird versäumen, zuerst nach Kalkutta zu eilen, um sich mit einem für ein fruchtbringendes, wissenschaftliches und praktisches Werk nötigen Rüstzeug in den Schätzen des Botanischen Gartens und des Herbariums zu Sibpore bei Kalkutta zu versehen. Ende 1886 gewährte mir der damalige Direktor des Botanischen Gartens, Sir George King, während mehrerer Wochen die liebenswürdigste Erlaubnis und die umfassendste Gelegenheit, das ganze Herbarium der Flora des Himalaya und seiner Abdachungen bis zur Ebene durchzuarbeiten und im Anhalt an die getrockneten Exemplare ein Gerippe zu sammeln, das dann außen in der freien Natur mit den Attributen des vollen Lebens der Bäume umgeben wurde, so daß jeder Baum, der in seiner Wuchskraft und in seiner Eigenart eben verschieden war, in seiner Systematik leicht erkannt werden konnte. Für ein gut Teil tropischer Bäume bietet der Garten selbst prächtige Gelegenheit zum Studium: schon vor 20 Jahren erreichten dort 60jährige Teakbäume 80 cm Umfang und 28 m Höhe; *Terminalia belerica* hatte 2 m über den Wurzeln 77 cm Durchmesser, die ersten Äste bei 22 m und 39 m Gesamthöhe: *Casuarina equisetifolia*, ein auf Ostjava bereits heimischer, den Nadelhölzern täuschend ähnlicher Laubbaum, hatte mit 95 cm Durchmesser 37,5 m Höhe: *Swietenia Mahagoni* aus Westindien erreichte in 85 Jahren 1 m Durchmesser und 35 m Höhe bei vollem Freistande: in windstillen, klaren Winternächten sinkt auf den feinen Grasflächen zwischen Pflanzen, Bananen und anderen rein tropischen Pflanzen die Temperatur unmittelbar über den Grasspitzen unter 0° herab, so daß der Grasboden bereift ist: die kaum 1 m hohen Sträucher dagegen sind bereits über der eisigen Luftschicht erhoben.

Wer von Kalkutta aus dem riesigen Gebirge sich nähert, benutzt die Bahn, welche die gewaltige indische Ebene durchquert. Eigentlich ist diese Ebene eine endlose, öde, wenn auch grüne Grassteppe, welche während der trockenen Winterzeit zu gelben, ja braunen Tönen abwelkt: Getreidefelder mit ihren reifen Ernten vermengen sich mit Alang-Büschen; hie und da ragen grüne Baumgruppen auf als Zeichen, daß dieses gelbe Gräsermeer auch bewohnt und kultiviert ist. Nur einmal wird die Gleichförmigkeit durchbrochen durch den Riesenstrom,
Die Waldungen der Alten Welt, Europa und Asien.

161
den heiligen Ganges, der, so schmutzig er selbst ist, dennoch alles reinigt, was nach Brahmanenglauben mit Sünde beladen in seine Fluten steigt. Große Trajektbote durchfurchen den Flufs, meist spät abends. Der erste Blick früh am Morgen geht nach den Bergen. Vor den Reisenden liegt auch eine blendend weiße Kette, scheinbar ganz nahe, aber doch so niedrig, daß die fortwährende Frage der Reisenden, ob dies wirklich die höchsten Berge der Erde seien, verzeihlich erscheint. Wer aber bedenkt, daß die Berge noch 250 km entfernt liegen, der wird sich Rechenschaft geben können, warum der Kanchinchunga mit seinen Nachbarn aus dem Horizont nicht höher aufragt, als die Zugspitze dem Beschauer von Bayerns Hauptstadt ans erscheint. Bei Siliguri beginnt für den Aufstieg eine schmalspurige Bahn; mit einem Male wechselt die Bevölkerung; bisher nur Hindu mit blauschwarzem, samtartig glänzender Haut, samt den großen Augen, dem bunten Turban auf dem Kopf, von jetzt ab eine Menschenrasse, die dem vom Osten Asiens kommenden Wanderer wohlbekannt ist, die Mongolen. Nun beginnt das Terai, eine tropisch gemengte, dem eigentlichen Himalayastock vorgelagerte Gebirgslandschaft. Hier liegt für Nordindien der Schwerpunkt der Benutzung und Pflege der tropischen Wälder. Wenn auch der Baumflora des Terai für europäische forstliche Zwecke keine Art entnommen werden kann, so mögen doch einzelne Bäume in den wärmsten und feuchtesten Küstenstrichen und Inseln von Süd-Europa, z. B. im Süden von Portugal und den Inseln des mitteländischen Meeres, als Schmuckbäume sich bewähren; was diesen Punkt anlangt, so birgt die indische Bergflora gewiß noch wertvolle Schätze, deren Hebung der Zukunft überlassen ist. Trotz des großen Reichtums an einheimischen Baumarten haben die europäisch-indischen Forstwirte nicht gezögert, Holzarten, die im Terai selten sind oder auch ganz fehlen, anzubauen, weil von ihnen größerer Gewinn als von den einheimischen zu erwarten steht. Eine forstliche Kulturanlage in Banun Pokri zeigte nach meinen Messungen 1886 folgendes Ergebnis: nach 12 Jahren Ficus elastica (zur Gewinnung des Gummi angebaut) mit 43 cm Durchmesser in Brusthöhe bis zu 14 m Höhe emporgewachsen; eine Teak-Pflanzung (Tectona grandis, gibt das vorzüglichste Schiffsbaumaterial) hatte mit 13 Jahren durchschnittlich 14 cm Durchmesser und 18 m Höhe; die stärksten Exemplare hatten bereits 21 cm Durchmesser; in Assam, in gleicher Klimalage wie die Pflanzung im Terai, hatte Gustav Mann eine Pflanzung angelegt, welche mit 10 Jahren 20 cm Durchmesser und 20 m Höhe aufwies. Aber auch der einheimische Wald des Terai beherbergt wertvolle Baumarten, wertvoll durch ihr schönes oder dauerhaftes, den Angriffen der weißen Ameisen widerstehendes Holz; den phantastischen Vorstellungen, welche die Europäer von einem tropischen Urwalde sich zu machen pflegen, dürften aber diese Dimensionen kaum entsprechen. Um die Wuchskraft, Zusammen-
setzung und die Höhe solcher Waldungen zu kennzeichnen, seien im
folgenden einige meiner Messungen wiedergegeben. Auf einer Fläche
von nur 2 ha waren 44 Holzarten vertreten, welche alle einen Durch-
messer von über 30 cm besaßen; die Baumarten mit schwächerem
Durchmesser wurden nicht gezählt. Shorea robusta (Sål), ein Baum,
dessen rotbraunem, dem frischen Eichenholze an Geruch ähnlichen
Kernholze besonders große Dauer und vielseitige Verwendung zukommt,
erreichte mit 50 Jahren 57 cm Durchmesser und 28 m Höhe; mehrere
erwachsene Sål mit 70 cm bis 1 m Durchmesser waren zwischen 30
und 43 m hoch: das stärkste Exemplar davon aber stand am Teesta-
Flusse, umweilt der Grenze von Sikkim und Bhutan, mit 1,12 m Durch-
messer; die ersten Seitenäste zweigten in 25 m Höhe ab, die gesamte
Höhe des Baumes betrug 50 m. Bombax malabarica, 1,5 m Durchmesser
und 43 m Höhe. Bombax und Eriodendron unicaea, einen Woll-
baum, hat man als lebende Pflanzen zu Telegraphenpfosten, die un-
bestimmte Zeit ihrem Zweck entsprachen, benutzt; Schima Wallichii
mit dunkelgrauer, kleinschuppiger Borke, 98 cm Durchmesser und
42 m Höhe; Terminalia tomentosa, 43 cm Durchmesser und 35 m hoch:
Lagerstronia indica, 88 cm Durchmesser und 33 m hoch; Dillenia indica,
ein besonders schöner, grobfblätteriger Baum, mit 73 cm Durchmesser
und 30 m Höhe; Sterculia villosa, 45 Jahre alt, mit 23 m Höhe: Bridelia,
21 m, und viele andere. Bei allen Bäumen fällt auf, daß die Kronen-
länge die Hälfte der gesamten Baumlänge umfaßt: nur bei den ältesten
Gliedern des tropischen Waldes sinkt der Kronenanteil bis auf ein
Drittel der Baumhöhe herab. Trotz des durch Schlingpflanzen, durch
Nestfärne, durch Philodendron und Wurzeln würgender Fikusarten
und zahllosen anderen Kletterpflanzen ausgefallenen Zwischenrammes
zwischen den Baumstämmen ist der Zusammenschluß der Kronen, der
Bestandsschluß, wie man es früher nennt, infolge der Ungleich-
altrigkeit der Bäume und des ungleichen Ansatzes der Kronen nur ein
Halbdunkel, so daß jeder im Waldesinnern aufwachsende Baum während
des Tages einige Zeit volles Licht und einige Zeit vollen Schatten
erhält, ein Befechtungsverhältnis, das auch der europäische Wald bis
hinauf zum höchsten Norden der aufkeimenden Jugend ganz ebenso
wie der Tropenwald bietet, wenn man ihn im Urwaldszustand beläßt
oder ihn in der Form bewirtschaftet, welche dem Urwalde am nächsten
kommt, das ist als Plenterwald.

In diesem Wald sind baumlose Flächen nicht selten; sie sind aber
erfüllt von doräelnen Büschen, von hohen Gräsern oder dem dichten
Hahngewirre der Bambusse, welche die Baumwelt verdrängt bezw. deren
Rückkehr nach einer Waldkatastrophe vereitelt haben. In dieses Dschungel
haben sich die Tiere der Ebene, wo sie durch Menschen und Feuer
allzusehr belästigt werden, zurückgezogen; hier findet sich zusammen
das wilde Rind, der Hirsch, das Wildschwein, ziemlich sicher gegen
den Menschen, nicht aber gegen die ihnen nachziehenden Tiger und Panther. Wo der Tiger lebt, fehlt auch der Pfau nicht; welcher gemeinsame Trieb diese beiden Könige in der Tierwelt zusammenführt, ist bis jetzt nur Vermutung, aber die Posamenstimme des Pfaues gilt als ein Warnungszeichen vor dem Tiger, der den Menschen nur angreift, wenn er verwundet wird oder Menschenfleisch gekostet hat.

Allmählich steigt die Bahn über das Terai empor, die Landschaft verliert ihren rein tropischen Charakter; die zierlichen Baumfarne treten auf. In engen Schluchten, deren Wände mit einem grünen Spitzenuflor von Farnkräutern behangen sind, erheben Musaarten ihre breiten hellgrünen Blätter, unberührt von jedem Luftthauch; Kletterpalme (Rottang, das spanische Rohr) schiebt ihre fingerdicken Schosse zwischen den Wänden und Bäumen empor, sich durch katzenpfotenartige Klammerorgane festhalteu; immergrüne Eichen erscheinen bei 1500 m. Reichlicher noch als das Terai, vom aufsteigenden feucht-warmen Monsun bewässert, ragen auch Bäume aus dieser Zone zu beträchtlicher Höhe auf: Engelharditia spicata als letzte Vertreterin der tropischen Flora mit 83 cm Durchmesser noch 34 m Höhe; die Eichen wie Quercus spicata, lamellosa, selbst Shorea zu 30 und 35 m. In der Gewächs- und Klimazone der Baumfarne und immergrünen Eichen sind große Waldrodungen vorgenommen worden zur Kultur der Cinchona, des Fieberbaums, welcher die wärmste Lage verlangt, zur Kultur der prächtigen rotfrüchtigen Kaffeestaude mit ihren sattgrünen Blättern, zur Kultur der durch das fortwährende Abkneipen der Triebspitzen buschförmig gewordenen Teepflanze. Wird innerhalb dieser Waldzone auf ebenen oder schwachgeneigten Flächen auf größere Strecken hin der Urwald weggescragen, so können selbst Spät- oder Frühfrösche auftreten. Nachdem aber Cinchona und Kaffeestaude aufserordentlich empfindlich gegen Fröste sind, kann solchen Lichtungen nur eine Ausdehnung gegeben werden, bei der noch keine Frostgefahr zu fürchten ist. Wo aber dieser Grundsatz nicht befolgt wurde, da kann man den eigenartigen, aber sehr lehrreichen Anblick genießen, dafs unmittelbar neben einer durch Frost versengten Cinchona-Pflanze im Waldschatten, im Halbschlusse des Urwaldes, die zartesten Triebbe der Musa, der Palmen unberührt von dem Frostthauche geblieben sind.

Die Schichtenhöhe von 2000 m bedeutet für den östlichen Himalaya eine Klima-, Fauna- und Florascheide. Unter dieser Linie wogen während des Winters, einem unendlichen, bewegten Ozean vergleichbar, ungeheure Nebelmassen mit kräftigen Regengüssen über die Vorberge hin ins Terai bis hinab zur indischen Tiefebene; oberhalb dieser Grenzlinie aber ist alles klar und wolkenlos; wohltuender warmer Sonnenschein untertags, kräftige, bis unter 0° herabgehende Abkühlung, Nachtfröste, die das Entzücken aller sind, welche aus der heißen, erschaffenden Ebene aufsteigen zum Hochgenusse des gesunden Frierens.

Sir Josef Dalton Hoocker, dem die Gnade beschieden ist, in voller körperlicher Frische auf ein außerordentlich tatamreiches Leben zurückzublicken, legte im Jahre 1849 größere Pflanzungen verschiedener Holzarten bei Darjeeling an; es ist interessant, welche Größe diese Bäume bis zur Zeit meiner Messung (1886) somit innerhalb 37 Jahren erreichten:

Picea Morinda	63 cm Durchmesser und 26 m Höhe	
Cypressus torulosa	51	21
Pinus longifolia	33	18
Magnolia	52	21
Im Jahre 1858 wurde eine größere Zahl von Kryptomerien angepflanzt, deren Samen seinerzeit Fortune, von der englisch-indischen Regierung zur Sammlung von Teepflanzen nach China ausgesandt, zurückbrachte; innerhalb 28 Jahren erwuchsen diese Kryptomerien zu vorliegenden Dimensionen: Durchmesser 80 cm, Höhe 25 m; Durchmesser 1,27 m, Höhe 22 m; mit kaum 30 Jahren erwuchs die Kryptomerie zu Stämmen, aus welchen Bretter für Teekästen gefertigt werden konnten; zu diesem Ende werden die Kryptomerien in größerem Maßstabe bei Darjeeling ummehr angebaut. Dafs das außerordentlich rasch gewachsene Holz zugleich sehr leicht ist, ist bei der Art der Verwendung als Kistenmaterial nur eine willkommene Erscheinung.

Das Überraschende in dem winterkalten Laubwalde des Himalaya ist nicht, was an Holzarten vorhanden ist (das Auftreten der Rhododendron-Bäume ausgenommen), sondern was diesem Laubwald fehlt. Obwohl klimatisch zu der Zone der Edelkastanien und der Rotbuche gehört, sind gerade die dem Castanetum und Fagetum typischen Bäume im indischen Walde gar nicht vorhanden: aber ihre Begleitholzarten, wie Acer, Carpinus, Magnolia, Betula, Alnus, Sorbus, Sambucus und viele andere, bilden einen schlecht geschlossenen Wald, in dem nur den einzeln eingestreuten, meist isoliert stehenden Nadelhölzern einige forstliche Bedeutung zukommt.

Aber bis hinauf in die Zone der Nadelhölzer, selbst der Tanne Abies Webbiana, mischen sich baumartige Rhododendren; denn hinauf bis in diese Region bleiben die Winter, wenn auch so lange andauernd wie in den Breiten von Mitteleuropa, doch außerordentlich mild, jenen von England und Schottland sich nährend. Von 3000 m an aufwärts herrscht unter den Bäumen die Tanne vor; mit oberseits dunkelgrünen, unterseits schneeweissen, langen, glänzenden Nadeln schimmert sie im vollsten Sommerschein mit unvergleichlich schöner Silberkrone; der lockere Stand der Bäume gestattet den Ästen, hoch nach oben am Schaft gerückt, eine horizontale, weit vom Stamme abstehende schirmförmige Krone, wie das mitten unter den Tannen in 3600 m Höhe aufgenommene Bild des höchsten Berges des östlichen Himalaya, des Kanchinchunga, erkennen läßt. In dieser Höhe fallen ganz beträchtliche Schneemengen und hausen gelegentlich auch kräftige Stürme; die zahlreichen Gipfelbrüche an den Tannen, welche den verlorengegangenen Gipfel mit zwei bis vier neun emporstrebenden ersetzt haben, verraten dies. Zwischen die weit voneinander stehenden Tannen dringen Bambusfelder ein, die nur dann eine Tanne aufkommen lassen, wenn ein alter Baum zu Boden fällt; Bambus ist der Fluch der forstlichen Tätigkeit im ganzen Gebiet des Monsuns, in Indien ebenso wie in Japan, in China und in Korea. Auch hier in Indien hat man Versuche mit der Vernichtung des Bambus und der Umzäunung solcher Flächen gegen Weidetiere unternommen; solche Flächen haben sich dicht mit Tannen
Abschnitt.

Die Heimat der fremdländischen Wald- und Parkbäume.
besiedelt. Hierher ziehen während des Sommers die Weidetiere; auf der Wanderung zu diesen ergiebigen Weideplätzen werden die Schafe mit Bambusmaulkörben versehen, um sie am Fressen von giftigen Kräutern zu hindern. Überall, wo Bambus fehlt, hat sich ein dichtes Gestrüpp von Gaultheria repens, Azalea, Berberis, Spirea, Hydrangea, Hypericum über den Boden hin verbreitet, das ebenfalls ein gelegentlich vom Winde hergetragenes Samenkorn der Tanne zwischen sich emporkommen läßt. Von der großen Luftfeuchtigkeit zeugen die dicken Moospolster an der Tanne: was müßten in diesem Klima Sequoja, Cryptomeria, Dougiasia, Tsuga und viele andere westamerikanische und japanische Holzarten leisten können! Ein weites und noch ganz umberührtes Feld forstlicher Tätigkeit ist die Wiederaufforstung der entwaldeten Berge mit wertvolleren Holzarten, als die einheimische Waldflora des östlichen Himalaya bietet. We b b s Tanne hat für Europa keinen, für Indien nur einen geringen forstlichen Gebrauchswert, trotzdem sie gelegentlich in geschützteren Tälern recht gute Dimensionen erreicht. So maß ich eine Tanne bei 3300 m mit 73 cm Durchmesser, mit einer Schaftlänge von 22 m und einer Gesamthöhe von 28 m; eine andere wies 1 m Durchmesser, 27 m Schaftöhöe und 34 m Gesamthöhe auf.

Derlei Gedanken drängen sich unwillkürlich auf, wenn man emporgesteigen ist bis zur Grenze der Tanne, wenn man in Phalut mit 4200 m Erhebung Umschau hält von dieser hohen Warte aus über die zahllosen entwaldeten, zur Winterzeit mit gelben bis braunen Tönen übergossenen, kahlen Berge. Gegen die schneeweißen Riesenwände hin täumten sich noch ein halbes Dutzend Bergzüge auf, jeder folgende das vorhergehende Gebirge an Höhe übertreffend. Sie tragen nur niedrige alpine Gehölze von Zwergbambus und Sträucher; sie sind die letzte Futterstelle für Lasttiere, ehe sie die Grenze des ewigen Schnees mit 5400 m Erhebung betreten, um zur Pafshöhe emporzugehen. Wer vom Wetter begünstigt, mit den Füßen im bereiften, fest gefrorenen Bambus stehend, den Sonnenaufgang erwartet, dem weht ein eisiger, aber erquickender, vom Schneegebirge herabsteigender
Die Waldungen der Alten Welt, Europa und Asien.

Der westliche Himalaya.

Von Calcutta nach dem westlichen Himalaya hat man die nord- indische Ebene mit ihren Feldern zu durchqueren, auf denen Reis, Zuckerrohr, Mais und andere Fruchtarten, sowie Öl, Farbstoffe, Bastfasern und andere für das Leben nötige Produkte wachsen: mächtige Mangubäume, breitblätterige Bananen und andere Fruchtbäume, Corypha, Palmyra, Bethelnufs und andere Palmen begrenzen die Felder und verraten die Anwesenheit von Dörfern; Yucca, Agaven, Kakteen und Ri-

In Sahispora, mitten in einem großen Waldgebiet, traf ich, als ich 1885/86 in Nordindien weilte, Professor W. R. Fisher, jetzt in Coopershill, und die ganze Schar der Studierenden der forstlichen Lehranstalt zu Dehra Dun: nichts fehlte: Schulbänke, Bücher, Betten und Lebensmittel, der ganze in Indien besonders schwerfällige Apparat zur Sorge für die leibliche Wohlfahrt, der gewaltige Trofs von einheimischen Dienern, von Koch herab bis zum Taglohnsarbeitern. Mit Heppe, Äxten und Sägen und Zelten war alles auf Elefanten und Kamelen verladen worden, und monatelang kampierte die ganze Schule mitten im Walde. Zur Regenzeit wurden Vorlesungen abgehalten, bei schöner Witterung aber wurde gesät und gepflanzt, sowie Reinigungs-

Auf den Kämmen der Siwaliks flattern im Wind die zarten, dünnen, zierlichen, überhängenden Nadeln der nordindischen Föhre Pinus longifolia; mit der anfänglich kleinschuppigen, grauen, später breitborkigen, rötlichen Rinde schießt sie in diesem feuchtwarmen Klima rasch empor. Aber auch hier bedeutet das Auftreten einer Föhre, ähnlich wie das Erscheinen von Pinus Merkusii in den Bergen der malayischen, sundanesischen Inseln, das Ende der wärmeren tropischen, die Annäherung an die subtropische Waldregion.

Nach Überschreitung der Siwaliks betritt man das Dungebiet, eine weitausgedehnte, flache Landschaft zwischen den Siwaliks und dem eigenständigen Himalaya; in ihr liegt Dehra Dun mit der reich ausgestatteten indischen Forstlehranstalt. Den damaligen Lehrern an dieser Anstalt, Mr. Smithies und Hearle, verdanke ich trotz der winterlichen Zeit die Besichtigung eines Waldgebietes, welches, da höher und kühler gelegen, für Europa wichtiger ist als die eben erwähnte tropische Region, in welcher auf kahlen Flächen nur in den Grasspitzhöhen das Thermometer unter 0° herabsinkt, während die meteorologischen Beobachtungsstationen, die stets höher über dem Boden ihre Wärmemessungen vornehmen, nie Minusgrade registrieren.
Wer im Januar von dem Dun aufsteigend, der Hauptkette des Himalaya sich nähert, hinweg über entwaldete, begraste Hügel, über Schutthalden und Gerölle, das zur Winterzeit die Gebirgsbäche ausfüllt, kann schon bei 1500 m Erhebung von einem Schneegestöber überrascht werden; damit beginnt auch die Zone der immergrünen Eichen. ins-

blaugrüne Jugendfärbung eine der schönsten, sondern durch ihr rotbraunes, dauerhaftes, von den weißen Ameisen verschontes Kernholz, die wertvollste und durch ihre Massenentwicklung auch die stärkste Konifere von Indien.

Man ist in Europa gewohnt, sich unter den Zedern flachkronige, niedrige, knorrig gewundene Bäume vorzustellen. Im Freistande dem Winde vollständig ausgesetzt, in den kühlen Regionen ihres Vorkommens bleibt auch Deodár diesem Typus treu, wie beigegebene Zeichnung, die ich an der oberen Grenze der Deodár verfertigte, weist: in ihrem besten Wuchsgebiete aber, in den Waldungen von Deoban und Jaunsar, in einer Region, die klimatisch dem im zweiten Abschnitt näher charakterisierten Lauretum und Castanetum entspricht, erwächst die Deodár in kleinen Beständen oder eng geschlossenen Gruppen mit einem tadellos geraden, astlosen, mächtigen Schaft und zu Höhen, welche sie zum höchsten Baume der indischen Flora stempeln. Sir Dietr. Brandis maß einen 600 Jahre alten, auf einem ehemaligen Ackerfelde stehenden Baum mit 76 m Höhe und 2 m Durchmesser; einen anderen Baum, ebenfalls auf veralteter Terassenkultur stehend, mit 71 m; ich selbst fand im Deoban-Forst eine Gruppe von etwa zehn Zedern, welche zu einer Durchschnittshöhe von 47 m, einem Durchschnittsdurchmesser von 0,86 m herangewachsen sind. Selbst im Freistande, bis zum Boden herab mit Ästen bedeckt, erwächst die Zeder bis zu 36 m Höhe und 1,53 m Durchmesser. Das schöne helle Blaugrün der Jugendbenadelung verliert sich mit dem Alter; erwachsene Zedern erscheinen im Winter gelbgrün; die Zapfen zerfallen teils am Baume, teils fällt der Zapfen ab.

Im Gebiete der Deodár sind die Südhänge vielfach durch Feuer verödet; nur in Schluchten haben sich Reste der ursprünglichen Waldvegetation immergrüner Baumarten mit einigen winterkahlen wie Hainbuchen, Ahorne, Birken und anderen erhalten; vielfach stehen die Zedern isoliert zwischen Gräsern und Sträuchern, unter denen die auf den Zedern emporkletternde Rosa moschata Erwähnung verdient; wo aber dank der indischen Forstwirte das Feuer abgehalten wurde, wo mit der Anpflanzung der Zeder bereits vor Jahrzehnten begonnen wurde, da sprüst überall mächtig die hochwertige Zeder empor; ein Baum, welcher die Forstwirte der südeuropäischen Kulturstaaten mit Neid und mit dem Bestreben erfüllen müßte, bei ihnen diese prächtige Holzart, ja diese wohl für den Süden Europas wertvollste Holzart nicht bloß einzuführen, sondern im vollsten Umfang auch für forstliche Zwecke anzubauen. Die beigegebenen Abbildungen aufwachsender Deodár-Naturverjüngungen und das prächtige Bild einer sehr starken alten Zeder (VII. Abschn.) verdanke ich der Güte eines amerikanischen Forstwirtes, des Herrn T. S. Woolsey.
Auch mit Fichte und Tanne zusammen findet man die Zeder; denn die Himalaya- oder Morinda-Fichte (*Picea Morinda*) und die Pindrau-Tanne (*Abies Pindrau*) steigen bis zu 1800 m., das heißt bis in die Region der immergrünen Eichen herab, ähnlich wie die Momi-Tanne in Japan; sie wählen dabei die feuchten, der Sonnenglut abgewandten Täler. Lange Zeit hat man die Pindrau-Tanne des westlichen Himalaya mit der *Webbiana* des östlichen Himalaya vereinigt oder die eine nur als Varietät der anderen betrachtet, bis man endlich

die beiden Tannen, die sich dem Forscher in Gottes freier Natur auf den ersten Blick durch ihre grundverschiedene Benadelung und ihren Habitus als zwei verschiedene Arten darstellen, voneinander trennte. Wie überall Verwechslungen der Art und ungenügende Abtrennung derselben zur heillosen Verwirrung der Lebensgeschichte der Art geführt haben, so haben auch bezüglich der beiden Himalaya-Tannen sich Legenden ausgebildet, die fortwährend Widerspruch zeigen, dessen bei der spezielleren Betrachtung der Holzarten näher Erwähnung geschehen soll.
Die Tanne des westlichen Himalaya und die Fichte bilden, jede Holzart für sich, reine Bestände; sie kommen aber auch in Mischungen vor in Waldungen, welche den Fichten- und Tannenwäldern der mittleren Alpen täuschend ähnlich sind. Immer aber drängen sich auch zwischen sie noch immergrüne, baumartige Eichen ein, neben Rhododendren, Eiben, Wacholder, Birken, Ahornen, Vogelbeerbäumen, beziehungsweise deren Buschwerk. Öfters stößt man auf sehr starke Stämme: so maß ich im Deoban-Forste eine Fichte mit 1,97 m Durchmesser, mit einem astlosen Schaft bis 24 m und mit einer Gesamtlänge von 46 m; eine andere hatte 0,73 m Durchmesser und 40 m Höhe; nur in der Jugend ist die Benadelung der Fichte auffallend lang, und die Zweige sind hängend, somit von hervorragendem Parkwerte: je älter der Baum wird, um so mehr verkürzen sich die Nadeln, und die Krone nimmt jene Gestalt an, welche auch der europäischen Fichte zukommt (siche Abbildungen VII. Abschn.). Auch die Pindrau-Tanne kann 35 m Höhe bei 1 m Durchmesser, 40 m bei 1,3 m Durchmesser erreichen, wobei ihr Schaft bis zur halben Höhe des Baumes trotz des lockeren Schlusses der meisten Waldungen die Äste abstößt; auch die 20-jährigen Tannen im forstlichen Versuchsgarten zu Graf Rath zeigen dieses fürstlich günstige Verhalten. Auch im Bereich der Fichte und Tanne sind zahlreiche Südhänge durch Feuer in Graslandschaft umgewandelt. Ihre natürliche Wiederbewaldung hindert wiederkehrendes Feuer und vor allem auch die gewaltigen Schneemassen, welche bei dem Auftauen talabwärts sich bewegen, alle jungen Pflanzen zu Boden drücken und der Vernichtung durch den üppigen Graswuchs preisgeben.

Wichtiger als die Tanne und Fichte ist eine die Deodár begleitende, aber auch noch höher hinauf in die kühle Region sich verbreitende fünfnadelige Föhre der Sektion Strobus, die indische Weymouths- oder Korköhre, Pinus excelsa. Mangelhafte Herbariumsexemplare und noch mangelhafte Beobachtung in der freien Natur haben
lange Zeit die indische und griechische Strobe (Pinus Pence) in Zusammenhang gebracht und haben die gigantische Theorie gezeitigt, daß der schwere Samen von Pinus Pence vom Winde durch 3000 km Luftlinie von Griechenland nach dem Himalaya getragen worden sei! Die Himalayaföhre heift auch Blauföhre wegen ihrer blau-grünen Benadelung. Tränenföhre wegen des Harzaustusses bei Verwendung im Gegensätze zur Zeder und Tanne; sie siedelt sich überall auf den wärmeren, nur mit Staudenwerk versehenen Südhängen an, sobald das Feuer ferngehalten wird. Die indischen Forstwirte haben hierin sehr schöne Erfolge der natürlichen Wiederbewaldung zu verzeichnen; eine Mischung dieser Föhre mit der Deodar wäre wohl wünschenswerter als die reinen Excelsaanflüge, die überall entstehen; in ihrer wärmsten Lage reicht die Tränenföhre bis zur langnadeligen Föhre (Pinus longifolia) herab, in ihrem kältesten Standort steht sie mitten unter Fichten und Tannen; in ihrem klimatischen Optimum schiesst sie mit Längstrieben von 2 m empor; sie bildet reine Bestände von großer Schafftreinheit. Sir Dr. Brandis hat in geschlossenen Beständen mittlere Baumhöhen von 48—50 m gefunden.

In diesem Klima liegt auch die Heimat einer Föhre, der Pinus Gerardiana, in reinen, lockerer Beständen, durch die esfbraren Sämereien ebenfalls mehr Frucht- als Nutzbaum.

Ich schließe diese skizzenhafte, für die Beurteilung der Heimat der wichtigsten indischen Holzart jedoch wohl genügende Schilderung der Waldungen des Himalaya mit dem Hinweis, daß an die Erhaltung, an die in geregelte Bahnen geleitete Bewirtschaftung in erster Linie
drei deutsche Forstwirte ihre Jugendjahre verwendet haben, nämlich Sir Dietrich Brandis, Dr. W. Schlich und B. Ribbentrop, welche als die ersten Generalforstinspektoren Indiens wirkten und heute noch ihre Kraft der Wissenschaft und wissenschaftlichen Ausbildung der englischen Forstwirte für den Dienst in Indien widmen.

Der sibirische Wald.

sie das Feuer. Waldwiederbegründung, ja eigentliche Forstwirtschaft ist nirgends vorhanden; alles, was ich vor 15 Jahren über Waldverwüstungen in Nordamerika schrieb, könnte mit denselben Worten auch auf Ostsibirien, selbst Westsibirien und zum Teil auch auf das Europäische Russland Anwendung finden. Wald ist eben im Überfluß vorhanden; ich glaube nicht, daß andere Nationen besser verfahren würden als die wenigen Russen in dem ungeheuren ost-sibirischen Walde, daß die Behandlung des dortigen Waldes als russisches Spezifikum hingestellt werden darf, wie es Graf v. Kaiserling in seinen meisterhaften Schilderungen ost-sibirischer Zustände in seinem Buche „Vom Japanischen Meere zum Ural“ unternimmt; er schreibt:

Der Russe ist ein unverbesserlicher Feind des Baumwuchses . . .
schatzes suchen." Meines Erachtens würde auch die Tätigkeit der Erhaltung des Waldes vollständig genügen; die Bewirtschaftung kann erst mit der Erschließung des Landes einsetzen.

Die kaukasischen und kleinasiatischen Waldungen.

Hoheit des Prinzen Ruprecht von Bayern bei 2600 m Erhebung liegt, diese Region bereits beschritten sein. Die über dem winterkalten Laubwald gelegene Tannenzone ist in den kleinasiatischen Gebirgen durch die *Abies cilicica* gekennzeichnet, eine Tanne, der wohl auch nur ein Zierwert für Europa zuerkannt werden wird.

Die Baumarten der kühllsten Waldgebiete südlich vom Wendekreis des Krebses.

Der Wendekreis des Krebses bedeutet eine tief einschneidende Grenzlinie in der floristischen Zusammensetzung der Gebirgsflora unserer Erde: nur ungenügende Andeutungen an diese, für die Pflanzengeographie, für die Lebensgeschichte der Bäume der höchsten Regionen so wichtige Wendelinie finden sich in der Literatur. Vom Wendekreis des Krebses an südwards über den Äquator hinaus und nahezu durch die ganze südliche Hemisphäre nehmen die Landmassen ab, die Wasserflächen zu; mit dieser Zunahme erhöht sich für die Landmassen der durchschnittliche Feuchtigkeitsgehalt der Luft, der Unterschied zwischen höchster und tiefster Temperatur wird geringer, die Wintertemperatur liegt an der Baumgrenze nur wenige Grade über oder unter Null, die Unterschiede zwischen Sommer und Winter gleichen sich aus. Aus diesem Grunde konnte sich auf der südlichen Halbkugel in höheren Elevationen keine winterkalhe Baumflora entwickeln; sie beginnt aber wiederum im äußersten Süden der Baumwelt. Die immergrünen Laubbäume streichen bergaufwärts bis zur alpinen Waldgrenze; denn überall, wo die immergrünen Bäume den Wald nach oben hin begrenzen, ist nicht der Winter dort zu kalt, sondern die Wärmemenge während der Vegetationszeit nicht genügend. Bei höheren oder höchsten Erhebungen ist es das ganze Jahr hindurch kalt oder kalt, die Jahrestemperatur ist von der Temperatur der Vegetationszeit nur wenig verschieden. Nach allen bisherigen Beobachtungen ist auch auf der südlichen Halbkugel die natürliche Waldgrenze da gelegen, wo während der vier wärmsten Monate nur 10° C. herrschen. Ich habe die Linie, welche alle Punkte der Erde mit einer Temperatur von 10° C. während der vier wärmsten Monate verbindet, als Isohyle, die Waldgrenzlinie, bezeichnet. Die Konstruktion der Isohyle auf der Erde zeigt eine großartige Einheit in der Lebensgeschichte und in der Verteilung der Baumwelt. Wo immer auf der Erde während der vier wärmsten Monate nur 10° C. durchschnittliche Temperatur gehalten sind, mag dies an der Meeresfläche unter dem 50., 60, oder 70. Grade n. B. oder bei 3500 m unter dem Äquator der Fall sein, überall erlischt die Baumwelt. Die Wirkung der wachsenden Differenz zwischen Sommer- und Winterwärme vom Wendekreis des Krebses nordwards findet ihren Ausdruck darin, daß der nördliche bezw. höchste Wald mit Ruheknospen tragenden
Nadelbäumen oder mit winterkahlen Baum- und Straucharten endet; die Wirkung der abnehmenden Differenz zwischen Sommer- und Winterwärme vom Wendekreis des Krebses südwärts findet in luftfeuchtem Klima ihren Ausdruck in der Waldgrenze mit immergrünen Laubbaumarten und ruheknospenlosen Nadelbäumen (*Araucaria, Podocarpus*), in lufttrockenem Klima in einer Waldgrenze von kaktusartigen Euphorbien.

Die Isohyle lehnt sich in ihrem Verlauf von der Westküste Europas und Amerikas zu den Ostküsten von Asien und Amerika genau dem Einfluß der warmen Strömungen an der Westküste, der kalten an der Ostküste an. An der wärmeren Westküste liegt die Isohyle unter dem 65., ja stellenweise sogar unter dem 70. Grad n. B. unfern der Meeresfläche; von da an ostwärts senkt sich die Isohyle allmählich bis zum 50. Grad n. B., um bei der Annäherung an das gegenüberliegende Meer wieder emporzusteigen; südwärts von dieser Linie erhebt sich dieselbe allmählich, bis sie unter dem Wendekreis des Krebses ihren höchsten Punkt als alpine Waldgrenzlinie bei fast 4000 m erreicht; entgegen der naheliegenden Vermutung steigt vom Wendekreis des Krebses bis zum Äquator hin die Isohyle nicht höher, sie sinkt vielmehr bis zu 3500 m, eine Ercheinung, die durch die Abnahme der Sommertemperatur vom Wendekreis zum Äquator hin ihre Erklärung findet. Vom Äquator südwärts fällt die Isohyle durch Südamerika hindurch, um unter dem 40. Grad s. B. wiederum die Meeresfläche zu berühren.

von 3000 m über dem Meere eine Jahressisotherme von 12.7° herrscht, das dort bereits der geschlossene Wald sich aufzulösen beginnt, das bei 3400 m wohl die Baumgrenze mit einer Jahressisotherme von 10.5° nahezu erreicht ist: bei Regen sinkt nach den Messungen Ihrer Königlichen Hoheit selbst zur wärmeren Jahreszeit das Thermometer bis auf +8°; in Ecuador liegt am Westhang der Kordilleren die Waldgrenze in einer Höhe von 3000 m, Isotherme 11.8°; auf den Paramos ist mit 3500 und einer isotherme von 8° die Waldgrenze bereits überschritten. Unter dem Äquator sind bei 4200 m nur Zwergbüsche nach Wolff mit einer Jahrestemperatur von 5° zu finden.

Das Ergebnis eigener Beobachtungen und eingehender Literaturstudien faßt auf meine Frage hin Ihre Königliche Hoheit zusammen in folgenden Worten: „Nach den gesammelten Notizen scheint mir der Wald in Kolumbien nicht viel weniger hoch hinaufzureichen als im Ecuador: ein Temperaturminimum an der Baumgrenze von —15° C. scheint mir in Kolumbien wie in Ecuador ausgeschlossen; ob der Baumgrenze in den entscheidenden Monaten eine Durchschnittstemperatur von 10° C. zuteil wird, was ich weder zu bejahen noch zu verneinen, da meine Daten sich mehr auf geschlossene Bestände beziehen, die Bäume vereinzelt aber eine größere Seehöhe erreichen; indessen dürften die aus Kolumbien gegebenen eher noch auf eine etwas höhere Temperatur als 10° schließen lassen. In Bolivien liegt nach Sievers die obere Grenze des üppig wachsenden Waldes bei zirka 3500 m; Jahrestemperatur 16° und tiefste Temperatur —2.7°."

Das Vorkommen von Baumarten auf der südlichen Halbkugel bei 2000, 3000, selbst 4000 m hat immer wieder Reisende verführt, Bäume dieser Region als sicher frosthart zum Aubau in Europa selbst in der kühlen Zone der Fichten und Tannen zu empfehlen: sie haben hingewiesen auf den monatelangen, schneereichen Winter, dem diese Bäume in der Heimat ausgesetzt sind, haben aber übersehen, das gerade Schneereichtum für die Pflanzen einen außerordentlich wohl tätigen Schutz gegen extreme Temperaturen, zumal im jugendlichen Alter, bedeutet. Vorstehende Notizen aber beweisen genügend, dass an der Grenze des Baumwaldes auf der ganzen südlichen Halbkugel außerordentlich milde Winter herrschen. Diese Tatsache erklärt auch, weshalb Araucaria imbricata, bei 3500 m in den Anden gesammelt, Libocedrus chilensis ebenso wie das Heer der immergrünen Laub bäume, z. B. der immergrünen Buche, nur in den mildesten Gebieten Europas, wo die Wintertemperatur nicht unter —10 bis —15° C, herabgeht, sich zu halten vermögen; ja wir können ver allgemeinern: kein Baum der südlichen Hemisphäre, kein südamerikanischer, kein südafrikanischer, kein sudanesischer oder australischer Baum, mag das Saatgut in noch so kühlem Klima, noch so hoch oben gesammelt sein, kann in Norden europa oder im mittleren
Europa (die Westküste ausgenommen) ohne Schutz durch Deckung ausdauern; nur für Südeuropa und hier wiederum für die luftfeuchten Küstengebiete kommen südäquatoriale Baumarten in Frage.

Mit dieser Feststellung schwindet das Interesse für diese Baumarten, und soviel ich orientiert bin, haben Holzarten der südlichen Halbkugel (außer Eucalyptus) nur in wenigen Ländern Europas eine größere Aufmerksamkeit und Verbreitung gefunden. Das ist zunächst in Südeuropa, an der französischen Küste und vor allem in dem klimatisch für diese Holzarten ganz vorzüglich ausgerüsteten Portugal der Fall, wo unter einer besonders tatkräftigen, gegen fremdländische Holzarten vorurteilslosen Leitung mit suprropischen Baumarten die großartigsten Versuche auf europäischem Boden eingeleitet wurden.
Zweiter Abschnitt.

Es bedarf für den naturwissenschaftlich gebildeten Leser wohl kaum des Hinweises, daß von den Tropen im Süden bis zu den Polaren im Norden, oder von den Kastanienhainen am Füße eines Berges bis zu den alpinen Büschen in höheren Elevationen Gewächs- oder Waldzonen bestehen, die schon äußerlich, in ihrem Gesamtbilde, als Einheiten sich darstellen, da sie von Bäumen mit annähernd gleichen Ansprüchen an das Klima gebildet werden; denn der Einheit im Klima entspricht die Einheit in der Vegetation und umgekehrt: in seiner Einheit erscheint der subtropische Wald als ein immergrüner, dunkler Laubwald, der winterkalte Laubwald als ein im Sommer hellgrüner Laubwald, der Fichten- und Tannenwald wiederum als dunkles, immergrünes Band, mit dem die Vegetation abschließt.

Änderungen in der ursprünglichen äußeren Erscheinung und in der inneren Zusammensetzung der Waldungen haben erst die Eingriffe des Menschen hervorgerufen durch Verdrängung von Baumarten, Änderungen des früheren natürlichen Waldzustandes. Ersetzung des früheren Halbdunkels des Urwaldes durch das Volldunkel oder Volllicht des Kulturwaldes, Einführung neuer Baumarten. Veränderung des Bodens, womit auch eine Änderung in der Zusammensetzung der Waldflora verknüpft ist. Will man aber die Lebensgeschichte der Holzarten auf natürlicher Grundlage erforschen, will man auf Grund der Erkenntnis der Anforderungen der Holzarten an Klima und Boden einen Wald begründen, so muß man die ursprünglichen, natürlichen Grenzen einer jeden Holzart aufsuchen, jene Standorte finden und studieren, an welchen eine Holzart zu versagen beginnt, da die Bedingungen für ihr Gedeihen ungünstig geworden sind; man muß jene Standorte
kennen lernen, in denen sie am besten, in optimo gedeiht; mit anderen Worten, man muß die ursprüngliche, natürliche Verbreitung, die natürliche Vegetations- wie die künstliche Anbauzone feststellen, wenn man Waldbau nach naturwissenschaftlichen Grundsätzen lernen und in die Praxis übertragen will.

Auf breitestem naturgesetzlicher Grundlage baue ich seit zwölff Jahren die Lehren der Waldbegründung in meinen Vorträgen zu München auf; Hunderte von Schülern des In- und Auslandes haben diese Lehren in sich aufgenommen: wo diese heranwachsende, forstliche Generation zur Feder greift, verrät ihr Gedankengang deutlich, daß sie auch in der Praxis festhält und bestätigt findet, was ihr in den Lernjahren als „graue Theorie“ erschien.

Oberster Grundsatz des Waldbauens ist, daß jede Holzart in ihrer heimatischen Zone angebaut werden soll; wird hiervon abgewichen, so sind durch waldbäufliche Maßnahmen oder Auswahl des Standortes die klimatischen Verhältnisse der neuen Heimat jenen der ursprünglichen möglichst nahe zu bringen: für fremdländische Holzarten, um die es sich hier handelt, gilt der Grundsatz, daß sie in der mit der Heimat am nächsten verwandten parallelen Klimazone angebaut werden sollen; soll hiervon abgewichen werden, so gilt der oben für einheimische Arten erwähnte Grundsatz.

Von diesen Erwägungen ausgehend, berechnete ich vor 15 Jahren für Europa und Nordamerika die Klimaparallelen auf S. 384—396 des bereits zitierten Buches; der Fluch der Zahlen hat es wohl fertig gebracht, daß die Nachweise über die Ansprüche der fremden Holzarten an Luftfeuchtigkeit, Regenmenge, an die Temperatur während der Monate Mai bis August, über die Gefahren durch erste und letzte Fröst, durch tiefste Wintertemperaturen nur wenige gelesen haben. Wirft man den Pflanzenzüchtern Systemlosigkeit bei ihren Anbauversuchen vor, so erhält man die Antwort: „Da wir von den Ansprüchen der Holzarten an das Klima nichts wissen, so probieren wir die Holzarten überall: es wird sich dann schon zeigen, was herauskommt.“ Leider kommt aus solchen Versuchen, die zumeist in einer raffinierten Anhäufung von Gefahren und unnatürlichen Bedingungen für die fremden Holzarten bestehen (ausgebaute Boden, Kahlfäche, Frostlage, Wildverbifs usw.), zumeist nichts heraus, was für Wissenschaft oder Praxis der Pflanzenzucht verwertbar wäre: um so mehr aber dient das negative Ergebnis zum Beweise der Berechtigung des Vorurteiles gegen fremde Baumarten.

Um Zahlen zu besitzen, mit welchen die Klimate der einzelnen Vegetationszonen beschrieben und verglichen werden können, habe ich für die sogenannten Hauptvegetationsmonate Mai bis August, inkl.
die durchschnittliche relative Feuchtigkeit, Regenmenge und Temperatur für mindestens fünf Jahre berechnet. Die Vegetation von Mitteleuropa, der Buchenregion des winterkalten Laubwaldes, spielt sich zum größten Teil innerhalb dieses Zeitraumes ab; in der obersten Waldregion der Fichten sind nur die Monate Juni und Juli Vegetationsmonate, ja der alpinen oder polaren Region der Krummholzer stehen nur sechs Wochen für die vegetative Tätigkeit zur Verfügung, während in der Zone der immergrünen Laubhölzer die Vegetationszeit natürlich länger dauert als vier Monate. Eigentlich sollte es nicht nötig sein, über derartige Anfangsgründe der Pflanzenphysiologie zu schreiben; allein es steht irgendwo allen Ernstes gedruckt, daß ich behauptet hätte, die Vegetationszeit an der oberen Waldgrenze dauere vier Monate! Man hat sodann meine Zonenbildung und die daran geknüpfte Forderung, die fremden Holzarten zunächst nur in der klimatischen Parallelzone anzubauen, als wertlos hinzustellen versucht, weil die einheimischen Holzarten keine Zonenbildung zeigten (?), oder weil die einheimischen Holzarten mit großem Vorteil außerhalb ihrer Heimat angebaut würden. Es ist zunächst zu bemerken, daß es viele Tausende von Standorten künstlichen Anbaues gibt, in denen das Klima dem der Heimat der Holzart gleich ist, z. B. zahllose Anbaupunkte der Alpenläarche in Mittel- und Nordeuropa: anderseits wird die Heimat einer Holzart im unberührten Walde zwar vorwiegend, doch nicht überall und ausschließlich durch die Temperatur bestimmt; Mitbewerb anderer Holzarten, Feinde aus der Tierwelt, ungünstige Bodenverhältnisse spielen hierbei ebenfalls mit; hebt nun der Mensch durch künstliche Eingriffe die benachteiligenden Faktoren aus, so ist es selbstverständlich, daß eine Holzart über ihre ursprüngliche Heimat noch hinauswandern kann. Die künstliche Verbreitung kann noch weiter von der Heimat hinweg sich erstrecken, wenn der Mensch auf die normale Betätigung des Pflanzenlebens, Samenbildung und natürliche Wiederverjüngung verzichtet, sich vielmehr mit der bloßen Schaftbildung begnügt. Sobald aber der Mensch seine künstelnde Hand zurückzieht, verschwindet die Holzart allmählich wiederum, das ursprüngliche Verhältnis stellt sich wieder her; denn die menschliche Tätigkeit hat nur die Erkenntnis des Naturgesetzes verschleiert, nicht aber dasselbe aufgehoben.

Wäre es möglich, die einer jeden Vegetationszone dargebotene Wärmeumsäume genau zu berechnen, so wäre damit allerdings der beste Maßstab zur Beurteilung der Holzarten in ihren Ansprüchen an die Wärme gegeben; allein die Feststellung scheitert an der Unvollkommenheit der Messung und Berechnung. Nach Kalenderfrühjahr und -Sommer entwickelt sich auf der nördlichen Hemisphäre nur jene Region, in welcher der Kalender entstanden ist, das ist die Edelkastanienzone; die durchschnittliche Jahrestemperatur allein ist ungenügend, ebenso
II. Abschnitt. Landschafts-, Klima- und Holzartenparallelen usw.

wie die höchste Temperatur des Sommers oder die tiefste des Winters für den Vergleich von Landgebieten mit großen Unterschieden in der Luftfeuchtigkeit. Nimmt man für Mitteleuropa die tiefsten Winter-temperaturen als Klimamasstab, so besitzen die „wärmeren“ Ebenen die kältesten Punkte; so herrschte z. B. 1879/80 im Donautal bei Ingolstadt bei 400 m Erhebung über dem Meere nach meiner Messung eine tiefste Temperatur von -32°C, während gleichzeitig in den Alpen bei 800 m Erhebung nur -4°C beobachtet wurden. Das Gesetze der Temperaturumkehr erklärt es vollständig, weshalb viele fremde Holzarten in der „wärmeren“ Ebene während des Winters erfrieren (z. B. Sequoia gigantea), in den kühleren Höhenregionen aber von Winterfrösten unberührt bleiben.

Auf die einschneidende Bedeutung der Feuchtigkeit der Luft für das Verhalten der Holzarten, für die Wahl der Anbaumethode und andere waldbauliche Maßnahmen habe ich wohl zuerst hingewiesen; es ist daher nötig, auch hierüber während der entscheidenden Jahreszeit Auskunft zu erhalten.

Alle Angaben von Temperaturen (in Celsius), relativer Feuchtigkeit (in Prozenten), Regenmengen (in Millimetern), welche vor der fertiggedrückten Zahl der durchschnittlichen Jahresstemperatur stehen, beziehen sich auf den Zeitraum Mai bis August inkl.; die Monatsnamen wie Mai, September bedeuten letzter bezw. erster Frost; die letzte Zahl gibt die tiefste bis jetzt beobachtete Temperatur.

Die Höhenangaben für die Zonen in Metern sind nur Durchschnittswerte, wie sie gegeben werden müssen, um nicht durch die Zahlenfülle mehr zu verbergen als zu enthüllen; schon der Umstand, daß die Vegetationszonen ebenso wie die Klima allmählich ineinander übergehen, daß an solchen Grenzpunkten lokale Einflüsse wie Exposition, Boden, waldbauliche Behandlung eine Verschiebung der Holzarten nach Süden oder Norden, nach unten oder oben bewirken können, macht große Zahlen, d. h. Durchschnittsrechnungen nötig.

In die Holzartenparallele wurden nur forstlich wichtig erscheinende oder für die Zone charakteristische Schmuckbäume von mehr als 8 m Höhe aufgenommen.
A. Tropische Waldzone, das Palmetum; bleibt außer Betracht, da in Europa keine Parallele besteht.

B. Subtropische Waldzone der immergrünen Eichen und Lorbeerbaume, das Lauretum.

<table>
<thead>
<tr>
<th>Nordamerika</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantische Region.</td>
<td>Zentrale Region.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Himalaya</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Asien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan.</td>
<td></td>
</tr>
<tr>
<td>Formosa zwischen 500 und 2000 m (nach D. Hondo), Riukiu-Inseln. Shikoku, Kinshu, südl. Hondo bis ca. 500 m, 25°, 80%, 1000 mm. 17°, März, Nov. —7°.</td>
<td></td>
</tr>
<tr>
<td>Quercus incana, fenestrata usw., Cupressus torulosa, Buxus, Cedrus Deodār, Pinus excelsa, Rhododendron, immergr. Magnolia.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>China.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Süddeutschland bis zum Kuen-lun. Erhebung? Klima?</td>
<td></td>
</tr>
<tr>
<td>Q. glauca, senecapiphila, usw., Machilus, Litzaea, Cinnomanum Camphora, Buxus, Ilex, Olea, Passania, Zwergpalmen, Camellia, Podocarpus, Cryptomeria japonica, Pinus sinensis, Cunninghamhia sinensis, Keteleeria, Glyptostrbus heterophylla, Juniperus rigida, chinensis, recurva, Biota orientalis, immergrüne Magnolienart.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Südostkuste, insulare Westküste von Mitteleuropa, 20—22°, 50—60%, 50—100 mm, 16—19°, Dezbr., Febr., —5°.</td>
<td></td>
</tr>
<tr>
<td>Quercus Suber usw., Q. ilex, Laurus nobilis, Arbutus Umedo, Buxus, Ceratonia, Olea, Cupressus fastigiata, Pinus canariensis, Pinea, maritima, aleppensis, Chamaerops-Palme.</td>
<td></td>
</tr>
</tbody>
</table>

Landwirtschaftliche Kulturpflanzen der Zone: Citrus-Arten, Baumwolle, Zuckerrohr, Reis.

Ca. Gemälsigt warme Zone des winterkahlen Laubwaldes, wärmere Hälfe, das Castanetum.

Nordamerikana

<table>
<thead>
<tr>
<th>Atlantische Region</th>
<th>Zentrale Region</th>
<th>Pazifische Region</th>
</tr>
</thead>
</table>

Asien.

Japan.

Von 2200 m bis? Klima? Cedrus Deodar, winterkale Magnolia, Prunus, Pinus excelsa.

China.

Europa

<table>
<thead>
<tr>
<th>südliches</th>
<th>mittleres</th>
</tr>
</thead>
</table>

Landwirtschaftliche Kulturpflanzen: Reis, Wein, Tabak, Maulbeerstrauch, edelste Obstsorten.

Nordamerika.

<table>
<thead>
<tr>
<th>Atlantische Region</th>
<th>Zentrale Region</th>
<th>Pazifische Region</th>
</tr>
</thead>
</table>

Cb. Gemälsigt warme Zone des winterkalten Laubwaldes, kühlere Hälfte, das Fagetum.
<table>
<thead>
<tr>
<th>Asien.</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Himalaya</td>
<td>Japan</td>
<td>China</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>südliches s</td>
<td>mittleres m</td>
<td>nördliches n</td>
</tr>
<tr>
<td>Appenin 900—1400 m, Balkan 800—1200 m, Pyrenäen 800—1300 m.</td>
<td>südlich bis 900 m, nördlich bis 600 m.</td>
<td>südlichste Gebiete von Schottland, Dänemark, Kurland, Livland und Estland.</td>
</tr>
<tr>
<td>16—18°, 70%, 250 mm, 7—12°, Mai—Septbr., -25° bis -30°.</td>
<td>Fagus silvatica, Quercus pedunculata, sessiliflora, pubescens, hungarica, Acer, Ulmus, Betula, Carpinus, Prunus, Alnus, Populus, Fraxinus, Salix, Tilia, Pinus Peuce, silvestris, austriaca, leukodermis, Picea excelsa, Abies pectinata, Pinosapo, cephalonica.</td>
<td></td>
</tr>
<tr>
<td>Ural.</td>
<td>Kaukasus.</td>
<td></td>
</tr>
<tr>
<td>1000—1400 m.</td>
<td>Erstes Auftreten von Abies Nordmanna, Picea obovata, Larix sibirica (erstes Auftreten).</td>
<td></td>
</tr>
</tbody>
</table>
D. Gemäßigt kühle Region der Fichten, Tannen und Lärchen, das Picetum oder das Abietum oder das Laricetum.

Nordamerika

<table>
<thead>
<tr>
<th>Atlantische Region</th>
<th>Zentrale Region</th>
<th>Pazifische Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittl. Unionsstaaten von 1800 m aufwärts, nördl. von 1000 m an, Kanada 500 m nordwärts bis zum Meeresniveau, 15°, 75—80%, 400—600 mm, 6°, Mai, Septbr., −15° im Süden, −40° im Norden. Sorbus, Betula, Populus, Alnus, Abies Webbiana, Pinus strobus, resinosa, Banksiana, Larix americana.</td>
<td>Felsengebirge über 1000 m im Süden, über 500 m im Norden. Klima? Sorbus, Betula, Picea pungens, Engelmanni, Pinus Murrayana, aristata, scopulorum, Pseudotsuga glauca. Abies lasiocarpa, concolor, Juniperus pachyph. Larix Lyallii, occidentalis.</td>
<td>Sierra Nevada 2000-2800m, Kaskadengebirge 1500 bis 2700 m, Alaska unter dem 55° 0—500 m, unter dem 60° 0—150 m Erhebung. 10°, 80%, 500mm, 6°, −16°. Sorbus, Betula, Alnus, Abies grandis, concolor, nobilis, amabilis, magnif., Pinus contorta, monticola, Balfouriana, flexilis, albicaulis, ponderosa, Picea SitaKaënsis, Brewerianna, Pseudotsuga Douglasii, Tsuga, heterophylla, Puttoniana, Larix occidentalis.</td>
</tr>
</tbody>
</table>

Himalaya

östl. 2900—4300 m, westl. 2500—4000 m, Klima? Sorbus, Betula, Alnus, Salix, Abies Webbiana, Pindran, Tsuga dumosa, Picea Morinda, Larix Griffithii.

Asien

<table>
<thead>
<tr>
<th>Japan</th>
<th>China</th>
</tr>
</thead>
<tbody>
<tr>
<td>südl. von 1500—2700 m, nördl von 1000—1500 m, Eso von 500—1000 m, Kulleninsel Iturupp über 100 m, Urupp 12—15°, 80—90%, 300 bis 1000 mm, 4—7°, −30°. Sorbus, Betula, Alnus, Salix, Abies Veitchii, Mariesti, sachalinensis, Pinus koraiensis, parviflora, densiflora, Picea bicolor, hondoensis, ajanensis, Glehnia, Larix leptolepis, kurilensis.</td>
<td>Sorbus, Alnus, Betula, Salix, Populus, Picea Schrenkiana, Wilsoni, Neoveitchii, Mastersii, brachyta. likiangensis, bicolor, ajanensis, Abies Delavavi, Fargesii, Veitchii, Pinus Bungeana, Henry, sinensis, Larix Principis Ruprechtii u. dahurica, sibirica (?), thibetica, Griffithii, chinensis.</td>
</tr>
</tbody>
</table>

Kleinasien

| Abies cilicica. |

Europa

<table>
<thead>
<tr>
<th>südliches</th>
<th>mittleres</th>
<th>nördliches</th>
</tr>
</thead>
<tbody>
<tr>
<td>von über 1300—2300 m.</td>
<td>über 900—2100 m im Süden, 600—1000 m im Norden.</td>
<td>über 500 m.</td>
</tr>
</tbody>
</table>

10—14°, 75%, 600—800 mm, 3—7°, Mai, Septbr., −35°. Sorbus, Alnus, Betula, Salix, Populus, Abies pectinata, Pinsapo, cephalonica, Picea excelsa, Omorica, Pinus silvestris, uncinnata, Cembra. Peuke, Larix europæa.

Ural

| Abies sibirica, Pinus sibirica, Picea obovata, Larix sibirica. |

Kaukasus

| Abies Nordmanniana, Picea orientalis, |

Landwirtschaftlich: Sommerroggen, gepflegte Alpenwiesen.
E. Kühle Region der Krummhölzer und Halbbäume, Waldgrenzen, das Alpinetum, das Polaretum.

<table>
<thead>
<tr>
<th>Nordamerika</th>
<th>Zentrale Region</th>
<th>Pazifische Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>nördl. Kanada, 7—9°, 80%—95°, 9°—45°.</td>
<td>Felsengebirge bei 3500 m, tiefste Temperatur?</td>
<td>Sierra Nevada 3000 m, Alaska 500—1200 m (Südhänge der Eliasalpen)</td>
</tr>
<tr>
<td>Betula, Alnus, Salix, Juniperus, Abies hudsonica, Pinus Banksiana, Larix americana.</td>
<td>Pinus flexilis, Pinus albicaulis, Pinus aristata, Picea pungens u. Engelmanni, Larix Lyallii.</td>
<td>8°, 90%—95%, 150 mm, —2°, —25°.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Himalaya</th>
<th>Japan</th>
<th>Sibirien</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 m, tiefste Temperatur —10°.</td>
<td>mittl., bei 2500 m, nördl. über 1000 m, Kurilen über 300 m, von Urupp nordostwärts, von der Meeresküste aufwärts, —30°.</td>
<td>Strauchförmige Reste der vorigen Zone insbes. Birken (Taiga). Picea obovata, Larix sibirica, L. dahurica, Cajanderi.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Asien</th>
<th>Sibirien</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>südliches</td>
<td>Japan</td>
<td>Sibirien</td>
</tr>
<tr>
<td>nördliches</td>
<td>mittlere Europa Pinus pumila, Picea excelsa, Pinus Cembra, Larix europaea.</td>
<td>—45°.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europa</th>
<th>Landwirtschaftlich: Ungepflegte Alpenweiden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>südliches</td>
<td>Landwirtschaftlich: Ungepflegte Alpenweiden.</td>
</tr>
<tr>
<td>südliches</td>
<td>Appenin bei 2500 m, Balkan 2000 m.</td>
</tr>
<tr>
<td>über 600 m.</td>
<td>mittlere Europa Pinus pumila, Picea excelsa, Pinus Cembra, Larix europaea.</td>
</tr>
</tbody>
</table>

8—10°, 80%—95%, 400 mm, 1—3°, Juni, August, —35° bis —45°. Im Norden Strauchbirken, Erlen, Weiden, Picea excelsa, Pinus septentrionalis, im mittleren Europa Pinus pumila, Picea excelsa, Pinus Cembra, Larix europaea.

| 2) Mayr, Fremdländische Wald- und Parkbäume. |

Wesentlich ungünstiger liegen die Aussichten für die westamerikanischen Holzarten in Europa. Zwar bietet Europa während der Vegetationszeit den westamerikanischen Holzarten eine größere Wärmesumme, dafür aber liegen die Wintertemperaturen in Europa sehr viel tiefer als an der pazifischen Küste; die tiefsten Temperaturen differieren bis zu \(14^\circ\) C. zu ungunsten Europas; darin liegt für die westamerikanischen Holzarten in Europa eine ständige Gefahr. Auch die Luftfeuchtigkeit ist in Europa nicht so günstig wie an der Pazifik. Nur an der Küste des Atlantischen Ozeans und seinen Ausbuchtungen, das ist somit in Großbritannien, Nordwestfrankreich, Belgien, Holland, Friesland, finden die pazifischen Holzarten gleich große Luftfeuchtigkeit. In der Tat beweist das bisherige Verhalten der nordwestamerikanischen Holzarten die Richtigkeit meiner vor 15 Jahren auf Grund der Klima- und Landschaftsparallele ausgesprochene Ansicht, daß dies Gebiet für eine Anzahl von westamerikanischen Holzarten geradezu
als das Optimalgebiet in Europa sich erweisen m"ustete. Diesem Verhältnis nähert sich das bewaldete Hügelland von Mitteleuropa, da mit der Erhebung bis zur Zone der Fichte und Lärche hier die Luftfeuchtigkeit steigt und die extremste tiefste Wintertemperatur nicht in dem Maße sinkt, als die gesamte Sommerwärme abnimmt. In den wärmeren, trockeneren, von Spät- und Frühfrösten häufig heimgesuchten Ebenen mit ihren sehr tiefen Wintertemperaturen aber dürften sich für die pazifischen Holzarten die Schwierigkeiten des Anbaues bis zur Unmöglichkeit steigern.

Für Holzarten aus dem zentralen Nordamerika, aus dem Felsengebirge und seinen nördlichen und südlichen Ausläufern liegen in den entsprechenden Landschaften Europas die Aussichten für das Gedeihen günstig; Feuchtigkeitsverhältnisse der Luft und des Bodens sind in Europa sogar durchweg günstiger; die Douglastanne des Felsengebirges (Pseudotsuga glauca) zeigt nirgends im kontinentalen Europa den Gipfelverlust und die Bräunung und Schütte der Nadeln durch Winterfröste, wie sie ihre schneller wüchsige, dunkler grüne Schwester (Pseudotsuga Douglasii) bei allen Wintern mit — 20° C. und darunter aufweist.

Vergleicht man die Temperatur der Waldzonen Europas mit jenen der Waldzonen Japans, so bestehen kaum in die Wagschale fallende Unterschiede; wesentlich verschieden aber sind die Feuchtigkeitsverhältnisse; den japanischen Sommer beherrscht der Regenmonsoon, der für die Pflanzenwelt außerordentlich günstige Bedingungen schafft; dagegen ist die Vegetationsruhe in Japan kühl und trocken; auch für die japanischen Holzarten werden nur luftfeuchte Gebiete (Küsten- oder größere Waldgebiete) mit einiger Sicherheit für forstliche Zwecke in Aussicht genommen werden können; denn es steht zu erwarten, daß die japanischen Holzarten gegen Trockenperioden während der Vegetationszeit, wie solche Europa kennt, um so empfindlicher sich erweisen werden, je kontinentaler das Klima.

Kein Land des asiatischen Kontinents nähert sich in seinem Klima enger dem von Europa als China; das ganze kontinentale Europa von der atlantischen Küste bis zum Ural, wie von Sizilien bis Norwegen wiederholt sich, so weit dies jetzt schon beurteilt werden kann, in seinem Klima in riesenreiche von China. Wenn auch genauere zahlenmäßige Angaben der klimatischen Faktoren für China nicht bekannt sind, so ist der allgemeine Witterungscharakter schon aus der Verteilung und Zusammensetzung der Waldvegetation erkennbar. China steht noch unter dem Einfluß eines bereits abgeschwächten Regenmonsoons, der aber oft bis zum Mai und Juni sich verzögert; erst mit seinem Einzug brechen Frühling und Sommer zugleich an; es wäre zu erwarten, daß infolgedessen die chinesischen Holzarten später als andere verwandte Holzarten ihre Vegetation beginnen, somit auch gegen Spätfröste härter wären. Auf den regenreichen Sommer folgt ein trockener Herbst von
kurzer Dauer und ein langer Winter mit Trockenperioden und Schnee-
fällen im Norden und Regengüssen im Süden. Nicht aus der Baumwelt von Rußland und Sibirien, nicht aus der Baumflora von Japan sind noch für Europa wichtige, asiatische Kulturbäume zu erwarten, sondern viel-
mehr aus China, dessen Baumwelt uns nur deshalb nicht in die Augen fällt, weil sie durch die chinesische Kulturtätigkeit bis auf späliche Reste vernichtet wurde, und weil sie dort, entfernt von der besser durch-
forsten Ebene, in den Gebirgen verborgen liegt, wo sie sich bis vor kurzem der Kenntnis der Europäer entzogen hat.

Auch das Waldgebiet des indischen Himalaya steht unter dem Einflusse des sommerlichen Regenpassates: bei Elevationen, welche Landschaften mit gleichen Durchschnitts-Jahrestemperaturen wie eu-
päische Standorte in sich schliessen, sind die Winter beträchtlich milder; selbst in der Tannenzone, welche den Wald nach oben hin abschliesst, sinkt das Thermometer augenscheinlich nicht unter —10° C. Er läst sich erwarten, daß die indischen Holzarten in Mitteleuropa viel ungünstiger sich verhalten werden als die westamerikanischen; nur Südengland und die Küstengebiete von Südeuropa, die warmen und luftfeuchten Täler der Südalpen haben sich bisher als eine zweite Heimat für die kältesten Himalaya-Bewohner erwiesen.

Der Atlas an der Nordküste von Afrika, der Kaukasus, der Ural liegen bereits außerhalb der Monsunregion; ihr Klima liegt in der Einflußsphäre jener Faktoren, welche auch das Klima von ganz Europa bedingen; das bisherige Verhalten der wichtigsten Holzarten dieser Gebirge in den klimaparallelen Gebieten Süd- Mittel- und Nordeuropas weist schon darauf hin, daß sie mit der geographischen Annäherung an die europäischen Holzarten auch in ihren Eigenschaften der europäi-
schen Baumflora näher gerückt sind. Noch enger wird der Parallelis-
mus im Klima und im Verhalten der Holzarten, wenn die höheren bezw. kühleren Regionen von Mittel- und Südeuropa mit tieferen Lagen von Nord- und Mitteleuropa in Vergleich gezogen werden. Die euro-
päische Lärche ist überall nördlich der Alpen ein Fremdling, sie gedeiht um so besser, je näher man sie in ihrer neuen Heimat dem Klima der alten bringt, vorausgesetzt, daß man sie nicht wie eine Fichte oder Föhre behandelt. Die griechische Strobe, die serbische Fichte, die spanische wie die griechische Tanne verhalten sich in den ihrer Heimat klimanahen Lagen von Mitteleuropa unter natürlichen Wuchs-
bedingungen nicht anders, als wären sie in den Alpen, im Schwarzwald, in den Vogesen selbst heimisch.
Die Ergebnisse der bisherigen Anbauversuche mit fremden Holzarten in Europa haben keinen Anlaß gegeben zur Korrektur der von mir vor 15 Jahren ausgesprochenen Grundsätze. Sie haben nichts Neues ergeben, was mit den Beobachtungen in der Heimat der fremden Holzarten und was mit den auf Grund dieser Beobachtungen gegebenen Anbauregeln in Widerspruch stände: nichts was meiner und anderer Auffassung bezüglich der Akklimatisationsfrage widerspräche.

Die Frage der Anpassung einer Holzart, der Akklimatisation ist nur dann gegeben, wenn das Klima des neuen Standortes wirklich wesentlich verschieden ist vom Klima des Heimatgebietes; wo diese Bedingung nicht erfüllt ist, kann von einer Akklimatisation keine Rede sein. Es kann somit die Frage, ob eine Anpassung wirklich vorliegt, nur dann entschieden werden, wenn das Klima des alten und jenes des neuen Standortes genügend bekannt ist; es ist somit die Beantwortung dieser Frage durchaus nicht so einfach, wie es sich in der Vorstellung derer widerspiegelt, die das Wort „Akklimatisation“ so freigebig gebrauchen. Will eine exotische Holzart nicht wachsen, so schiebt man zunächst die Schuld dem Klima zu, auch wenn die klimatischen Verhältnisse der Heimat des Baumes gar nicht erforscht sind. Schon der Weg, auf dem nach dem Nichtgedeihen einer Holzart geforscht wird, kann falsch sein. Vom Klima abgesehen, können noch zahlreiche andere ungünstige Faktoren einwirken, wie ungünstige Bodenverhältnisse, Beschädigung durch Menschen, höhere und niedere Tiere, Erkrankungen durch Pilze, Folgen der Milßhand-
Auspflanzung, Österreich, Deutschland Kümmert sich und zumeist oft so namentlich Belgien, J. fehlen, uns ihren an für wäre auffallend mehr das Klima nicht paßt. So wenig man berechtigt ist, das Nichtgedeihen einer Holzart rundweg mit ihrer Unfähigkeit, sich zu akklimatisieren, zu erklären, so wenig ist man berechtigt, das Gedeihen einer Holzart schlankweg mit der erfolgten Akklimatisation dieser Holzart zu erklären. Was diesen Punkt anlangt, so muß man J. Booth') und Professor Dr. Göppert zustimmen und gestehen, daß mit dem Worte „Akklimatisation“ von seiten der praktischen Pflanzenzüchter, zumeist der Gärtner, oft unbewußt, doch auch vielfach zum geschäftlichen Vorteile ein großer Unfug getrieben wird.

III. Abschnitt. Die Anbaufähigkeit der fremdländischen Holzarten usw. 199

Wie gegen negative verhalten sich die Bäume auch gegen positive Temperaturen. Eine größere Wärme während der Vegetationszeit fördert bis zu einer gewissen Höhe und Menge die Wuchskraft der Pflanzen; überschreitet die gebotene höhere Wärme ein gewisses Quantum (Höhe oder Dauer), so beginnen alle Pflanzen zu leiden durch Wärmeüberschuß. Wird die Fichte von ihrem kühleren Heimatgebiete hinweg in die wärmere Zone der Eichen und Buchen wie im nordwestlichen Deutschland, in die tieferen Lagen von Belgien, Nordfrankreich verbracht, wo überall die europäische Fichte ebenso eine fremde Holzart ist wie eine japanische oder amerikanische Fichte, so treibt sie anfänglich außerordentlich rasch in die Höhe, aber bald erlahmt ihre Wuchskraft, Zapfenentvägnis stellt sich ein, und ehe die volle forstliche Brauchbarkeit erreicht ist, bringen Rotfäule, Insekten, Wurzelparasiten oder andere Feinde den kümmern den Stamm zum Absterben. Dafs es für jede Holzart nördlich und südlich der Tropen eine Wärmegrenze gibt, dafs somit auch das Klima von Mitteleuropa und damit auch von Deutschland für gewisse Holzarten zu warm sein kann, das wollen Pflanzenzüchter nicht glauben. Man darf es ihnen, die ja in erdrückender Mehrheit ihre ganze Lebensarbeit innerhalb einer einzigen Vegetationszone verrichten, nicht verdenken; für die innerhalb dieser Zone heimischen Holzarten ist selbstverständlich nirgends der natürliche Standort zu warm, aber auch nirgends zu kalt; aber die unnatürlichen Standorte, die infolge von Entwaldungen erhitzen, trockenen Südhänge oder abgekühlten, tiefen Lagen können mit ihren extremen Temperaturen das Aufwachsen selbst der in der Zone heimischen Holzarten gefährden, ja unmöglich machen; jede Pflanzung der Tanne, der Buche auf Kahlflächen, insbesondere in kahl gehauenen Frostlöchern beweist dies. In solchen Ortschaften ist eben durch die Tätigkeit des Menschen, durch die Entwaldung gleichsam eine Verschiebung des betreffenden Standortes im Winter in eine kühler, im Sommer in eine wärmere Klimazone eingetreten.

Weil man in Mitteleuropa vermutet, dafs es dort nirgends einer Holzart zu warm, sondern nur zu kalt sein könne, ja dafs jede Holzart vom Ausland zu uns gebracht, sich an die größere Kälte akklimatisieren müsse, um zu gedeihen, und wenn sie gedeih, diesen Prozeß glücklich überstanden haben müsse, streben wir danach, von allen fremden Holzarten Sämereien aus möglichst kühlen Regionen zu erhalten. Da-bei unterläuft stets der Irrtum, dafs man im nördlichen Standorte immer von vorn herein den kühleren vermutet, obwohl diese Erscheinung durch die Höhenverhältnisse geradezu umgekehrt werden kann, wie zum Beispiel in Bayern.

Das Verlangen nach besonders frostharten Individuen hängt eng zusammen mit der unnatürlichen Aufzucht aller Fremdländer bei uns in
III. Abschnitt. Die Anbaufähigkeit der fremdländischen Holzarten usw. 201

von Jahrtausenden, die seit der letzten Eiszeit über Europa hinweggegangen sind, bestehen noch heute Vegetationszonen parallel den Klimazonen, welche ganz bestimmte Holzarten beherbergen. Gäbe es aber eine Anpassung, so wären längst die Vegetationszonen verschwunden; längst hätte die immergrüne Eiche in das Gebiet der winterkahlen Bäume, Fichten, Tannen und Buchen in die Region der immergrünen Laubholzarten einwandern müssen.

Die zahllosen von der Natur alljährlich über die Heimatzone hinausgetragenen Keime nehmen vom neuen Klima nichts an, was sie ausrüsten könnte im Kampfe mit den ungünstigeren, klimatischen Verhältnissen, im Kampfe mit den konkurrierenden Holzarten. Die Eindringlinge werden nach langem Siechtum millionenweise wieder erdrückt.

Pflanzenzüchter pflegen zu glauben, die Akklimatisierung sei eingetreten, wenn nur irgendwo außerhalb der natürlichen Heimat eine Holzart aufwächst, sie vermuten, daß selbstverständlich jeder Standort außerhalb des Heimatgebietes klimatisch verschieden sein muß. Baumformen, die in einigen Eigenschaften sich gleichen, in anderen verschieden sind, werden, je nachdem man die willkürliche Grenze zwischen der Zahl der gleichen und ungleichen Eigenschaften legt, bald als Art, bald als Varietät aufgefaßt. Findet sich da eine nördlicher von der anderen, so ist es für die Systematiker, welche die Heimat der Holzart und deren Biologie nicht kennen, vielmehr an Stelle des Lebens und der Werkstätte der freien Natur tote vertrocknete Exemplare und ihr Herbarium zu setzen pflegen (ich erinnere an die goldene Zeit der weit zurückliegenden systematischen Wissenschaft, die nichts war als ein Herbariumsstudium), selbstverständlich, daß die nördlicher stehende Form eine Klima- und Kältevarietät der südlichen sei. Ist man auf die nördlicher stehende Form zuerst gestoßen, geht man von dieser Art aus und sagt, die südlicher stehende Form ist eine Klimavarietät der nördlichen. Von der Willkürlichkeit, die schon darin liegt, und davon ganz abgesehen, daß der nördliche Standort das gleiche Klima, ja sogar ein wärmeres besitzen kann als der südliche (z. B. Bayern), ist man so fest überzeugt, daß die nördlichere Heimat Kälteformen erzeugen muß; daß man die im nördlichen Schweden und Norwegen wachsende Fichte einfach als Kältevarietät bezeichnet hat, obwohl sie genau so spätfrostempfindlich ist als die südländische Fichte, die ihrerseits so wenig durch Frühfrost oder Winterfrost leidet wie die Nordländerin. Von sibirischen Holzarten spricht man überhaupt nur mit einem Kälteschauer und vermutet in ihnen die Eskimos unter den Holzgewächsen angesichts der Tatsache, daß von allen Tannen, von allen Lärchen, welche im mittleren Europa angebaut werden, keine mehr durch Spätfrost beschädigt werden als gerade die einheimischen Arten und die sibirischen! Die Natur ist völlig aufserstande, spätfrostharte Formen zu
züchten, einerseits weil Kahlfächer nur durch außerordentliche Er
eignisse im Naturwalde entstehen, andererseits weil sie diese Kahlfächer zuerst mit von Haus aus frostärmeren, leichtsamigen Lichtholzarten (Birken, Pappeln, Weiden usw.) besiedelt, ehe sie die empfindlichere, meist schwerersamigen Arten unter dem Schutze der ersteren anbaut.

Von Fremdländern, die in neuerer Zeit in großer Zahl nach Europa gelangen, hofft man baldige Akklimatisation, vergisst aber das Verhalten der Fremdländer, die schon seit Jahrhunderten sich bei uns befinden. Von der Robinia Pseudoacazia, der falschen Akazie, weifs jeder, dafs sie alljährlich durch Früh- und Winterfröste ihre Triebspitzen verliert, dafs sie bei sehr tiefen Wintertemperaturen (1879—80) bis zum Wurzelstock, selbst in älteren Exemplaren abfriert; dafs sie ein voller Nutzbaum nur in den wärmsten Lagen von Mitteleuropa wird, mit anderen Worten, dafs sie gedeiht in einem Klima, das dem ihrer Heimat gleich oder angenähert ist, dafs sie aber außerhalb desselben wegen der Unfähigkeit der Akklimatisation stets in Gefahr ist, beschädigt oder getötet zu werden. Und dies angesichts des Umstandes, dafs auch der Same immer von in Europa gewachsenen Individuen genommen wird, dafs die Art des Anbaues eine fortgesetzte Adaptierung an verfrühte und intensive Winterfröste herausfordert. Noch drastischer sind die Bei-
spiele bei der seit bald zwei Jahrtausenden nördlich der Alpen an-
gebauten Edelkastanie, bei der Walnufts. Regelmäßig gehen ihre End-
spitzen durch Früh- und Winterfröste verloren, und ein kalter Winter (1879—80) tötet ganze Bäume; sie haben es wie die Akazie bis heute nicht vermocht, ihre Vegetation früher zu beginnen, um rechtzeitig fertig zu werden.

Mit einem Atemzuge verlangen wir von den nordischen Samen-
provenienzen, dafs die von dort stammenden Keime ihre Eigentümlichkeit gehoffter Spätz frosthärte beibehalten, und erwarten von Keimen, die aus südlicheren, wärmeren Provenienzen stammen, dafs sie die Eigentümlichkeit geglaubter besonderer Frostweiche durch Akklimatisation sofort ablegen werden. Von den „kalten“ Provenienzen hoffen wir, dafs sie nur Frosthärte mitbringen, dafs sie aber die für uns unangenehm, dem kalten Klima dagegen typischen Eigenschaften einer langsameren Entwicklung, kürzeren Schäftsformation und dergleichen zu Hause lassen; wahrlich, wir entscheiden die wichtigsten Fragen in der Lebensgeschichte der Holzarten nach dem Grundsatz, dafs wir glauben, was wir wünschen!

Wenn es eine Anpassung überhaupt gibt, wie soll man dann bei
unseren einheimischen Holzarten, z. B. der Fichte, die doch Jahr-
tausende an ein und derselben Stelle sich findet, die Erscheinung
deuten, dafs es an ein und derselben Standortes Individuen
gibt, die in ihrem Vegetationsbeginn volle sechs Wochen differieren?

Blätter, ihre Gipfelknospen und einen Teil des Triebes; die andere Hälfte blieb ganz unversehrt; an ihnen ließ sich deutlich verfolgen, daß die am weitesten für die Vegetationsruhe vorgeschrittenen Pflanzen am wenigsten litten. Die unnatürliche Behandlung resp. das fortgesetzte Einpacken in Kisten und Herumstoßen zwischen anderen Gepäckstücken hat den Vegetationsabschluß einiger Exemplare verzögert.

Vor Jahren pflanzte ich Kryptomerien in Grafrath in einer Mulde, in welcher das Minimumthermometer während mehrerer Winter bis auf \(-28{ }^\circ\) sank. Alle Kryptomerien erfürten dort, mit Ausnahme einer einzigen Pflanze, welche ohne alle Beschädigung aus den Prüfungen in diesem kalten Frostloche hervorging; anderseits fanden sich auf einem mit 200 Kryptomerien bepflannten Südhange sechs Individuen, die während des Winters völlig erfrornten, während die übrigen 194 durch zehn Jahre hindurch bis heute noch keine Spur von Beschädigung durch Winterfrost aufweisen. Wir stehen hier vor einem Rätsel, das nicht gelöst wird, wenn wir die Unterschiede als individuell, als spezifische Anlage bezeichnen. Als solche individuelle Differenz muß auch aufgefaßt werden die Erscheinung, daß von ein und demselben Mutterbaume spät- und frühreibende Individuen, somit spätfrostharte und spätfröstweiche Individuen abstammen können. Seit zehn Jahren habe ich dreimal den Versuch ausgeführt, von zwei Roßkastanien, deren eine um 14 Tage früher als die andere ergrünte, blühte und ihre Früchte reife, Samen zu sammeln und auszusäen. Jedesmal ergab sich die Eigentümlichkeit, daß gerade unter den Nachkommen des später treibenden Baumes solche waren, die früher als die Nachkommen des früher treibenden Baumes ergrünten, und daß unter den Nachkommen des früher treibenden Baumes wiederum solche waren, die später ergrünten als alle Nachkommen des spätreibenden Baumes. Auch dieser Versuch zeigt die Variabilität der biologischen Eigenschaften in den Nachkommen ein und desselben Baumes: es zeigt aber auch, daß es ein vergebliches Beginnen sein würde, spätreibende Individuen zur Weiterzüchtung und Erzielung einer spätreibenden, somit einer später reibenden Rasse benutzen zu wollen. Das ganze Akklimatisationsbestreben mit Holzarten hat sowohl in Frankreich (Vilmorin) als in Deutschland nur negativen Erfolg aufzuweisen; gelänge es, eine frosthärtere Rasse zu züchten, warum sollte es nicht möglich sein, dann auch eine schneebruchfeste Föhrenrasse, eine sturmfestere Fichtenrassse, eine sandbodenliebende Eiche, eine schattenertragende Lärche, eine schnellwüchsige Eibe, eine geradschaftige Föhre oder eine krummfertige Tanne u. dgl. zu züchten; wer dies für unmöglich hält, kann nicht zugunsten der in erster Linie gewünschten Frosthärte eine Ausnahme machen.

Angesichts solcher und anderer ähnlicher Erfahrungen kann ich nur zu dem Schlusse kommen, daß in einer jeden Pflanze, mag das

Haben einerseits meine Versuche und Beobachtungen mich dahin geführt, den Wert der Provenienz des Saatgutes bezüglich der Wärme- und Kältefrage der Waldbäume zu bestreiten, so haben andere Forscher, insbesondere der jetzige Professor Dr. A. Cieslar in Wien, auf Grund von Versuchen und Beobachtungen die Überzeugung gewonnen, dafs die Provenienz doch nicht völlig wertlos sei. Meines Erachtens nach ist zwar die unbestreitbar vorhandene vollendete Schafftform der Föhre in den russischen Ostseeprovinzen auf das luftfeuchtere Klima des Landes und dessen Einflufs auf Schattenerträgnis, Astbildung, Feinde usw. zurückzuführen, aus welchen Gründen auch die kühlern, luftfeuchten Lagen der Alpen und Mittelgebirge (Fichtelgebirge, Rhön, Erzgebirge u. a.) ebenfalls Föhren mit vollendeter Geradschaftigkeit erzeugen; allein da die Versuche von M. de Vilmorin in Les Barres mit Rigaföhren- samen nach seiner Ansicht aus Vererbung nur geradschaftige, die Versuche Max von Sivers in Römershof bei Riga mit Darmstädter Föhrensamen nach seiner Ansicht aus Vererbung nur krummschaftige Föhren geliefert haben, so wäre diese Frage einer erneuten Prüfung zu unterwerfen, und meine darauf bezüglichen Vorschläge sind auch vom internationalen Verbande der forstlichen Versuchsanstalten angenommen worden.

Es ist allgemein bekannt, dafs die „nordische“ Föhre langsamerwächsig ist als die mitteleuropäische; gerade durch ihre Raschwüchsigkeit und ihre Gleichheit in ihrer morphologischen Erscheinung beweist die Rigaföhre, dafs sie nicht zur nordischen, sondern zur mitteleuropäischen Föhre gerechnet werden muß.

Da man heute noch die nordische Föhre als identisch betrachtet mit der mitteleuropäischen Föhre, so war auf den ersten Blick die Provenienz des Saatgutes von Wichtigkeit geworden, als es mir zuerst gelang durch mehrjährige Versuche den Nachweis zu erbringen1), dafs die

1) Forstwirtschaftliches Centralblatt 1902—1903.
nordische Föhre, d. h. die Föhre aus norwegischem, nordschwedischem und finnischem Saatgute gegen den Schüttepilz (*Lophodermium pinastri*) widerstandskräftiger als die mitteleuropäische Föhre sei; die nordische Föhre wird vom Schüttepilz zwar befallen, aber nur zu einem kleinen Prozentsatzte getötet.

Allein hierbei hat sich gezeigt, daß diese nordische Föhre mit der mitteleuropäischen nicht identisch ist: ein Komplex von äußeren und inneren Eigenschaften (siehe VII. Abschn.) ist bei der nordischen Föhre verschieden, konstant und erblieb, so daß man sie als eigene Art, *Pinus septentrionalis*, trennen muß; jene, welche auf die Biologie einer Pflanze keinen Wert legen, mögen mit der Varietät *Pinus silvestris* var. *septentrionalis* sich einstweilen begnügen. Damit ist jedoch die Frage der Provenienz verschoben: sie fällt zusammen mit der Frage nach einer anderen Föhre.

Es ist vor allem Dr. A. Cieslaars Verdienst, an dem schwierigen Probleme der Erblichkeit des Zuwachsvermögens gearbeitet zu haben; bei seinen Versuchen wuchsen in den ersten Jahren Pflanzen aus kühlerem Klima langsamer als solche aus wärmeren; freilich verlor sich der Unterschied sehr bald, so daß es zweifelhaft ist, ob man eine so rasch verblassende Erscheinung mit „Vererbung“ deuten darf; denn eine „vererbte“ Eigentümlichkeit muß wenigstens für die Lebensdauer der Pflanze „konstant“ sein. An der Lösung der Frage läßt sich der Einfluß der Luftfeuchtigkeit und Bodenfeuchtigkeit — bei im gleichen Verbande begründeten starken und schwachen Pflanzen geniefsen die starken, wegen Beschattung des Bodens, auch eine größere Bodenfeuchtigkeit — auf die Wuchskraft der Holzarten nicht wohl aus- schalten. Die Förderung der Wuchsgeschwindigkeit durch erhöhte Luftfeuchtigkeit ist in allen Waldgebieten der nördlichen Hemisphäre nachweisbar; enthält doch der pazifische Wald sowohl in Amerika wie in Ostasien, dem das Maximum an Luftfeuchtigkeit geboten ist, die schnellwüchsigsten Holzarten und sind auch die größten Riesen unter den Waldbäumen im Feuchtigkeitsbereiche des Stillen Ozeans, des größten Feuchtigkeits spenders, zu finden. Ja selbst im kleinsten Maßstabe zeigt erhöhte Luftfeuchtigkeit zum Beispiel an See- und Flufssäumen eine auffallende Förderung der Wuchsgeschwindigkeit aller Holzarten. Wenn auch Luft- und Bodenfeuchtigkeit teilweise einander zu ersetzen imstande sind, derart, daß den Pflanzen im lufttrockenen (meist wärmeren) Gebiete ein frischerer, feuchterer Boden zugewiesen werden muß als jenen im feuchteren (meist auch kühleren) Gebiete, so ist es doch oft Täuschung, wenn wir glauben, Pflanzen in den feuchtesten Standorten müßten bei der außerordentlichen Wasserzufuhr besonders lebhaft in die Höhe wachsen: die Holzarten auf stumpfigen, moorigen Böden scheinen ein Beweis gegen die Richtigkeit des Satzes, daß Luft- und Bodenfeuchtigkeit das Wachstum fördert,
zu sein. Allein die neuesten Untersuchungen hierin haben gezeigt, daß Pflanzen auf Moor- und Sumpfböden, auf Böden, welche die Humussäuren in Lösung enthalten, nicht an Wasserüberfluß, sondern an Trocknis leiden, weil die Humussäuren die Pflanzenwurzeln in ihrer Wasseraufnahme beeinträchtigen; daher auch vielfach dieselben Pflanzen oder Pflanzen-
typen auf den trockensten, wie auf den nassensten Moorböden sich finden.

Was den Anspruch der Holzarten an die Bodenfeuchtigkeit anlangt, so muß ich bekennen, daß ich den Irrtum verbreitet habe, als seien die Sitkafichte, die Balsamfarne, die ostamerikanische Lärche und viele andere Holzarten dadurch in ihrem waldbaulichen Verhalten besonders auffällig, daß sie mit Vorliebe in sumpfigen, anmoorigen Böden wachsen. Ich bin heute imstande, diesen Irrtum selbst zu korrigieren durch ein Naturgesetz, das den Irrtum aufklärt und zu einem für den Anbau einheimischer wie fremdländischer Holzarten gleich wichtigen allgemeinen Satze wird. Das Gesetz lautet, daß jede Holzart in ihrem klimatischen Optimum einen frischen Boden liebt, daß sie aber gegen ihre Wärmegrenze hin frischeren bis feuchten, gegen ihre Kältegrenze trockeneren Boden beansprucht. Von den oben genannten Holzarten, welche in den Vereinigten Staaten tatsächlich im sumpfigen Standorte wachsen, hatte ich eben nur die Wärmegrenze, die Südgrenze, gesehen; schon im kanadischen Gebiete ziehen sie sich auf frischen, normalen Gebirgsboden zurück, wo sie gleichzeitig ihre optimale Entfaltung erreichen. Die Sitkafichte im Westen, die Thuja, alle Lärchen, ja mit einem Worte sämtliche Holzarten verhalten sich gleich: Je wärmer der Standort, je trockener die Luft, desto wasserreicher muß der Boden sein. Gerade aus diesem für den Anbau der Holzarten entscheidenden Satze erhellt abermals die Wichtigkeit der Erkenntnis der Vegetationszone sowohl des heimatischen als des fremden Gebietes. Bringt man zum Beispiel die Sitkafichte in Mittel-
europa in einer Höhenlage von 500 m und darüber in den feuchten Boden, so erriert sie unfehlbar und wird in wenigen Jahren bis zur Unkenntlichkeit entstellt. Verpfanzt man sie aber in dieser Klimalage auf frischen, normalen Boden, so wächst sie wie die einheimische Fichte und wird nicht mehr beschädigt.

Die Sumpfzypresse (Taxodium distichum) bewohnt schon in ihrem Optimum, in der Edelkastanienzone, sumpfige Standorte; an ihrer Südostgrenze am Rande der Subtropen steht sie mitten im Wasser für den größten Teil des Jahres; in ihrem kühlnsten Verbreitungsgebiete, Beginn der Rotbuche, steht sie in feuchtem Boden. Bringt man die Sumpfzy

{Taxodium distichum) bewohnt schon in ihrem Optimum, in der Edelkastanienzone, sumpfige Standorte; an ihrer Südostgrenze am Rande der Subtropen steht sie mitten im Wasser für den größten Teil des Jahres; in ihrem kühlnsten Verbreitungsgebiete, Beginn der Rotbuche, steht sie in feuchtem Boden. Bringt man die Sumpfzypresse in noch kühleres Klima, d. h. mitten in das Fagetum (Graf-rath bei München 570 m), und setzt sie dort, weil sie Sumpfzypresse heißt, in den Sumpf, so erriert sie dort in wenigen Jahren bis zum Boden hinab. Verbringt man aber die Sumpfzypresse auf den normalen

Im Urwald lassen sich manche Gesichtspunkte zur Beurteilung der Ansprüche einer Holzart an die Bodengüte gewinnen; in ihm stehen die Holzarten nach einem mehrhundertjährigen Kampfe ums Dasein auf ihren speziellen Standorten; der Kampf unter den erwachsenen Individuen wenigstens ist zeitweise zum Stillstande gekommen; es ist bemerkenswert, daß auf geringen Bodenarten, mit unverwitterten, kiesigen oder reichlich sandigen (kieselsäurehaltigen) Bestandteilen von der subtropischen bis zur kühlen Waldvegetation die Föhren fast alle übrigen Holzarten verdrängt haben, eine Erscheinung, die neben ihrem klimatischen Verhalten veranlaßt, die Föhren überhaupt als Vertreterinnen anderer Holzarten aufzufassen, überall wo den letzteren der Boden zu geringwertig ist.

Mir sind nur wenige Fälle bekannt, in denen ausgeprägt geringwertige Sandböden auch einem Laubholzbaume noch genügten; so betreten Fraxinus viridis und Carpinus porcina die nur wenig feuchteren Einsenkungen in Kiefernbeständen; Quercus nigra, Catesbaei und falcata nehmen als Sträucher oder Halbbäume noch mit den trockneren, kiesig-sandigen Hügelzügen vorlieb, die ein Oberholz von Kiefern, wie die
palustris", auch inops, mitis und rigida, bedeckt. Bemerkenswert ist in dieser Richtung auch Quercus dentata, jene japanische Eiche, welche die grössten Blätter und den knorrigsten Stamm besitzt; die Eiche überkleidet nicht nur die Sandkegel der niederen Vulkane der Insel Eso, sondern bewohnt selbst den Dünensand der Küste, wo sie vom Winde zur Seite gebläst, ganz nieder bleibt und mit ihren Ästen an der Erde liegt; doch sobald vorliegende Hügel oder Felsenblöcke gegen den Wind Schutz bieten, erhebt sie sich zu ganz respektablen Dimensionen. Sandböden, wenn auch arm an Nährstoffen, aber reich an Sickerwasser oder mit grosser Luftfeuchtigkeit bedachte Lagen werden in Nordamerika von Chamaecyparis-Arten, von Thuja, in Japan von Thujopsis bevorzugt, welche Holzarten, da Schatten ertragend, keine Licht liebenden, für solche Standorte passenden Laubhölzer (Erlen) aufkommen lassen.

Selbst unter den Kiefern bestehen wieder Verschiedenheiten hinsichtlich ihrer Ansprüche an die Bodengüte: ich verweise auf die Abbildung eines Profiles durch eine Kieferninsel in Wisconsin im Abschnitt VII; die Strobe nimmt den besten, die amerikanische Rotkiefer den mittelguten und die dort kleinste von den drei Kiefern, die Banksiana, die trockeneren, ärmeren, hochgelegenen Sandböden ein; in den Alleghanies okkupiert die Pechkiefer (rigida) mit mitis und inops den besseren sandig-kiesigen Boden, auf dem noch die Laubhölzer gut fortkommen, überlässt dagegen trockenere, laubholzarme Hügelköpfe der niedrigen, astreichen Stechkiefer (pungens).

Es erhebt daraus, dass die Bäume, welche die geringsten Ansprüche an die Bodengüte stellen, nicht bloß infolge des Standortes, sondern überhaupt schon geringere Gesamtdimension aufweisen als die Bäume erster Grösse, welche in den ersten Jahrzehnten ihres Lebens bescheiden sind, ebensolange sie noch ihrer Dimension nach zu Sträuchern oder Bäumen dritter Grösse zu zählen sind. Erst mit der Annäherung an das Stangenholzalter zeigt es sich, dass jede Holzart typische Bedürfnisse an Bodengüte besitzt; ob sie daher zweite und erste Grössendimension erreicht, hängt, vom Klima abgesehen, von der Güte des Bodens ab. Da dass die riesenhaften Pinus ponderosa, Jeffreyi, die Thuja und andere in der Jugend bescheiden sind, berechtigt daher nicht zum Schlusse, dass sie auf den mageren Böden eine grössere Rente abwerfen als unsere einheimische Kiefer, und dort zu Riesen empowachsen werden. Da dass das Optimum der weitaus grössten Zahl der Holzarten auf dem besten, mineralisch kräftigsten, frischen, lockeren Boden liegt, den allmählich die Landwirtschaft an sich ziehen wird, geht aus der speziellen Betrachtung der Holzarten hervor; aber schon innerhalb des Verbreitungsbezirkes entfernen sich die verschiedenen Holzarten nach geringeren Standorten hin verschieden weit. Auch darin erblickt man eine Ursache, welche Anlaß zur Bildung einer für Mayr, Fremdländische Wald- und Parkbäume. 14
geringere Böden besser gearteten Rasse geben könnte. Für die Wieder-
verpflanzung ist es ja wichtig, ob eine Pflanze auf gutem oder schlechtem
Boden aufgewachsen ist, wegen der dadurch bedingten enger oder
weiter ausgedehnten Bewurzelung. Aber da's auf einem geringen Boden
Formen gezüchtet werden könnten, die bescheidener sind als der Typus,
wobei man allmählich zu einer geradezu extremen Bescheidenheit weiter-
züchten könnte, ist ebenso unbestreitbar, als da's eine Föhre, deren
Nachkommen fortgesetzt auf gutem Boden stehen, die Eigenschaft ver-
lieren müsse, auf geringem Boden noch aufzuwachsen.

Zu Beginn dieses Abschnittes habe ich darauf hingewiesen, da's
eine Holzart innerhalb ihres Optimums mehr oder weniger boden-
vag, außerhalb desselben aber an Boden von spezifischer Beschaffen-
heit, von bestimmter mineralischer Zusammensetzung gebunden ist.
Bringt man Sämereien aus den Grenzgebieten, z. B. der Rotbuche, von
den kalkreichen Böden hinweg in ihr klimatisches Optimum auf kalk-
arne Böden, so müßte, wenn eine Anpassung an den speziellen Stand-
ort der Heimat stattfinden würde, die Buche kümmerlich, während um-
gekehrt die Buche in ihrem Optimum die Fähigkeit erwerben müßte,
auf kalkarmem Boden außerhalb des Optimums ebenfalls zu gedeihen,
was das Verhalten der Buche an ihrem Grenzgebiete widerlegt.

Nirgends ist bis heute nachweisbar, da's es einer Pflanze, welche
hohe Ansprüche an das Licht stellt, gelingen könnten, sich an ein
geringeres Maß von Licht zu gewöhnen, so da's Ursache bestünde,
da's einmal aus einer Lichtholzart eine Halbschatten-, aus einer Halb-
schattenholzart eine Schattenholzart werden könnte. Wenn etwas
Ähnliches vorzugehen scheint, ist wohl die Deutung nicht richtig ge-
wesen. Schwankungen in den Ansprüchen an das Licht sind ja er-
kenntlich, sie stehen unter dem allgemeinen, für alte Holzarten geltenden
Naturgesetze, das lautet: Bei größerem Wärmegemüfs, auf besserm
Boden sind die Ansprüche aller Holzarten an das Licht geringer als
in entgegengesetzten Verhältnissen. Eine Holzart, die in ihrem klami-
schen Optimum eine Halbschattenart ist, z. B. Esche, Ahorn, Linde,
Hainbuche, Ulme und andere, wird im kühlern Klima zu einer Lichtholz-
art, im wärmeren zu einer Schattenholzart: eine Lichtholzart wird im
wärmeren Klima oder auf bestem Boden zu einer Halbschattenholzart:
eine Schattenholzart, z. B. Tanne, wird an ihrer Kältegrenze zur Halb-
schattenholzart. Aber nirgends ist bis heute etwas bemerkbar, da's
das größere Lichtbedürfnis aller Holzarten auf schlechterem Boden
vererblich wäre auf ihre Nachkommen, so da's diese nun auch im
Optimum lichtbedürftiger sich zeigten als die dort ansässigen Angehörigen
gleicher Art; ebensowenig ist umgekehrt der Fall nachweisbar. Was
diesen Punkt anlangt, so beruhigen sich übrigens dabei die Pflanzen-
züchter und denken nicht an Provenienz oder Züchtung.
Es fehlt nicht an Andeutungen in der forstlichen Literatur, dafs man von der Einwirkung forstlicher Maßnahmen auf die Bäume, wie die Aufzucht geradeschaftiger, astreiner Stämme, eine Rasse erwarten, welcher diese Eigenschaften durch Vererbung angeboren wären; freilich dürfte dann diese Rasse nicht anders als die Vorfahren forstlich behandelt werden, denn sonst gingen die so leicht erworbenen Eigenschaften wiederum eben so leicht verloren. Praktisch wäre damit nichts gewonnen, selbst wenn eine solche Zuchtwahl wirklich stattfände, wie sie durch Darwins übertreibende Theorie der Entwicklung der Arten auf Grund äußerer Einfälle und Zufälligkeiten nahegelegt wird.

Obwohl schon bei dem ganz anders organisierten, viel bildungsfähigeren und vor allem viel kurzeibigeren Tiere Beispiele sehr selten sind, dafs Eigentümlichkeiten, welche während des Lebens durch Einwirkung von aufsenn am Tierkörper entstanden sind, auf Nachkommen sich vererben, glaubt man doch an die Vererblichkeit der Vorteile, die ein guter Boden, eine normale forstliche Behandlung dem Baume während seines Lebens gewähren, und warnt vor einem Samenbezug, wenn der Samen von aus irgendeinem Grund schlechtwüchsigen, krüppeligen, gedrehten, astigen, kränkelnden, farbkernarmen Mutterbäumen entnommen würde. Bis heute ist, trotzdem es sehr nahe liegt, dafs sehr viel Saatgut gerade von leicht erreichbaren, niederer, jüngerer Individuen stammt, nicht nachweisbar, dafs die Unterschiede im Saatgut einer sogenannten guten und einer sogenannten schlechten Provenienz in etwas anderem beständen als in Gröfseverschiedenheiten und in der Keimzahl. Die Samenkerne der kräftigeren Individuen sind größer und schwerer als jene der schlechteren; ich habe schon erwähnt, dafs in ein paar Jahren die Gröfseverhältnisse der Pflanzen aus Samen verschiedener Gröfse sich ausgleichen; unter den Sämereien beider Provenienzen eilen einzelne voran, andere bleiben zurück. Wäre die Anpassung so leicht, dafs eine einzige Baumgeneration genügen würde, um ungünstige, durch Standort und Erziehung an ihr auftretende Eigenschaften anzuerben, so ist es Selbstverständlich, dafs auch wiederum eine Generation genügen müfs, damit bessere Standorte und bessere Erziehung die Folgen einer ungünstigen Samenanlage wiederum sofort beseitigen würde. Damit ist alles beim alten, und für
die Praxis ist damit die ganze Provenienzfrage eine doktrinäre ohne praktischen Wert.

Überblickt man vorstehende Erörterungen und vor allem die bisherigen Beweise für die Wichtigkeit der Provenienz, der speziellen Auswahl einer bestimmten Örtlichkeit für den Bezug von Sämereien, so ist nur in einem Falle ein unzweifelhafter Beweis erbracht, dafs der Provenienz eine Bedeutung für die Praxis zuerkannt werden mufs. Dies ist der Fall, wenn es sich um Saatgut verschiedener Baumarten, aber nicht um Saatgut verschiedener Standorte derselben Art handelt.

Ein letzter Punkt, der bezüglich der Anbaufähigkeit zu erwägen übrigbleibt, ist das voraussichtliche Verhalten der fremden Holzarten im europäischen Waldes gegenüber den tierischen und pflanzlichen Feinden. Im Samenkorn kann keine der Krankheiten aus der alten Heimat in die neue mitgebracht werden, wohl aber wandert im Samen die Disposition für gewisse Krankheiten, wie sie in der Langsamwuchsigkeit einer Holzart, in ihrer geringen Überwachungsfähigkeit, in der Zeit, in der die Pflanze sich belaubt und dergleichen liegen kann; dagegen ist es wohl möglich, dafs äußerlich am Samen als Verunreinigung anhaftende Teile des Krankheitsträgers mit in die neue Heimat verschleppt werden. Auf diesem Wege sind zum Beispiel auch *Péronospora viticola* und die Reblaus zu uns gelangt; lebende Exemplare, die alle Feinde des Jugendstadiums beherbergen können, kommen selten zu uns. Dafs den fremden Holzarten gegen Feinde überhaupt eine größere Widerstandskraft als den einheimischen Arten innewohnt, ist wohl möglich, aber durchaus nicht nötig und nach den bisherigen Erfahrungen auch nicht wahrscheinlich. Im Urwalde, der aus verschiedenen Holzarten von verschiedenen Altersstufen gemischt ist, fehlen die verheerenden Epidemien, wie sie Pilze und Insekten hervorrufen können; dennoch liegen Beweise vor, dafs beide Gruppen auch im Urwalde recht empfindlich schaden können.

Es fehlt nicht an Anzeichen, dafs die Fremdländer bei uns in Europa sogar mehr Feinde haben als in ihrer Heimat: vom Menschen abgesehen, sind die fremden Arten wahre Leckerbissen für die Tiere des Waldes, vom Hirsch angefangen bis herab zu den Mäusen; Rehe lieben so sehr die seltenen aromatischen Delikatessen. dafs es eine Verschwendung von Zeit und Geld ist, fremde Baumarten anbauen zu wollen, wenn man solche nicht gegen diese Tiere schützen kann und will; auch die Insekten, voran der Rüsselkäfer, der Föhrenknospewickler und andere, finden Geschmack an den Exoten. Dagegen müfs auch erwähnt werden, dafs die Rinde und Holz bewohnenden Feinde aus der Gattung *Hylesinus* und *Bostrychus* bis heute sowohl gesunde wie kranke und tote starke Stangen der Scheinzypressen (*Chamaceyparis)*.

Wenn es recht ist, daß man die einheimischen Baumarten mit schweren Geldopfern gegen Beschädigungen durch Menschen, Wild, Insekten und Pilzen zu schützen sucht, so ist es den fremdländischen Bäumen gegenüber nur billig, daß man die gleichen Grundsätze obwaltete.
Vierter Abschnitt.

Die Anbauwürdigkeit der fremdländischen Holzarten.

sagt: „Als im vorigen Jahrhundert die Bäume Amerikas zuerst nach Europa kamen, erwartete man von der Akklimatisierung besondere Vorteile für die Forstwirtschaft; diese Erwartungen sind nicht erfüllt worden, indem sich alsbald herausstellte, daß dieselben an Holzwert den Einheimischen Europas nachstehen, während sie sie häufig an Schnelligkeit des Wachstums übertreffen, wie es bei weicheren Holzarten gewöhnlich ist; bei Paris sah man einen Baum in 30 Jahren 80 Fuß hoch und 3 Fuß dick werden: jene Schilderungen von den häufigen Windfällen in den Oregonforsten, wo der Boden des Waldes von den niederstürzenden Riesenbäumen bedeckt wird, ist ebenfalls ein Beweis von der kurzen Wachstumsperiode, verbunden mit geringer Widerstandskraft gegen Störungen von außen.“ Hier fehlt zum Vergleiche nicht nur die Angabe des Bodens und Klimas, sondern sogar jene der Holzarten selbst, und der Hinweis auf die Oregonforste ist ebenfalls mißglückt, denn die stürzenden Baumriesen sind nicht ein Ergebnis einer kurzen Wachstumsperiode, sondern eines solchen von 300—400 Jahren und darüber; die Riesen stürzen auch dann noch nicht an Altersschwäche, sondern infolge der fortgesetzt durch die Waldungen rasanenden Boden- und Stammfeuer.

Die Zahl der Auserwählten unter den Anbaufähigen vermindert sich sehr beträchtlich vom streng forstlichen Gesichtspunkte aus. Anbauwidrig sind alle Holzarten, welche einen waldbaulichen Vorteil aufweisen. Ein solcher Vorteil wäre es, wenn eine exotische Holzart in ihren Ansprüchen an die Bodengüte noch bescheidener wäre als die bescheidenste unter unseren einheimischen Holzarten, als die Föhre, wenn sie also auf den geringsten Sand- und Kiesböden noch fortkommen und Erträge liefern könnte, oder wenn sie, auf gleich guten Boden mit den einheimischen Holzarten gebracht, auf diesen in kürzerer Zeit größere, und zwar mit der einheimischen Art gleich gute Holzmassen erzeugen würde. Es scheint, als ob es mir in der Tat gelungen wäre, in der Pinus Banksiana eine Holzart zu entdecken, die noch bescheidener als die einheimische Föhre und vor allem auch der unserer Föhre drohenden Schüttegefähr gegenüber geradezu immum ist; dazu kommt noch unter gleichen Verhältnissen mit unserer Föhre eine größere Wuchskraft; auch die Quercus rubra, die amerikanische Rot-eiche, wie die japanische Quercus dentata sind bescheidener in ihren Ansprüchen an die Bodengüte als die mitteleuropäische Eiche; aber es steht zu befürchten, dafs, was sie auf schwächerem Boden an Quantität mehr leisten, dafür an der Qualität des Produktes wiederum verloren geht; bei der speziellen Betrachtung in den folgenden Abschnitten wird auf mehrere Holzarten, welche für ganz besonders ungünstige Standorte
IV. Abschnitt. Die Anbauwürdigkeit der fremdländischen Holzarten. 217

passender erscheinen als die einheimischen, hingewiesen, so vor allem auf sumpfbewohnende fremde Holzarten, nachdem diese Holzarten im mittleren und nördlichen Europa nur einseitig von den einheimischen Holzarten ausgenützt werden. Unter allen Umständen werden sich als hervorragend wertvoll alle *Papilionaceen*-Bäume, soweit sie anbaufähig sind, erweisen; mit ihnen kann noch auf den geringwertigsten Böden operiert und dennoch ein gutes Material erwartet werden, da sie ja imstande sind, den Stickstoff aus der Luft direkt mittels der Knöllchen an ihren Wurzeln aufzunehmen.

Die meisten Forstleute erblickten einen Vorteil einer fremdländischen Holzart darin, wenn sie weniger vom Wildverbisse leidet; Fichten mit stehenden Nadeln werden allen Ernstes zum Anbau an Stelle der einheimischen Fichte auf allen dem Wildverbisse besonders ausgesetzten Ortschaften empfohlen: konsequent durchgeführt müßten wir allmählich zum völligen Ersatz der einheimischen Arten durch eine fremde rehsehere Fichte schreiten; den entgegengesetzten, extremen Standpunkt nimmt ein Oberforstmeister ein, der geschrieben hat, dafs man vom Anbau der Weymouthskiefer Abstand nehmen solle überall da, wo sie doch nur vom Wilde aufgefressen werde! Ich erblicke im
Wildverbifs keinen Grund, um eine einheimische Holzart zurückzudrängen, und keinen, um eine fremde Holzart, die anbauwürdig ist, auszuschließen.

Fremde Holzarten sind sodann anbauwürdig, wenn sie auf gleichen Böden mit den einheimischen Arten angebaut bei gleicher Holzgüte in gleichen Zeiträumen zu astreineren, vollholzigeren Schäften aufwachsen würden als die einheimischen Arten; die Entscheidung hierüber müßte so lange ausgesetzt werden, bis eben die unter obigen angedeuteten Verhältnissen angebauten Exoten ihre Haubarkeit erreicht haben. Es wäre ganz falsch, die Baumschärfe, welche die Urwaldriesen im Laufe der vielen Jahrhunderte aufgebaut haben, mit jenen von Europas kurzlebigem Kulturwalde vergleichen zu wollen: nur für die exotischen Fichten und Tannen könnte man in diesem Punkte mit den Leistungen der einheimischen Fichten und Tannen auf einem kleinen Gebiete Mitteleuropas, nämlich in der Urwaldinsel des Fürsten von Schwarzenberg auf dem Kubany bei Schattawa, einen Vergleich anstellen; es würde sich die nach den vorausgehenden Erörterungen über Vegetationszonen nicht mehr überraschende Tatsache feststellen lassen, daß die mitteleuropäischen Fichten und Tannen im Urwalde in annähernd gleichem Zeiträume auf gleichem Standorte nicht mehr und nicht weniger leisten als die amerikanischen und japanischen Fichten und Tannen; daß die Riesendimensionen der westamerikanischen Bäume, wie der Sitkafichte, der Gelbföhre, Zuckerföhre, der Sequoia, Thuja, der Douglasie und Lawsonszyppresse und vieler anderer, außerordentlichen Anbau reizen, ist vernehmlich; auf dem besten tiefgründigsten Boden, gegen Sturmwinde geschützt, mögen sie in 400—600, die Sequoien in 4000 Jahren zu 100meterigen Dimensionen erwachsen, die uns in Stämme versetzen; aber im großen forstlichen Betriebe hiervon einen Nutzen ziehen zu wollen, ist eine Schimäre, weil die außerordentlichen Dimensionen nicht die Folge einer von Jugend auf fortgesetzten außerordentlichen Rasch- wächsigkeit, sondern eines außerordentlichen Alters sind.

Holzarten sind anbauwürdig, wenn sie den Forderungen unseres Klimas und der Wirtschaft genügen und ein besseres, d. h. ein dauerhafteres oder festeres oder schöneres, schwereres oder leichteres Holz erzeugen als unsere einheimischen Arten.

Auch über diesen Punkt kann die Frage nur endgültig entschieden werden, wenn auf ein und demselben Boden, somit unter völlig gleichen Standortsbedingungen und bei ein und derselben Erziehungsart einheimische mit fremdländischen Holzarten zusammen die Haubarkeit erreichen. Bis zu diesem Zeitpunkt, der noch 70—80 Jahre in der Zukunft liegt, dem die älteren, systemlosen Versuche, d. h. alle Versuche ohne gleichzeitigen Anbau der einheimischen Art
an demselben Standorte, können nicht als einwandfrei nach jeder Richtung hin betrachtet werden, sie geben aber sicher wertvolles Material zum Studium der Holzart für sich.

Auch für diese allgemein erhobenen Forderungen des besseren Holzes von seiten der Exoten habe ich einen auf naturgesetzlicher Basis stehenden Satz ausgesprochen, der lautet: Da eine Reihe der wichtigsten Eigenschaften des Holzes in seinem anatomischen Aufbau begründet ist, da der anatomische Aufbau aus verschiedenen Zellenelementen und deren Verbindung im Holze Gattungscharakter ist, so muß erwartet werden, daß alle Holzarten, deren Gattung im europäischen Wald vertreten ist, dasselbe Holz erzeugen werden wie die einheimische Art derselben Gattung; d. h. daß die fremdländische Fichte oder Tanne oder Lärche oder Eiche unter denselben Umständen, unter denen die einheimische Fichte, Tanne oder Lärche oder Eiche gutes Holz erzeugen, ebenfalls gutes, unter denselben Umständen, unter welchen die europäischen Arten schlechtes oder schlechtestes Holz erzeugen, ebenfalls schlechtes oder schlechtestes Holz erzeugen müssen. Daran ändert nichts der Umstand, daß etwa in einem Lande eine Holzart einen besseren Ruf, eine bessere Reklame besitzt als die Holzart derselben Gattung in dem fremden Lande. So würde sich den Amerikanern wie den Asiern, wenn sie europäische Holzarten anbauen wollten, als eine ganz hervorragend wertvolle Holzart in Europa die Fichte aufdrängen. Die Amerikaner haben ihrerseits auf Grund dieser Reklame auch massenhaft den Anbau der europäischen Fichte betrieben; sie haben sie nirgends in ihr natürliches Klima, ins Gebiet der eigenen Fichten, sondern stets außerhalb desselben, in wärmeres Klima verbracht. Sie ist dort ganz hervorragend rasch während der ersten Jugend in die Höhe geschossen; aber schon nach 30—40 Jahren hat der Zuwachs plötzlich nachgelassen. Sie überlad sich mit Zapfen, verlor die Gipfel und wurde unschön und wertlos. ehe sie eigentlich forstlich branchbare Dimensionen erlangt hatte; dafür aber gab sie rasch einen Schutz gegen Wind, was in erster Linie bezeichnend war. Es wird keinem Amerikaner einfallen, die europäische Fichte da anzubauen, wo bereits die einheimischen Fichten wild wachsen. Anderseits muß uns Europäern von den ostamerikanischen Nadelhölzern als die wichtigste und begehrenswerteste Baumart die Weymouthsföhre oder Pinus strobus erscheinen. Denn seit mehreren Jahrhunderten hat sie alles Bau- und Brettholz geliefert und etwa 9/10 des gesamten Nutzholzbedarfes befriedigt. Auf Grund dieser Reklame ist sie auch in Europa angebaut worden; aber der Gedanke, daß in dieser Holzart ein Baum erworben wurde, der alle unsere Nadelhölzer in Holzqualität überhaupt übertreffen muß, weil sie in Amerika alle Fichten, Tannen und andere Föhren hierin übertrifft, füßt auf einem
Irrtum. Es ist unzulässig, die Wertschätzung, welche Holzarten in ihrer Heimat zuteil wird, direkt auf Europa zu übertragen; auch die Qualitätsbezeichnung der Holzart kann nur ein orientierender, nicht aber ein für Europa entscheidender Wertmesser sein. In Ostamerika werden die übrigen Nadelhölzer an das Holz der Weymouthskiefer, als standard, als Maßstab angenommen; als Typus des Holzes gilt somit in Amerika ein weiches, leichtes, sehr leicht zu bearbeitendes, sehr feinringiges, feinfasseriges Material; aus diesem Grunde scheinen den Amerikanern ihre eigenen Hölzer anderer Fichten-, und Tannenholz ebenso grobfaserig wie die Nadelhölzer Europas. Bei uns in Europa ist das Vergleichsholz nicht das feinfaserige, feinringige Stroben-, sondern das gewöhnliche Fichten- und Föhrenholz. Leider ist durch einfache Übertragung amerikanischer Wertschätzungen über ihre Holzarten, welche bei uns in Europa einen ganz anderen Sinn haben müssen, die Kenntnis der wahren Eigenschaft des Holzes verirrt und der Anbau der Fremdländer dadurch geschädigt worden. Wollte man die japanischen Holzarten nach ihrer dortigen Wertschätzung auch bezüglich ihrer Branchbarkeit für Europa beurteilen, so dürften wir keine japanischen Lärchen anbauen, denn sie spielen dort eine ganz untergeordnete Rolle, aber nur deshalb, weil in Japan das Klimagebiet mit seinen Fichten und Tannen und Lärchen noch fast gar nicht aufgeschlossen ist, noch zumeist im Urwaldzustande liegt. Die ganze Waldwirtschaft aber bewegt sich dort noch in einer wärmeren Klimazone, in welcher die dort wachsenden Nadelhölzer sich den Ruf der besten Nutholzproduzenten erwerben müßten.

Wer daher glaubt, die japanische oder amerikanische Lärche und viele andere Holzarten seien deshalb für Europa wertlos, weil diese und viele andere Holzarten in ihrer Heimat fast gar nicht benutzt werden, befindet sich auf einem Irrwege. Das Urteil des Auslandes ist nur branchbar zu einer flüchtigen Orientierung, ist aber unbranchbar zum entscheidenden Vergleich mit den Leistungen der einheimischen Arten, unbranchbar zur Entscheidung, ob die betreffende Holzart in Europa anbauwürdig ist oder nicht.

IV. Abschnitt. Die Anbauwürdigkeit der fremdländischen Holzarten. 221
von technischen, ja gerade für die wichtigsten Eigenschaften
des Holzes ganz ungenügend ist. Es ist hier nicht der Ort, ausführlich auf den Wert des Faktors „Gewicht" bei der Beurteilung
der Güte eines Holzes einzugehen: ich verweise auf eine vor kurzem
erschienene ausführlichere Abhandlung1) über diese Gegenstände.
Hat sich schon innerhalb einer Art, z. B. innerhalb der mittel- und
nordeuropäischen Fichten, der Satz, daß das schwerere Holz das bessere,
tragkräftigere sei, nicht als untrüglich bewahrheitet, so ist er noch weniger
anwendbar auf verschiedene Arten ein und derselben Gattung, z. B. zum
Vergleiche der amerikanischen oder japanischen Fichten mit der euro-
päischen Fichte, und vollständig versagt das spezifische Gewicht, wenn
man verschiedene Baumgattungen, z. B. Fichten mit Föhren oder
Douglasien oder Tannen oder Tsugen hinsichtlich ihres Holzes nach
dessen spezifischem Gewichte beurteilen wollte. Wie irrig der Gedanke,
daß das schwere Holz das bessere sein muß, ist, beweist gerade der
außerordentlich hohe Wert der sehr leichtes Holz liefernden Weymouths-
föhre, der niedrige Wert der schweres Holz liefernden Rotbuche. Das
spezifische Gewicht (die Substanzmenge bei gegebenem Volumen) gibt
wie es für die folgenden Zahlenangaben beobachtet gilt, nur wieder:
Schwere, Härte und Brennkraft des Holzes.
Als einer der wertvollsten Güte-Faktoren des Holzes gilt die
Dauer des Holzes; für die Beurteilung der natürlichen Dauer des
Holzes gibt es einen zuverlässigen Maßstab in der normalen Verfärbung
des Holzes, welche bei vielen Baumarten gleichzeitig mit der Kern-
bildung in den inneren Lagen auftritt. Je intensiver, je dunkler
die Verfärbung, um so höher die natürliche Dauer. Die
Verfärbung kann in ihrer Wirkung ersetzt werden durch ätherische Öle,
wie sie bei Nadelhölzern im Holze abgelagert werden. Zur Beurteilung
der Dauer des Holzes und zur Erkennung der Hölzer sind die dieser
Schrift beigegebenen kolorierten Tafeln bestimmt. Sie geben das Kern-
holz und einen kleinen Teil des Splintholzes für 43 Baumarten in drei
charakteristischen Schnitten wieder. Für das Gefüge, d. h. die Jahres-
ingbreite, welche ja mit jedem Boden, jedem Klima, jeder Erziehungs-
weise, jedem Alter wechselt, mußte ein typisches Stück, d. h. ein Holz
gewählt werden, das weder die breiten Ringe der Jugend, oder auch
des freien Standes, noch die außerordentlich schmalen Ringe des hohen
Alters oder der starken Unterdrückung besitzt.
Neben der Dauer gelten gegenwärtig und wohl auch für lange
Zukunft hinaus als die wichtigsten, wünschenswerten Eigens-
schaften entsprechende Dimensionen (Länge und Durchmesser).
Geradschaftigkeit, Astreinheit und Vollholzigkeit. Die

1) Die Forstbenutzung von Dr. K. Gaye und Dr. H. Mayr. Berlin, P. Parey.
IX. Aufl. 1903.
Erziehung dieser Eigenschaften muß auch als Richtschnur für die forstliche Begründung und Erziehung der fremden Holzarten gelten. Diese Eigenschaften erlangen aber einheimische und fremde Holzarten gerade durch solche forstliche Maßnahmen (enge Bestandsgründung, Bestandsschlüsse), welche die Schwere des Holzes beeinträchtigen. Das schwerste Holz der Douglasien zugleich mit der größten Gesamtholzmasse erzeugen die weitständigen Pflanzungen in Schottland; das Material ist jedoch geringwertig wegen seiner Ästigkeit und Abholzigkeit 1).

Der Wert einer fremden Holzart für gärtnerische und für dekorative Zwecke ist um so größer, je schöner, voller, gleichmäßiger sich die Krone aufbaut. Das Gegenteil von Bestandsschlüssen, nämlich der freie Stand, erzeugt nach dieser Richtung hin die höchsten Werte. Es ist nicht auffallend, daß die Waldanlagen in England und Schottland gerade deshalb fürstlich so geringwertig sich ausgebildet haben, weil sie eben in weitständigen Verbänden von Gärtnern ausgeführt wurden.

Der Satz, daß alle Arten ein und derselben Baumgattung ein in ihren anatomischen Aufbau und damit auch in vielen physikalischen und technischen Eigenschaften gleiches Holz erzeugen müssen, gleichgültig, ob diese Arten in Europa, Amerika oder Asien wachsen, scheint doch eine große Ausnahme zuzulassen; die Föhren, welche unter dem Gattungsnamen *Pinus* zusammengefaßt werden, wollen diesem Gesetze sich nicht fügen.

1) Vgl. Prof. Dr. Schwappach, Zeitschr. für Forst- und Jagdwesen.
Für den überwiegend naturwissenschaftlich denkenden und arbeitenden Pflanzenzüchter sind die Sektionen der Föhren keine Spielereien der Botaniker, sondern Gruppen von größter Bedeutung für die Lebensgeschichte der in den Gruppen zusammengefassten Arten. So erscheint eigentlich als Gattung, was man heute noch als Sektion auffäßt. Für den Anbau der Föhren, für die Beurteilung der Anbaufähigkeit und Anbauwürdigkeit gilt der Satz, daß alle jene Föhren in erster Linie anbauwürdig sind, deren Sektion im heimischen Walde noch nicht vertreten ist. Von diesen allein kann ein verschiedenes waldbauliches Verhalten, ein verschiedenes Holzprodukt erwartet werden; anderseits aber können wir mit Sicherheit voraussagen, daß keine zweinadelige Föhre der Sektion Pinaster aus Amerika oder Asien im europäischen Walde unter gleichen Umständen mehr und Besseres leisten wird als die einheimische Föhre *P. silvestris*.

Dennoch sollen auch Angehörige derselben Gattung und bei den Föhren derselben Sektion in Europa geprüft werden überall, wo eben die europäische Art ebenfalls nicht auf ihrem heimatlichen, ursprünglichen Standort sich befindet, wo somit auch die europäischen Holzarten nichts anderes sind als Exoten: eine solche exotische Holzart ist z. B. die Alpenlärche nördlich der Alpen, ist die Föhre im ganzen südwestlichen Deutschland. Differenzen, die sich zwischen den Arten einer Gattung zeigen, in Nadel und Blattbildung (z. B. Fichtenarten der Gattung *Picea*), in der Wuchsform und Schaftenbildung (Arten der Gattung *Larix*), im Widerstand gegen Insekten und Pilze infolge Verschiedenheit in der Vegetationsentfaltung, im Bau der Nadeln und dergleichen, können groß genug sein, um den Anbau zusammen mit den einheimischen Arten außerhalb des natürlichen Verbreitungsgebietes letzterer zu rechtfertigen.

Die Erwartung aber, daß man mit solchen fremden Fichten, Lärchen, Eichen, zweinadeligen Föhren und vielen anderen verwandten Arten mehr oder besseres Holz dem europäischen Boden abringen kann, als die europäischen Arten bereits liefern, das dürfte sich als Täuschung herausstellen. Alle Vorteile, welche die Anbauwürdigkeit begründen, werden von Seiten der Holzarten nicht heimischer Gattungen voraussichtlich am vollkommensten erfüllt, wenn sie in einer mit dem Heimatgebiete parallelen Klimazone angebaut werden; je weiter hinweg von dieser Zone eine Holzart in ihrer neuen Heimat gerät, um so unwahrscheinlicher wird die Anbaufähigkeit, und um so mehr werden die Vorteile schwinden, bis endlich die Grenze der forstlichen und bald auch der dekorativen Brauchbarkeit erreicht wird; wo diese Grenze liegt, kann nur durch Versuche herausgefunden werden.

Mancher unter den fremdländischen Bäumen hat längst bewiesen, daß er zur Anpflanzung an Verkehrsstraßen sich ebensogut, ja besser eignet als ein einheimischer Baum; Pflanzen mit undurchsichtigen, enge
aneinandergepressten Zweigen, wie die Thujen und Scheinzypressen, eignen sich besser zu Verkleidungen, lebenden Zäunen, Schutzkulissen, zum Figurenschnitte als heimische Immergrüne. Ja, manche Art hat heute schon Wert erlangt durch Vorzüge, an welche bei der ersten Erwägung ihrer Anbauwürdigkeit gar nicht gedacht wurde. Es liegt schon genügend Vorsicht gegen allzu große Benachteiligung durch den Anbau einer sich als anbauwürdig erweisenden Art, wenn wir kahle Flächen einer noch in ihrem Nutzen strittigen Art nicht ausschließlich einräumen, vielmehr die Kultur derselben mit einheimischen Arten mischen, damit diese beim Fehlschlagen der fremden Art in Anbaufähigkeit oder Anbauwürdigkeit als Ersatz eintreten können.

Anbauwürdig sind endlich alle Holzarten, welche neben brauchbarem Holze auch wünschenswerte Nebenprodukte, wie Harz, Gerbstoff, Zucker, eisbare Sämereien und dergleichen, hervorbringen.
Fünfter Abschnitt.

Die Echtheit und Benennung der Arten.

Es ist eine allgemeine Klage, daß Samen- und Pflanzenhandlungen sowohl des Inlandes wie des Auslandes in der Lieferung einer bestellten Ware unzuverlässig seien; auf die gewöhnlichen einheimischen und die seit Jahren im Vordergrunde des forstlichen und dekorativen Interesses stehenden fremdländischen Holzarten kann sich dieser Vorwurf wohl nicht beziehen; ich habe nicht gefunden, daß hierin bei den größeren Firmen irgendwelche Unregelmäßigkeiten bestünden. Die Zuverlässigkeit schwindet aber immer mehr; je mehr man seltenere und deshalb teurere Arten zu erlangen strebt. Der höhere Aufwand wird gern bezahlt für die bestellte, seltenere Art, nicht aber für eine andere, wenn auch noch verwandte oder gar für eine einheimische Art, welche an Stelle der bestellten fremdländischen von der Pflanzenhandlung geliefert wird. Auch hierbei braucht man noch nicht an Absichtlichkeit zu denken; obwohl sich der Gedanke daran aufdrängt, wenn man statt einer japanischen oder amerikanischen Holzart die verwandte europäische Art erhält. Seit vielen Jahren habe ich über diesen Punkt reichliche Erfahrungen gesammelt; unter anderen erhielt ich statt Abies cephalonica die einheimische Tanne, statt *Picea bicolor* fast stets *Picea hondoensis*, statt *Picea omorica* dagegen die *bicolor*, statt *Abies Mariesii* erhielt ich bis vor wenigen Jahren nur *Abies homolepis*, statt *Larix dahurica* erhielt ich *Larix americana* und die einheimische Lärche usw. Übrigens soll damit nicht gesagt sein, daß die unliebsame Ungenauigkeit im Pflanzenhandel bei den deutschen Pflanzenhandlungen besonders auffällig sei. Auf der großen Gartenbauausstellung zu Düsseldorf 1904 hatten zwei niederländische Firmen *Picea Abieskiana* ausgestellt; sämtliche Pflanzen waren aber *Picea hondoensis*. Auch in England ist die Unsicherheit ähnlich; an den Botanischen Garten zu Kew wurden von irgendwelcher dortigen Pflanzenhandlung als europäische Tanne (*Abies pectinata*) die japanische *Abies homolepis* geliefert; als *Abies Eichleri* wurde *Abies Veitchii* abgegeben, und aus Samen, der von Amerika unter

Mayr, Fremdländische Wald- und Parkbäume.

15
dem Namen *Abies firma* gesandt wurde, entkeimte durchweg *Abies homolepis*; ähnliche Erfahrungen macht jeder botanische Garten, jeder Pflanzenzüchter, der besondere Seltenheiten zu besitzen wünscht.

Wohin eine Herbariums-Systematik führt, beweist folgender Fall, der in Kew sich ereignete: von Sammlern in Ostindien wurden zwei als verschiedene Papilionaceen-Arten Herbariums-Exemplare eingesandt, welche in Blättern, Blüten, Früchten so völlig identisch waren, daß die Systematiker in Kew sie als eine Art erklären mußten; erst als der damalige in Kew anwesende Direktor des botanischen Gartens zu Kalkutta, Sir George King, der die Lebensgeschichte der beiden Pflanzen kannte, darauf hinwies, daß die beiden Pflanzen verschiedene Arten sein mußten, weil das eine Exemplar von einer Schlingpflanze, das andere aber von einem mächtigen Baum stamme,
entschied man sich natürlich in Kew für zwei verschiedene Arten. Aus demselben Grunde müssen zwei ganz gleichblättrige, gleichfrüchtige und gleichblättrige Föhren oder Eichen als gute Spezies aufgefasst werden, wenn die eine stets strauchförmig kriecht, die andere stets aufwärts wächst; ebenso sind zwei Ahornbäume, die in allen Teilen sich gleichen, dennoch als verschiedene Arten zu trennen, wenn der eine in seinen Blättern, Blattstielten und Trieben Milchsaftgefäße führt, der andere nicht; und aus demselben Grunde darf man in eine Föhrensektion nur solche Föhren aufnehmen, welchen dieselbe Anatomic des Holzes zukommt.

Wollen daher die Systematiker ihrem Wissensgebiete den Charakter als Wissenschaft bewahren, so müssen sie nicht bloß die ganze Lebensgeschichte einer Pflanze berücksichtigen, sondern sie müssen der Systematik auch die wichtigste Eigenschaft einer Wissenschaft beibehalten, sie müssen forschreiten. Man kann einzelne Phasen in der Entwicklung einer Wissenschaft für einige Zeit festlegen. d. h. die herrschende Namengebung beibehalten, aber nur bis Besseres gefunden ist. Wenn man eine einheitliche Benennung der Baumarten anstrebt mit der Absicht, diese soll dann für alle Zeiten als unveränderlich gelten, — wir haben eine solche einheitliche Benennung der Nadelhölzer in Deutschland, — so wird jede weitere Forschung, jeder Fortschritt gehemmt, die Systematik ihres Charakters als Wissenschaft entkleidet und für das spezielle Bedürfnis einer Interessentengruppe zugeschoben. Kein wissenschaftlich gebildeter Forscher, der auf Grund der Studien der Lebensgeschichte der Holzarten in deren Heimat zu anderen Auffassungen über den Art- oder Variäitätscharakter eines Baumes gekommen ist, als die bisherige herrschende Ansicht war, wird es ertragen, daß diese Interessentengruppe oder die sogenannte einheitliche Benennung künftig als Superarbitrium entscheiden soll, ob seine Forschungsergebnisse gut genug für dieselben sind oder nicht; Herbariumbesitzer und Systematiker mit solchen Hilfsmitteln mögen bestimmen und benennen, was ihnen halbwegs gebildete Pflanzen- sammler oder Laien aus fremden Ländern zusenden. Der Name, den sie geben, muß auch anerkannt werden; er ist und bleibt aber provisorisch, bis ein wissenschaftlich genügend vorgebildeter Forscher kommt und durch das Studium des Baumes in allen seinen Entwicklungsphasen in der Heimat diese Benennung bestätigt oder verwirft. Sollte er einen neuen Namen geben, so ist dieser allein gültig, auch wenn der frühere schon eingelernt war, er ist gültig, bis durch neuere Forschungen auch dieser aufgehoben oder bestätigt wird; das ist eben der Gang jeder Wissenschaft; jeder wissenschaftlich gebildete Forscher wird diese Ansicht teilen. Ich persönlich erbliebe darin, daß die von mir auf Grund meiner Reisen und Studien beschriebenen Arten die Anerkennung der seit 1890 veröffentlichten wissenschaftlich-systema-

V. Abschnitt. Die Echtheit und Benennung der Arten. 227
tischen Werke gefunden hat, auch Anerkennung der Richtigkeit meiner Auffassung.

Was die Namenkultur der nachstehenden Nutz- und Schmuckbaumarten anlangt, so habe ich mich so viel als möglich der gegenwärtig herrschenden einheitlichen Benennung angeschlossen; eine durch mehrere Jahrzehnte hindurch getriebene Beschäftigung mit der Systematik der Holzarten, umfangreiche Studien in den überseisehen Heimatgebieten der fremden Bäume geben mir das Recht, selbständig zu sein, wenn es sich um strittige oder kaum bekannte oder neue Arten handelt; selbständig und unabhängig zu sein von der momentanen Auffassung der Begriffe Art und Varietät in der botanischen Systematik. Ich fasse als Art auf einen Baum, welcher in der freien Natur auf großen Flächen hin herrschend auftritt, wenn er seine biologischen und systematischen Merkmale wiederum unverändert auf seine Nachkommen vererbt, auch wenn diese Merkmale den Systematikern, insbesondere jenen, welche nur mit Herbariums-Material arbeiten, unwesentlich erscheinen; dagegen sind als Varietäten, Variationen, Spielarten (Lusus, Varietas) alle jene, während des Lebens der betreffenden Pflanze, konstanten Formen aufgefasst, welche zufällig mitten unter der typischen Art entstanden sind und noch heute entstehen, deren Ursprung somit nicht auf Boden- und noch weniger auf klimatische Faktoren zurückgeführt werden kann, und welche überdies immer nur ganz vereinzelt aufzutreten pflegen. Solche aus noch unbekannten Gründen entstehende Formen — jeder Pflanzenzüchter hat Gelegenheit, unter seinen Pfleglingen solche Formen zu beobachten — vererben die neu- auftretende Eigenschaft gar nicht oder nur zum geringsten Teile auf ihre Nachkommen. Ihre Erhaltung geschieht meist auf ungeschlechtlichem Wege; aus der freien Natur verschwinden sie wiederum, wie sie entstanden sind.

Um bei den nordamerikanischen Holzarten den Übergang zur amerikanischen Nomenklatur einzuleiten, habe ich der bisherigen Benennung der Arten die neue amerikanische Namengebung in Klammern beigefügt; übrigens stehen durch den Kongres der Systematiker auch für die Bezeichnung der europäischen und asiatischen Baumarten noch manche Änderungen bevor; das ist zwar im Interesse der praktischen Pflanzenzüchter vorübergehend sehr lästig, aber zur Gewinnung einer einheitlichen und einer späteren Änderung nicht mehr unterworfenen Benennung nicht zu vermeiden.
Sechster Abschnitt.

Anbauergebnisse.

Angesichts des Umfanges dieser Schrift ist es nicht gestattet, alle bisherigen Ergebnisse, welche die neuen Versuche mit fremdländischen Baumarten in Europa gezeitigt haben, hier erschöpfend zu besprechen. Die Hauptsache wird besser bei den einzelnen Holzarten erwähnt; eine Aufzählung und Verarbeitung aller Ergebnisse müßte außerdem in einer speziellen, sehr umfangreichen Arbeit geschehen; dennoch bliebe sie Stückwerk, schon aus dem Grunde, weil von den meisten Staaten Europas nur mangelhafte Veröffentlichungen hierüber vorliegen, teils auch weil die vorhandenen nicht zugänglich sind.

Die ältesten Versuche reichen bei manchen Holzarten Jahrhunderte zurück, und in Gärten und Parks ist mit der Zahl der neuen Baumarten die Zuneigung zu den fremden Arten und ihrer Verwendung bis heute stetig gewachsen. Insbesondere lebhaft hat die Frage des Anbaues fremder Baumarten im Walde die Gemüter zu Ende des vorvorigen Jahrhunderts bewegt. Die damaligen Kulturen größeren Umfangs im Walde selbst waren aber fast sämtlich ein Mißerfolg, so vollständig, daß man ein volles Jahrhundert lang die Frage für den Wald als im verneinenden Sinn erledigt auffaßte. So beklagenswert dieser Ausgang der Anbaumbewegung ist, nach einer Richtung brachte auch das Scheitern der Versuche Gewinn; es führte zur Erkennung der Ursachen. Für einen aussichtsvollen Anbau der fremden Baumarten fehlte damals den Begründern jegliche Grundlage; die Versuche scheiterten an einer unrichtigen Auswahl der Holzarten und des Bodens, an der Planlosigkeit, an der Unkenntnis der waldbaulichen Eigenschaften der Baumarten, an der Unkenntnis der Heimat derselben, an der Preisgabe der Fremden an die Bäume und Tiere des Waldes. Sollte die gegenwärtig in ganz Mitteleuropa eingeleitete Bewegung abermals mit einem Fiasko enden, wie es viele erwarten, ja sogar wünschen, so
VI. Abschnitt. Anbauergebnisse.

viel ist sicher, daß diesmal den Begründern des Anbaues die Haupt-
schuld nicht beigemessen werden kann. Dieses Schuldmaß noch weiter
zu verringern, ist auch die vorliegende Schrift bestimmt.

Unter Preußens Vortritt haben in Deutschland auch die meisten
übrigen Bundesstaaten den Anbau der fremden Bäume im Walde vor
nunmehr 25 Jahren systematisch in Angriff genommen. Es gebührt
John Booth das unbestreitbare, hohe Verdienst, den Anstofs zu dieser
Anbauversuchs-Epoche gegeben zu haben. Von den 25-jährigen Ver-
suchen im Walde liegen bereits mehrfache Rechenschaftsberichte vor;
die umfangreichsten sind die preußischen, deren Abfassung seit mehreren
Quinquennien dem übrigen, verdienstvollen Leiter dieser Versuche in
den preußischen Staatsforsten, Professor Dr. A. Schwappach, obliegt.
Auf seine Darstellungen ist bei den einzelnen Holzarten mehrfach hin-
gewiesen; in Österreich standen bis vor kurzem die Versuche unter
der Leitung des jetzigen Professors der Hochschule für Bodenkultur
in Wien Dr. A. Cieslar; auch diese Berichte fanden ob ihres ge-
gediegenen Charakters an entsprechenden Orten Berücksichtigung. Von
den Anbaubeschreibungen der übrigen Staaten geben kürzere Aufsätze
in den forstlichen Zeitschriften und vor allem die Versammlungen von
Forstvereinen und ihre Jahresberichte Kunde.

In den Parken des klimatisch so außerordentlich günstigen, insu-
laren Großbritanniens sind die zahllosen prächtigen Exemplare von
fremdländischen Bäumen Freude und Stolz wohlhabender Edelleute und
Bürger; ja im Norden von Schottland hat die Scotch Arboricultural
Society eine Anbautätigkeit entfaltet, welche in ihrem Umfange nur
mit den Leistungen der größten Staatsforstverwaltungen des Kontinentes
vergleich werden kann. Aus Frankreich liegen mir nur spärliche An-
gaben vor, obwohl es dort an Versuchen wie an ausgezeichneten Kennern
der exotischen Holzarten, wie Mr. M. de Vilmorin, Mr. L. Pradé, Mr.
Hickel, Mr. Hüffel, nicht fehlt. Auch von Belgien, insbesondere
unter Crahay’s Führung, Holland, der Schweiz, Tirol und ganz be-
sonders aus Portugal, wird von größeren Anbauversuchen berichtet.

Wenn man bei dem Anbau in erster Linie von den offiziellen Ver-
suchen der Staatsbehörden spricht, so ist damit nicht gesagt, daß sie
die einzigen oder vielleicht die wichtigsten sind. Private, insbesondere
hochvermögende Kenner und Freunde der fremden Baumarten haben
ebenfalls Versuche in Park und Wald ausgeführt; manche stehen an
Großartigkeit und an Wert in ihrem Ergebnis hinter staatlichen Ver-
suchen nicht zurück.

Wollte man alle die Namen jener Männer nennen, welche vorurteils-
los an die Prüfung der Ausländerfrage im Wald herangetreten sind, in
Gegenwart und zu jener Zeit, als die offizielle Genehmigung zur Vor-
nahme von Versuchen noch nicht erteilt worden war, es würde sich
eine stattliche Liste von Pionieren ergeben.
VI. Abschnitt. Anbauergebnisse.

An mehreren Punkten von Bayerns Staatswaldungen — von der Strobe ganz abgesehen — sind fremde Bäume vorhanden, welche viel älter sind als die gegenwärtigen Versuche. So war es in erster Linie der verstorbenen Forstrat Bi errimpfel in Freising, der unentwegt schon vor 40 Jahren eine wenn auch noch im bescheidensten Umfang gehaltene Ausländerkultur vornahm; heute steht jedem die Vorahme von Versuchen frei, wenn auch als Prinzip für die Staatswaldungen eine Beschränkung auf wenige Arten und auf kleinere Flächen ausgesprochen ist. Die von mir jüngst vorgenommenen Erhebungen in den Staatsforsten von Bayern lassen deutlich erkennen, daß der Anbau der Fremdländer erst im letzten Jahrzehnt bemerkenswerte Ausdehnung erlangt hat.

Die Staatswaldungen des Königreichs Bayern sind auf 384 Forstämter und 138 Assessorbezirke, im ganzen 522 Ämterstellen verteilt. Von diesen haben 60% Anbauversuche mit fremden Holzarten unternommen; scheidet man die Strobe (Pinus Strobus) hierbei aus, so verbleiben noch 52,7%; die Mehrzahl dieser hat freilich nur gelegentlich in dem einen oder dem anderen Jahre Versuche in den Wald verbracht; die Reviere mit fortgesetzten Versuchen geben nur 13,6% aller Ämter.

In den Staatswaldungen des Königreichs stehen rund 15 Mill. Stroben (P. Strobus), fast 2 Mill. österreichische Schwarzföhren (Pinus austriaca), 1 Mill. Douglasien (Pseudots. Douglasii und glauca), 574000 Banksföhren (Pin. Banks.), 226000 Saitenfichten (Picea Sitkaensis), 139000 Lawsons-Scheinzypressen (Ch. Lawsoniana), 101000 amerikanische Weißeschen (Frax. americ), 69000 Pechföhren (Pinus rigida), 64000 Murrayföhren (P. Murrayana), 62000 Roteichen (Quercus rubra), 15000 Sumpfeichen (Quercus palustris), 11000 Stechfichten (Picea pungens), 11000 Thujen (Thuja occidentalis), 7000 Nordmanns-Tannen (Abies Nordm.), 6000 Weißfichten (Picea alba), 3600 orientalische Fichten (Picea orientalis), 2000 Robinien (Robinia Pseudoacacia), 2000 Gelbföhren (Pinus ponderosa), 1700 Schwarzwalnüsse (Juglans nigra), 1700 Weiße Hickory (Carya alba), 1000 amerikanische Spätfichten (Praunus serotina). Andere Fremdländer sind in einer geringeren Zahl vorhanden; das Schwergewicht wird augenscheinlich auf Nadelhölzer gelegt: dass die hochwertigen Baumarten wie schwarze Walnüsse und weiße Hickory bis heute noch so spärliche Verbreitung gefunden haben, ist sehr zu beklagen.

Bezüglich des Gedeihens der Holzarten hat die Erhebung folgendes gemeldet:

<table>
<thead>
<tr>
<th>Von den</th>
<th>sehr gut (I)</th>
<th>gut (II)</th>
<th>die schlechteste Note IV erhielten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroben</td>
<td>51,2 %</td>
<td>42,8 %</td>
<td>0,9 %</td>
</tr>
<tr>
<td>Douglasien</td>
<td>61,5 %</td>
<td>34,9 %</td>
<td>0,5 %</td>
</tr>
<tr>
<td>Banksföhren</td>
<td>59 %</td>
<td>34,5 %</td>
<td></td>
</tr>
<tr>
<td>Lawsons-Scheinzypressen</td>
<td>24,4 %</td>
<td>44,9 %</td>
<td>10,6 %</td>
</tr>
<tr>
<td>japanischen Lärchen</td>
<td>36,9 %</td>
<td>30,2 %</td>
<td>5,2 %</td>
</tr>
<tr>
<td>Sitkafichten</td>
<td>32,4 %</td>
<td>28,4 %</td>
<td>1,7 %</td>
</tr>
<tr>
<td>österreichischen Föhren</td>
<td>3%</td>
<td>0,2%</td>
<td>Note III 92,2%</td>
</tr>
<tr>
<td>amerikanischen Eschen</td>
<td>31,7%</td>
<td>26,4%</td>
<td>Note IV 92,2%</td>
</tr>
<tr>
<td>Roteichen</td>
<td>37,5%</td>
<td>60,6%</td>
<td>2,2%</td>
</tr>
<tr>
<td>Pinus rigida</td>
<td>—</td>
<td>61,2%</td>
<td>38,8%</td>
</tr>
<tr>
<td>Murray-Föhren</td>
<td>—</td>
<td>—</td>
<td>100%</td>
</tr>
<tr>
<td>ostamerikanischen Thujen</td>
<td>(Lebensbaum)</td>
<td>—</td>
<td>7,6% 92,4%</td>
</tr>
<tr>
<td>amerikanischen Spätfichten</td>
<td>—</td>
<td>100%</td>
<td>—</td>
</tr>
<tr>
<td>Gelbföhren</td>
<td>—</td>
<td>100%</td>
<td>—</td>
</tr>
</tbody>
</table>
VI. Abschnitt. Anbauergebnisse.

<table>
<thead>
<tr>
<th>Baumart</th>
<th>sehr gut (I)</th>
<th>gut (II)</th>
<th>die schlechteste Note erhalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kryptomerien</td>
<td>—</td>
<td>—</td>
<td>100 %</td>
</tr>
<tr>
<td>Sequoia gig.</td>
<td>—</td>
<td>—</td>
<td>100 %</td>
</tr>
<tr>
<td>Quercus palustris</td>
<td>100 %</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Populus canadensis</td>
<td>—</td>
<td>90 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Robinia Pseudoacacia</td>
<td>—</td>
<td>—</td>
<td>100 %</td>
</tr>
<tr>
<td>amerikanische Schwarznuft</td>
<td>—</td>
<td>—</td>
<td>Note III</td>
</tr>
<tr>
<td>weisse Hickory</td>
<td>—</td>
<td>42,5 %</td>
<td>53,8 %</td>
</tr>
<tr>
<td>Nordmannstanne</td>
<td>16,6 %</td>
<td>38,6 %</td>
<td>26,3 %</td>
</tr>
</tbody>
</table>

Aus dieser Zusammenstellung ein Urteil über die Anbaufähigkeit der einzelnen Baumarten ableiten zu wollen, wäre irrig; das Urteil mag annähernd zutreffen bei jenen Arten, welche in großer Zahl und unter den verschiedensten Boden-, Klima- und Bestandsverhältnissen begründet wurden. Dafs ein allgemeiner Schlufs auf alle Holzarten vorschnell wäre, beweist die Note, welche dieselben Holzarten sich im forstlichen Versuchsgarten zu Grafrath verdient haben.

Weymouthsföhre I. Douglastien mit genauer Ausscheidung der Ps. Douglasii und Ps. glauca, beide I. Banksföhre I in allen Lagen, Lawsons-Scheinypresse, an der Talsohle genäherten Hängen mit Zwischenbau I. in Forstlagen II.

Von besonderem Interesse erscheint es, den Ursachen nachzugehen, welche das Mißlingen des Anbauversuches, d. h. Note IV des Gedeihens verschuldet haben.

Die Weymouthsföhre versagt in der Regel auf magerem, trockenem Sande; Feuchtigkeitsmangel oder allzu großer Überschluß hieran sind offenbar am wenigsten günstig; mit der Douglastien, der Lawsons-Scheinypresse, der Banksföhre, der Pechföhre, der Robinie wird auch der Strobus vielfach mit Note IV ein Vorwurf dafür gemacht, daß diese
Siebenter Abschnitt.

Die für Europa anbaufähigen und aus forstlichen oder gärtnerischen Gründen anbauwürdigen fremden Holzarten.

Erkennung der Holzarten im jugendlichen Alter.

Auf die wirklich charakteristischen Merkmale der jungen Pflanze zur Unterscheidung der Art von nächstverwandten Arten ist in dieser Schrift besonderer Nachdruck gelegt. Es soll dadurch die Erkennung der Art schon in der jugendlichen Pflanze ermöglicht werden. Die Schwierigkeiten, an jungen Exemplaren die Arten zu trennen, sind nicht so groß, als es auf den ersten Blick scheinen mag, und ich kann Dr. Köhne nicht ganz zustimmen, wenn er sagt, zur Bestimmung nicht fruchttragender Exemplare sei das Mikroskop unerläßlich; eine Lupe genügt meist. Freilich fallen gerade jene Merkmale weg, auf Grund deren die systematischen Botaniker ursprünglich die Arttrennung und Beschreibung vornahmen, nämlich Blüten und Früchte; außerdem kommen jene Merkmale in den Vordergrund, welche bisher bei der Beschreibung der Holzarten fast ganz vernachlässigt wurden, und welche überdies mit dem Alter immer mehr in jene sogenannten typischen Merkmale übergehen. Das Auftreten dieser typischen Merkmale der Pflanze in höherem Alter bedingt somit, daß es im jugendlichen Alter schwierig oder unmöglich sein kann, zwei Arten voneinander zu trennen, deren Unterschiede im erwachsenen Baume wahrzunehmen selbst Laien gelingt. Auch bei den jugendlichen Exemplaren ist die nötige Voraussetzung zur Erkennung der Art eine normale Entwicklung; niemand ist imstande, an kümmerlichen, kran-kelnden, unterdrückten Exemplaren, z. B. Fichten oder Lärchen, einen
Artunterschied herauzfunden; es wäre eine unwissenschaftliche und naturwidrige Forderung, zu verlangen, daß bei derartiger Misshandlung einer Pflanze der Artcharakter immer noch genügend deutlich bleiben müsse, oder gar zu schließen, daß, wenn man keinen Unterschied an kümmerlichen Pflanzen finde, sie auch keine verschiedenen Spezies sein könnten. Eine weitere Schwierigkeit liegt darin, daß Blätter, Nadeln und Knospen, die wichtigsten Organe für die Trennung jugendlicher Pflanzen, in Gestalt, Größe und Ausbau sich verändern, je nach der Bodengüte, nach Lichtgenüfs und Be- oder Misshandlung der Pflanze; im höheren Alter ändern sich die Merkmale mit dem Ansatz der Früchte; Leittriebe und Seitentriebe zeigen Unterschiede in der Stellung der Anhangsorgane und ihrer Ausbildung. Ich verweise auf meine über diesen Punkt wohl grundlegenden Ausführungen in meiner Monographie der Abietineen des japanischen Reiches 1890, Seite 5 „Über den diagnostischen Wert der Nadeln usw." 1).

Die im nachfolgenden aufgenommenen Holzarten erreichen mindestens 25 m Höhenentwicklung; bei solchen Arten, welche in der Meistleistung unter diesem Grenzwerte verbleiben, ist dies besonders hervorgehoben. Vom forstlichen wie vom gärtnerischen Standpunkt erscheint es auch ziemlich gleichgültig, ob eine Holzart über 30 m Höhe emporwächst oder nicht; jedenfalls sind alle Angaben über 50 m, welche die eine oder andere Holzart in der Heimat erreicht, weniger wegen ihres praktischen Nutzens, als vielmehr wegen des allgemeinen

1) Dazu kommt, daß sogar Misbildungen (Chermesgallen), Abnormitäten, ja Krankheitsformen, z. B. Aecidium clathrin, das auf allen Tannen der nördlichen Halbkugel wächst, Aecidium corruscans an den Fichten zur Unterlage für systematische Beschreibungen gemacht wurden.
Interesses allen Schriften und somit auch der vorliegenden einverleibt worden.

2) L. Dippel, Handbuch der Laubholzkunde.
3) Dr. Köhne, Deutsche Dendrologie, 1893.

Da eine Anordnung, welche dem praktischen Zwecke der leichteren Übersichtlichkeit dient, mir wichtiger erscheint als die weniger übersichtliche Einteilung nach dem natürlichen Verwandtschaftssystem, so habe ich eine Teilung in die beiden Klassen "Nadelhölzer" und "Laubhölzer" vorgenommen und innerhalb dieser Klassen die alphabetische Aufzählung der Arten gewählt.
A. Die Nadelhölzer, Koniferen.

Alle Nadelbäume führen wasserarmes Kernholz, so daß der Baum nach Durchtrennung der Splintlage in wenigen Wochen absterben muß; dem Holze fehlen die Gefäße (Poren), nur das Mark ist von solchen umgeben.

Gattung Abies, die Tannenarten, firs, les sapins.

Die Bezeichnung „Weißtannen“ ist möglichst zu vermeiden, ebenso wie bei den Fichten die Bezeichnung „Rottannen“. Zur Erkennung der Arten eignen sich in erster Linie Seitenzweige kräftiger Pflanzen.

Der Samen ist mit einer Seitenfläche am Flügel angewachsen, weshalb bei der Reinigung der Samen der Flügel abgebrochen werden muß; da die vom Flügel nicht bedeckte Seite des Samens nur eine dünne Samenhülle trägt, verdirbt und vertrocknet der Tannensamen leichter als jener der Fichte, der Föhre und anderer Nadelhölzer. Der
Tannensamen ist im Verhältnis zum Flügel groß und schwer, wird daher vom Winde nicht weit getragen (geringe Flugfähigkeit).

Mayr, Fremdländische Wald- und Parkbäume.
Der Tannenkrebs, eine Pilzkrankheit, befällt alle Tannenarten; ist der Hauptstamm oder Gipfeltrieb ergriffen, so wird die ganze Pflanze so frühzeitig als möglich beseitigt.

Das Holz aller Tannenarten (Anatomie auf Tafel II) ist weich, leicht, ohne Harzgänge, daher harzarm, leicht spaltbar, ohne gefärbten Kern, d. h. Splint und Kern sind in Farbe gleich, ohne Dauer; im Wert steht es allgemein den Fichten nach; von keiner fremden Art ist es nachgewiesen, dafs sie ein besseres oder schlechteres Holz bildet als die mitteleuropäische Tanne (siehe Abschnitt IV, die Anbauwürdigkeit). Die Rinde der Tannen hat nur Brennwert; das Harz in den Rindenbeulen jüngerer Pflanzen wird zuweilen genützt; der dekorative Wert der Tannen ist groß. Hinsichtlich der Frage der forstlichen Anbauwürdigkeit aller Tannen wird auf die Ausführungen Seite 219 hingewiesen.

Es scheint fast, als ob diese Tanne ein Bastard zwischen *cephaalonica* und *pectinata* wäre. Nähere Untersuchungen wären anzustellen.

Auf der Oberseite der schmalen Nadeln eine deutliche, in der Mitte der Nadeln verlaufende Längsfurche mit weißem Grunde; oberseits der Triebe die Nadeln etwas parallel dem Triebe gerichtet. Knospe grünlich, mit Harz überzogen; Triebe gelbgrün mit ganz kurzen, kaum sichtbaren gelblichen Haaren; Rinde frühzeitig weifs, korkig. Diese neue Tanne wird für dekorative Zwecke sehr stark empfohlen. Ob diese Reklame verdient ist, muß sich erst später zeigen.

Abies brachyphylla. siehe Abies homolepis.

Nadeln der Seitentriebe mit einfacher Längsspitze: unterseits zwei deutliche, weiße Streifen, Nadeln gekämmt; Knospe gestielt, Kegelform ähnlich der Pseudotsuga Douglasii, aber schärfer zugespiilt, gelb; Farbe des einjährigen Triebes rotgrün, völlig glatt.

Alle Nadeln der Seitenzweige mit einfacher, stechender Spitze, weniger gekämmt als bei pectinata. Knospe mit schwachem Harzüberzug; Seitentriebe häufig mit vier Knospen, drei in einer Ebene, eine
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

unterhalb derselben. Dadurch baut sich die Pflanze dichter als die mitteleuropäische Tanne: sie schlägt im Durchschnitt um fast acht Tage später aus als diese und ist somit etwas spät Frost härter; ihr dekorativer Wert ist anerkennenswert.

Abies cilicica Carr. Cilicische Tanne, Kleinasien und Persien.

Nadeln schmäler als bei *A. Nordmanniana*, weniger kräftig ausgebogen, gegen das obere Ende verschmäler: Seitentriebe mit drei in einer Ebene liegenden Knospen endend; Oberseite des Triebes deutlich sichtbar, somit mehr gekämmt als bei *Nordmanniana*; Trieb hellgelb, schwach behaart. In Spätfrostempfindlichkeit kommt sie der mitteleuropäischen Tanne nahe; wo sie von Frösten nicht entstellt wird, ist sie ein schöner Schmuckbaum.

Seitennadeln an den Seitenzweigen nach der Oberseite des Triebes sichelförmig gekrümmt. Nadeln an der Oberseite des Triebes etwas kürzer und ebenso auswärts gerichtet wie die Nadeln der Unterseite. Nadeln an im Licht gewachsenen Pflanzen auf beiden Seiten mitweisßen Streifen und Spaltenöffnungen; der ganze Baum erscheint dadurch hellweifslichgrün; an im Schatten stehenden Zweigen und Pflanzen sind die Nadeln flacher angeordnet und auf der Oberseite ohne weiße Streifen oder nur an der Spitze der Nadeln mit solchen; Nadeln mit einer schwachen Kerbe am Ende; Knospe violett bis rosafarbig; an den Gipfeltrieben von zusammen gedrehten Nadeln eingehüllt; Knospe mit einer dicken Basis aufsitzend; junge Triebe violett bis gelbgrün. Nach meiner Erfahrung ist diese
ganz hervorragend schöne Schmucktanne ebenso spätfröstenempfindlich wie die mitteleuropäische Tanne: die Angabe Sargent's, daß sie auf nacktem Felsboden noch wächst, kann ich ebenfalls nicht bestätigen: keine Holzart wächst auf nacktem Fels; solche Bäume haben dann sicher ihre Wurzeln in mit bestem, abgeschwemmtem Boden erfüllten Spalten des Gesteins.

2) Die Angaben, daß die Momitanne auch in China sich findet, dürften auf einer Verwechslung mit *A. homolepis* beruhen, welche an jüngeren oder unterdrückten Pflanzen bezw. Ästen ebenfalls gabelspitzige, aber unterseits hellweiße Nadeln besitzt.
den jungen Tannen sind früh- und spätreibende [Exemplare: spät-
reibende] beginnen oft erst Anfang Juni, sind daher gegen Spät-
fröste gesichert: frühreibende Exemplare leiden. Junge, kräftige
Exemplare haben die unangenehme Eigenschaft eines Nachtriebes im
August, der bis zum Winter nicht genügend ausreift und in strengen
Wintern abfrisiert. Die japanische Monti erreicht dieselbe
Stärke wie die mitteleuropäische Tanne; das höchste Exemplar, das ich maß,
hatte 46 m Höhe und 2 m Durchmesser. 40 m hohe Exemplare findet
man überrall auf den drei großen Inseln, ebenso in der Nähe von
Tempeln. Als Zierbaum beachtenswert, müssen weitere Versuche erst
zeigen, ob die scharf stechenden Nadeln ähnlich wie bei A. cephalonica
und A. Pinsapo einen Vorteil gegen das Wild bieten.

Abies Fraseri Lindl. Frasers Balsamtanne, Balsam. Ostamerika.

Seitentriebe mit kurzen, aber deutlichen Haaren bedeckt; Gipfel-
trieb an den zahlreichen von mir in den Alleghanies näher untersuchten
jugen Exemplaren kahl: dagegen berichtet M. Masters, dafs auch
der Gipfeltrieb behaart sei; die Verwechslung dieser Tanne mit der
A. balsamea von seiten der Pflanzenhandlungen schließt einstweilen
och eine größere Verwendung der dichter gebauten, zierenden Frasertanne
an Stelle der Balsamtanne aus. Der dichtere Bau erklärt sich
durch den Besitz von vier Knospen an
kraftigen Seitentrieben, welche Eigen-
tümlichkeit der *balsamea* fehlt.

Abies grandis Lindl. Große Küsten-
tanne, White fir. Westamerika.

Seitentriebe enden in drei violette
Knospen mit Harzüberzug. Die Nadeln
oberseits glänzend grün, unterseits mit
zu weißen Streifen, Ende gekebart;
auf der Oberseite des Tripies sind sie
kürzer als auf der Unterseite, sind aber
in demselben Winkel und auch in der-
selben Ebene mit den unteren Nadeln
liegend vom Triebe abgewandt. Diese
zu riesigen Dimensionen bei sehr hohem
Alter aufschließende Tanne ist wegen ihres verzögerten Frühlings etwas
frosthärter als die mitteleuropäische Tanne. Ihr Zierwert ist groß.

Abies homolepis Sieb. et Zucc. (syn. A. brachyphylla Maxim.).

Mit der Benennung dieser Tanne habe ich sehr lange Zeit ge-
zögert; ich glaubte aber, dafs man dem alten Sieboldschen Namen
wiederum zu seinem Rechte verhelfen müsse, wenn auch die Botaniker und Gärtner heutzutage ziemlich einig sind, was man unter der *brachyphylla* zu verstehen hat. Bei der Beschreibung der Tanne hatten weder Maximovics noch Siebold Zapfen zur Verfügung; erst Masters hat zur *brachyphylla* den zugehörigen Zapfen beschrieben. Sicherlich hatte aber Siebold ganz dieselbe Pflanze unter den Händen; seine treffende Abbildung, seine Benennung, seine Angaben über die Heimat beweisen dies: M. Masters hat die Bezeichnung *homolepis* akzeptiert. Diese Tanne, welche Gärtner immer noch mit der so deutlich charakterisierten *Mariesii* verwechselt, zeigt folgende Merkmale: Der Same keimt mit vier Kotyledonen; erste Nadeln bereits gabelspitzig, Spitzen parallel nach vorn gerichtet, unterseits rein weiß; dadurch schon im ersten Jahre von Momi unterschieden; an kräftigen achtjährigen und älteren Pflanzen stehen die einseitigen Nadeln an der Oberseite des Triebes rechtwinklig ab oder sind sogar nach rückwärts etwas gekrümmt; sie sind dabei so angeordnet, daß in der Mitte des Triebes ein Scheitel entsteht. Nadeln am Anfang und am Ende des Triebes kurz, bei zapfentragenden Exemplaren nur ½ cm lang. Unterseits zwei helle, weiße Streifen. Einjährige Triebe hell, okerfarbig, grünlich, glänzend, grubig vertieft, ohne Haare; kräftige Seitentriebe mit vier Endknospen. Rinde frühzeitig fichtenartig, kleinschuppig. Solange die Tanne jung ist, ist sie eine der schönsten in Japan und aus diesem Grunde auch dort vielfach kultiviert. Die stärksten Exemplare, die ich maß, stehen bei Chusenji oberhalb Nikko mit 1,37 m Durchmesser und 42 m Höhe. Die Tanne ist in Mitteleuropa spätfröstherter als die einheimische; in Frankreich, woher Mr. Hickel mir schöne Zapfen zur Bestimmung sandte, scheint sie sehr verbreitet zu sein.

¹) C. S. Sargent, Manual of the trees of North-America, 1905.

Pazifische Region.

Maries fand diese Tanne bei Aomori (auf dem Berge Hakoda) und bei Nikko (auf dem Nantaisan); in diesen beiden klassischen

An jungen Pflanzen sind die einjährigen, fertigen Triebe schokoladebraun, kurz und dichtbehaart; im zweiten Jahr verschwindet an freistehenden Exemplaren meist die Behaarung; die Rinde wird hellgrau, schwach glänzend, in höherem Alter des Baumes kleinschuppig; Nadeln am Leittrieb einfachspitzig, dem Triebe parallel angedrückt, an Seitentrieben gekeilt; weißliche Färbung an der Unterseite der letztenjährigen Nadeln deutlich, an zwei- und mehrjährigen fast verschwunden; Nadeln in der Sonne grünbel, breitest Stelle der Nadel im oberen Drittel; durch diese Eigentümlichkeit sowie die Behaarung ist die Maries-Tanne jederzeit leicht von der Veitchs-Tanne zu unterscheiden. An stark unterdrückten Exemplaren bleiben die Nadeln sehr kurz, tsuga-artig, die Behaarung ist aber bis ins zehnte Jahr sichtbar. Vom 36. Grad an, in der kühllsten Waldzone der höheren Berge, streicht unsere Tanne nördlich bis zur Nordspitze der Hauptinsel: sie betritt Eso nicht; gegenteilige Angaben beruhen auf einer Verwechslung mit *A. Sachalinensis*, deren vulgären Namen „Todomatsu“ auch die *A. Mariesii* bei Aomori führt. Dort bildet Maries’ Tanne reine Bestände, mit etwa 25 m Höhe und 60 cm Durchmesser in ihren besten Leistungen: sie ist somit die kleinste von allen japanischen Tannen und, von ihrem Wert als Schutzpflanze abgesehen, forstlich von geringster Bedeutung. Die Tanne ist in Frosthärte der europäischen Art überlegen, hat aber sonst wohl keinen Vorzug, weder in forstlicher noch in dekorativer Hinsicht.

VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.
der lebenden Bäume in ihrer Heimat; alles übrige sind nur Ver-
mutungen.

Pazifische Region.

Im Kaskaden-Gebirge bildet diese Tanne mit der *amabilis* aus-
gedehnte Waldungen; einzelne Individuen in günstigen Lagen des
feuchteren Coast-Range erreichen 92 m Höhe. Ohne sich Zapfen von
den Bäumen zu schießen, ist es kaum möglich, erwachsene Tannen
voneinander zu unterscheiden; bei allen ist die Rinde dunkelgrau,
glatt, nur im höchsten Alter schuppig; erst dann sind einige Unter-
schiede erkennbar; so ist die Borke der pazifischen Edeltanne
schmal, aber tiefgründig, fast der Schwarzkiefer ähnlich. An
Seitentrieben der jungen Pflanzen sind die Nadeln ungleich lang;
obereits kürzer als unterseits; obere Nadeln liegen die flachgedrückten Nadeln mit ihren Basisteilen
am Triebe an, biegen sich dann im rechten Winkel vom Triebe ab; das obere Ende mancher
Nadeln ist sogar noch etwas nach rückwärts gekrummt; die unteren Nadeln durch eine
Krümmung nach oben gedreht, unter- und unter-
seits mit hellen Spaltungsschleifen. Hierin sowie in der Farbe der Nadeln von Silberweiß bis Dunkelgrün wechselnd. Fertige Triebe rot-
braun, kurz samtig von den Nadeln ver-
deckt; Knospe ohne Harz, mit sehr derben, etwas abstehenden Knospepinschappen von dunkel-
violetter Farbe. Diese schöne Tanne ist spätfrühhärter als die mittel-
europäische Art, da sie später ihre Vegetation beginnt; gegen Früh-
und Winterröste ist sie unempfindlich. Die Tanne ist ein schöner
Schmuck der Parke, wenn auch der Name *nobilis* sich mehr auf den
Zapfen als auf die übrigen Pflanzenteile bezieht; ob sie forstlich irgend-
einen Wert hat, müssen Versuche ergeben; das Ergebnis scheint jedoch
angesehens der Langsamwüchsigkeit der Art während des ersten Jahrzehntes und wegen der selbstverständlichen Gleichheit der Holz-
produkte kaum fraglich.

Man kann sagen, der Biologie der Tanne entspricht ihr Vorkommen
in den kühleren Regionen ihrer Heimat, denn die Heimat dieses Baumes
wurde später bekannt als dessen Verhalten gegen das Klima; er be-
sitzt in seinem späten Austrieb im Frühjahr einen kleinen Vorzug,
den er mit vielen japanischen und amerikanischen Tannen teilt; eine
A. Die Nadelhölzer, Koniferen.

Alter 30 Jahre, Höhe 13 m, Durchmesser 32 cm in 1,3 m Höhe; links Maximovics-Birke (10 jährig, 6,5 hoch; rechts Hainbirke).

H. Mayr photogr.

Abies numidica De Lannoy. **Numidische Tanne.** Nordafrika.

Seitenträhe an jungen Pflanzen einfachspitzig, an sehr kräftigen Pflanzen Nadeln länger als an beigegebener Figur, aber das Hauptkennzeichen bewahrend, das in dem Übergreifen der beiden weißen Streifen der Nadeln unterseits auf die Oberseite der Nadelspitze besteht: mit dem Alter wird die Nadel stumpfer, die weiße Linie
auf der Oberseite der Nadelspitze dagegen wird deutlicher; eine solche helle Mittellinie an gleichen Stellen zeigen wohl auch die Nadeln kräftig wachsender Balsamtannen. Triebe glatt, hell gelbgrün, Knospe der Nordmanns-Tanne ähnlich, ohne Harz. Diese Tanne ist nicht spätfröstempfindlicher als die mitteleuropäische Tanne, verdient aber wohl nur für dekorative Zwecke Beachtung.

Abies pectinata D. C. Europäische Edeltanne, Weißtanne.

Gebirge von Mitteleuropa und höhere Lagen von Südeuropa.

Nur um Verwechslungen mit fremden Tannen leichter zu erkennen, seien hier die Eigentümlichkeiten der Seitenzweige der Tanne angeführt.

Nadeln gekämmt, d. h. nach zwei Seiten in einer Ebene entwickelt, und zwar um so deutlicher, je höher die Zweigordnung, je mehr der Zweig überschattet ist. Die Nadeln spärlicher als bei vielen fremden Arten, daher die Triebe stets deutlich sichtbar; Nadeln gekerbt, unterseits mit zwei weißen Streifen, oberseits dunkelgrün glänzend. Knospe ohne alle Harzausscheidung: Triebe gelbgrün, schwach behaart; gegen Spätfröste wegen frühen Austreibens sehr empfindlich; unter sämtlichen im forstlichen Versuchsgarten zu Grafrath vorhandenen Tannen sind *A. sibirica, Pindrau* und *Webbiana* die empfindlichsten, dann aber kommt sofort *A. pectinata*, die europäische Tanne; alle anderen Tannen haben sich bisher als spätfrösthärter als die einheimische Art erwiesen.

Abies Pindrau Spach. Pindrau-Tanne, Pindrow-fir.

Westlicher Himalaya.

Diese prächtige, mit schmaler zylindrischer Krone in der Heimat aufwachsende Tanne (siehe I. Abschnitt: Der indische Wald) wird für...
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

ganz Mitteieuropa, selbst für das milde Großbritannien als anbaumfähig betrachtet; dagegen gelang es mir, durch Gipfelknospenveredlung auf einheimischen Tannen mehrere Pflanzen zu erzielen, die, jetzt 18-jährig, auf 2.5 m hoher Unterlage bis zu 7 m mit dieser emporgewachsen sind, ohne während der langen Jahre von tiefen, schweren Winterfrösten, bis -26° C., sowie den häufigen Spät- und Frühfrösten zu leiden. Freilich standen sie nicht auf kahlen Flächen, wie dies bei Parkanlagen so häufig ist, sondern in ziemlich engem Schluße mit einheimischen Tannen, Eichen und Birken. Durch langsames Entfernen der bedrängenden einheimischen Arten sind die Pindrau-Tannen jetzt herrschend geworden (siehe Abbildung im X. Abschnitt). Die Pindrau-Tanne hat für Europa wohl keinen forstlichen Wert, aber die normal aufgewachsene Tanne ist die schönste Zierde des Gartens, sie übertrifft alle Tannen durch ihre außerordentlich langen, dunkelgrünen, glänzenden Nadeln; Nadelstellung und Nadelänge ergibt sich aus der beigegebenen Abbildung, welche nach den Exemplaren im Versuchsgarten gezeichnet ist. Nadeln an der Unterseite nur schwach heller, ähnlich wie bei *A. firma*, nie weiß; wenn berichtet wird, daß die Pindrau-Tanne in der Jugend an der Unterseite helle, weiße Streifen besitzt, so hatte eben nicht die Pindrau-Tanne, sondern wahrscheinlich *A. Webbiana* vorgelegen, mit der die *Pindrau* fortgesetzt verwechselt wird. Selbst Sir Brandis, der zuerst die Tanne am ausführlichsten in seiner "Forest Flora" beschrieben und am längsten die Artverschiedenheit beider Tannen
A. Die Nadelhölzer, Koniferen.

Die Nadelhölzer, Koniferen.

Eine durch eigenartige Benadelung mehr als durch Schönheit auffallende Tanne. Nadeln mehr oder weniger vierkantig; am Seitentriebe in rechtem Winkel vom Zweige rings um denselben abstehend; in den ersten Jahren einer Cephalonica oder numidica ähnlich, wird erst vom vierten Jahre an das Merkmal deutlich. Fertige Triebe nackt, Knospe stumpf, violett, von Harz überkleidet. Da sie etwas später als die mitteleuropäische Tanne sich entfaltet, entgeht sie manchen verspäteten Frösten, welche der einheimischen Tanne schädlich werden.

Abies Reginae Amalae. Königin Amalia-Tanne. Griechenland.

Auch diese Tanne wird gleich der Apollinischen bald als Varietät der *pectinata,* bald als solche der *cephalonica* betrachtet, zwischen welchen beiden Arten sie in der Tat steht. Ob hier eine gute Art oder ein Bastard vorliegt, können nicht Studien der Kulturexemplare zweifelhafter Abkunft, sondern nur Studien in der Heimat entscheiden; mir fehlen solche, daher enthalte ich mich des Urteils.

Die Nadeln an den Seitentrieben sind mit einfacher Spitze versehen, an der Oberseite des Tripes mehr oder weniger parallel dem Triebe, gerade nach vorne gerichtet; seitliche Nadeln schwach nach abwärts gekrümmt; Triebe braunrot, kurz samtig behaart.

In Japan ist diese Tanne auf den zum politischen Bezirk Hokkaido gehörenden Inseln sowie auf Sachalin beheimatet; sie steht der Veitch-Tanne sehr nahe, ist aber für jene, welche die beiden Bäume in der Heimat studieren können, genügend als Art charakterisiert; von Blüten und Früchten abgesehen, ist vor allem die Sachalin-Tanne ein Baum, der bis zu 40 m Höhe erreicht, welche Dimensionen die Veitch-Tanne nicht annähernd zeigt. In der Jugend ist die Sachalin-Tanne zwar der Veitchs-Tanne ebenfalls sehr ähnlich, aber Nadeln der Seitentriebe länger und weicher, weniger dichtstehend als bei Veitchii, jedoch von gleicher Anordnung; sie scheint die gleiche Empfindlichkeit gegen Spätfröshe zu besitzen wie die mitteleuropäische Tanne; es steht somit diese nordische Tanne der Veitch-Tanne, welche auf das südlichere Zentraljapan beschränkt ist, an Frosthärte nach; die Erklärung liegt nahe genug; die Sachalin-Tanne steigt in die wärmere Ebene hinab, die Veitch-Tanne bleibt in ihrer kühlen Höhenregion.

Ob die in meiner Monographie 1890 von mir zuerst beschriebene Varietät Nemorensis eine vollberechtigte Art ist, kann nur auf Grund umfangreicher Studien im Osten der Insel Eso entschieden werden.

Freistehende Exemplare dieser Tanne entwickeln sich mit auffallend schlanker kegelförmiger Krone; ganz prächtige Exemplare davon stehen
A. Die Nadelhölzer, Koniferen.

Die sibirische Tanne erscheint überaus zierlich gebaut als Folge ihrer Benadelung. Nadeln lang, schmal, gleich breit, weich, oberseits glänzend dunkelgrün, unterseits nur im ersten Jahre weißlich, später bloß heller als die Oberseite; gestellt am Seitenzweige, wie beistehende Figur ergibt, mehr an den Trieb ange drückt als bei der Balsam tanne; Knospen stumpf, grünlich auch beim Austreiben, mit Harz völlig überdeckt. In warmen Lagen mit langem Frühjahr, auf kahlen Flächen wegen sehr frühzeitigen Vegetations beginnes sehr frostempfindlich, ja empfindlicher als die mitteleuropäische Tanne; auf geneigtem Gelände, bei schwachem Oberschutze ziemlich rasch emporwachsend; gegen Früh- und Winterfröste ist die sibirische Tanne so hart wie die mitteleuropäische. Nadelbrände während tiefster Wintertemperatur an sonnigen Hängen und an der Sonnenseite der Pflanze ist seltener als bei anderen Tannen. Einen forstlichen Wert hat sich diese Tanne bereits für das nordwestliche europäische Rußland sowie in Finnland erworben, wo der mitteleuropäischen Tanne durch tiefe Wintertemperatur über der Schneedecke bei gleichzeitiger Besonnung Nadeln und Trieb spitzen erfrieren.

Abies subalpina Engelm. *Westliche Balsam tanne, Balsam. fir.*

Pazifische Region.

Schon junge Exemplare stehen der *A. concolor* nicht nahe genug, um die *subalpina* als Varietät der *concolor* zu betrachten; noch weniger scheint es gerechtfertigt, *subalpina* ganz zu kassieren, wie es Sargent tut, der in seinem mehrfach erwähnten Manual *subalpina* überhaupt nicht mehr erwähnt. Wohin Sargent die *subalpina* zählt, ist aus dem Buche nicht zu entnehmen. Der Mangel dieses Buches ist eben das Fehlen aller synonymen Angaben, was bei der sehr vorgeschrittenen, eigenartigen, das europäische dendrologische Wissen völlig ignorierenden Nomenklatur sehr erwünscht gewesen wäre. Nadeln der Seitenzweige ober- und unterseits faßt gleichgefärbt (der *concolor* ähnlich), sichelförmig, aber ohne Scheitelung, nach der Trieb spitze zu gekehrt, den Trieb fast verdeckend; Triebe mit hellgelben kurzen Haaren (nach Köhne auch kahl); am zweijährigen Triebe Haare undeutlich; Abbildung erwachsener
Tannen siehe bei *Picea Engelmannii*. Ähnlich wie *sibirica* und *amabilis* wird auch diese Tanne zuweilen durch Unterbleiben des Austreibens der Seitenknospen, durch knopfförmiges Anschwellen der Seiten- und Trieb spitzen forstlich und dekorativ völlig wertlos. Wo diese durch Frost nicht genügend zu erklärende Erscheinung sich nicht einstellt, ist die westliche Balsamtanne eine schöne Zierde.

Abies Veitchii Lindl. **Veitchs-Tanne, Shirabe.** Japan und China.

Jungen Pflanzen dieser schönen Tanne fehlt zwar der hervorragende Schmuck der zahlreichen kleinen, tiefblauen Zapfen, mit welchen die oberen Quirle der älteren Bäume sich überladen; dennoch ist schon die junge Pflanze eigenartig schön durch lange, gleichbreite, oberseits dunkelgrün, unterseits fast kreideweiss gefärbte Nadeln, welche an der Oberseite des Triebes etwas nach vorn gerichtet sind; an älteren Exemplaren sind die Nadeln der Unterseite durch eine Drehung der Nadelbasis etwas nach oben gekrümmt, wodurch zuweilen ein kleiner Teil der weißen Unterfläche der Nadel sichtbar wird und die Nadeln an der Oberfläche des Triebes sich anhäufen; Nadeln annähernd gleich lang, gekebt am oberen Ende. Fertiger Trieb braun-grün, kurzbehaart; im zweiten Jahre ist er hellgrau, Knospe rotglänzend, stumpf, etwas mit hellem Harz überzogen.
Abb. 62. Veitchs-Tannen (A. Veitchii) an der Spitze des Nantaisan bei Nikko.
H. Mayr photogr.

Abies Webiana Lindl.

Webbs-Tanne, Indian Silver fir.

Östlicher Himalaya.

Webbs-Tanne beginnt spät im Frühjahr auszutreiben; dadurch entgeht sie zwar den Spätfrösten; um so empfindlicher aber ist sie gegen Winterfröste (Verlust der Nadeln während des Winters durch Nadelschütte und Erfrischen der unfertigen Triebspitzen); wäre sie ganz frosthart, so müßte in Mitteleuropa selbst die Nordmanns-Tanne an Schönheit zurückstehen. Zapfentragende Solitäre

Araucaria imbricata Pav.
Chilenische Araukarie.
Südamerika.

Unter den Nadelbäumen der südlichen Halbkugel, welche in Europa an ausgewählten Standorten im Freien ohne Schutz ausdauern und auch, wenigstens als Schmuckbäume, weiteste Verbreitung gefunden haben, steht an erster Stelle die Chiletanne oder Araukarie. Ihre Heimat und ihre förstliche Bedeutung ist uns durch mehrere Forscher, auf forstlichem Gebiete insbesondere durch Dr. Neger, näher bekannt ge-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

worden; diesem Herrn verdanke ich auch die beigegebene schöne Abbildung eines Araukarienwaldes in den chilenischen Anden. Trotz des hohen Schattenerträgnisses schließt sich die Araukarie nicht zu einem dichten Bestande zusammen; vielleicht ist dies in feuchteren Lagen ihrer Heimat der Fall, denn die Araukarie gilt als ein wertvoller Nutzholzbaum, der in Stämmen bis zu 50 m Höhe vorhanden ist.

Wegen ihrer eigenartigen breitbasigen Benadelung, ihrer dunkelgrünen, etwas glänzenden Färbung, ihres schönen, regelmäßigen Aufbaues in Quirlen ist die chilenische Araukarie schon frühzeitig eine Lieblingspflanze für Gärten und Parke in jenen Regionen Europas ge-
A. Die Nadelhölzer, Koniferen.

worden, in denen hohe Luftfeuchtigkeit und milde Wintertemperaturen, nicht unter -15° C., geboten sind. England, Westfrankreich und die Küstengebiete von Südeuropa könnten die Araukarie wegen ihres guten, dauerhaften Nutzholzes auch als forstliche Holzart in ihren Florenschatz aufnehmen. In Mitteleuropa hält die Araukarie im Freien nur unter Deckung aus, z. B. auch in Grafrath, wächst dabei aber äußerst langsam und, bei dem Mangel gedeckter Winterknospen, ohne Aussicht je auf Deckung verzichten zu können.

In China und Turkestan beheimatet, in Japan nur kultiviert.

Dieser Lebensbaum wird für ganz Südeuropa als Ziersträucher und Halbbaum sehr häufig kultiviert; in Mitteleuropa verlangt er milde Lagen, da er durch tiefe Wintertemperaturen besonders an Südhängen und seiner eigenen Südseite an Nadelbräune leidet. Wo Edelkastanien wild wachsen oder wenigstens noch die Früchte ausreifen, erwächst

Abb. 67. Erwachsene chinesische Thujen (*Biota orientalis*) in einem chinesischen Tempelhofe.
Prinz Georg von Bayern photogr.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

die chinesische Thuje zum Nutzbaum, der ein schmutzigrötlich gefärbtes, sehr dauerhaftes Kernholz besitzt. Wie umstehende Figur darstellt, wird der Lebensbaum in China besonders häufig als Schmuck der Tempelhöfe, meist zusammen mit dem chinesischen Wachholder, *Juniperus chinensis* angepflanzt; ebenso ist er als Schattenbaum vielfach auf Grabhügeln angebaut. Die junge Pflanze ist daran von den eigentlichen Thujen zu unterscheiden, da's die flachen Blätter eine Rinne besitzen, in welchen je eine Harzdrüse liegt (Tafel I, Fig. 8). Der nussartige, flügellose Samen ist an einem Ende mit abgerundeter Basis, am anderen mit einer Spitze versehen; an der Basis findet sich ein heller Fleck. Der frischgesammelte Samen keimt, wenn im Herbst ausgesät, im folgenden Frühjahr, der im Frühjahr ausgesäte Samen kommt im darauf folgenden Frühjahr; die Pflanze wächst mässig rasch empor. Sie scheint dem Wildverbisse und besonders den Mäusen sehr ausgesetzt.

Gattung Cedrus.

Die Zedern, Cedars, Cèdres.

Die immergrüne Benadelung steht an Längstrieben und Seitentriben zerstreut; an Kurztriben ist sie zu Büscheln vereinigt, ähnlich wie bei der Lärche: Nadeln schmal, aber lang, in eine feine Spitze ausgezogen, vierkantig, auf einem mit der Nadel gleich dicken Stielchen, auf einem Auswuchs der Rinde sitzend, welche nach Abfall der Nadeln wie bei den Fichten am Triebe verbleibt. Die Zedern verlangen alle guten Boden, sind Lichtholzarten; ihre klimatischen Ansprüche finden nur innerhalb der Edelkastanienzone (Castanetum) volle Befriedigung. Im Gebiete der Rotbuchen (Fagetum) ist meist die Wärmemenge nicht mehr genügend. Es scheint *Deodar* empfindlicher gegen Winterkälte zu sein als *atlantica* und *Libani*. Die Trieb spitzen erfrieren zwar nicht durch verspätete Fröste,

Cedrus atlantica Man.
Atlantische Zeder.

Neue Triebe behaart; Äste von ungefähr zwanzigjährigen Bäumen aufwärts strebend; rasch wachsend; besonders im Hinterlande von Marokko finden sich ausgedehnte, wertvolle Bestände dieser Zeder mit *A. numidica*, bis zu 40 m durchschnittlicher Bestandshöhe emporgewachsen. Von allen Zedern ist am leichtesten erreichbar die
Die für Europa anbaufähigen fremden Holzarten.

Atlaszeder auf dem Berge Babor in Algerien 1), der bis 2000 m emporragt; bei 1500 m erscheinen die ersten Zedern: mit der Erhebung steigt auch die Höhenentwicklung der Zedern bis zu 35 m bei 2,3 m Durchmesser; sie stehen in Mischung mit Eiben, Eichen, Ahorn und zuletzt auch noch mit A. numidica, der numidischen Tanne, welche bis zur obersten Spitze vordringt; man berechnet die Zedernbestände Algeriens auf rund 35 000 ha.

Westlicher Himalaya.

Durch etwas hellere Benadelung, durch abwärts gerichtete Seitenzweige, insbesondere der Endspitzen derselben, ist diese Zeder von den

1) *Maurice L. de Vilmorin*, Arbres forestiers étrangers, 1900.
Abb. 71. Bleiskizze einer 25jährigen Himalaya-Zeder (Cedrus Deodar) in Darjeeling (Sikkim).
beiden anderen wohl leicht zu unterscheiden. Auch im höchsten Alter behalten Randbäume die Aststellung des jugendlichen Baumes bei, wie beistehende Gruppe von 50 m hohen Zedern, die ich im Jahre 1886 zeichnete, beweist. (Siehe auch Abbildung Seite 172 bei Beschreibung der Holzarten des Himalaya.) Triebe kahl oder nur spärlich be-
haart. Ich halte diese Zeder für den wichtigsten fremden Nadelholz-
baum für das europäische Mediterrangebiet; schade, daß nirgends
Eifer zum systematischen Anbau dieser ebenso schönen wie förstlich

Abb. 72. Eine Gruppe von 50 m hohen Deodar-Zedern (*Cedrus Deodar*) im westlichen Himalaya.
H. Mayr n. d. X. gez.

wertvollen Holzart sich regt. Nach dem Vorkommen in der Heimat mag diese Zeder in reinen Beständen oder auch in einem aufgelösten Schlusse mit anderen Holzarten begründet werden; im Himalaya findet sich die Zeder sogar zusammen mit der Pindrau-Tanne und der Morinda-
Fichte. Bei 1,5 m bis 2 m Abstand der Pflanzen erreichen sie bald Bestandsschlufs, wodurch die Seitenäste zum Abfall gebracht und Stämme gebildet werden, wie sie die beigegebene Abbildung 70 zeigt, welche ich der Güte des amerikanischen Forstwirtes Herrn T. S. Woolsey verdanke. Im Hintergrunde erscheint ein junger Deodarbestand wie dicht geschlossene Fichten mit ihren Schäften aufstrebend, aber ein Holz

Cedrus Libani Barr. Libanon-Zeder.
Kleinasien, Syrien, Cypern.

Junge Triebe kahl oder kaum behaart. Äste an jüngeren Exemplaren mehr horizontal abstehend; diese Zeder wird ebenfalls bis zu 40 m hoch; in lockerem Mischbestande mit _A. ciliéica_ lebend.

Gattung Cephalotaxus, die Kopfeiben.

Schattenertragende Nadelbäume mit Steinfrüchten, d. h. von fleischigen Hüllen umgebenen Samen; meist Großsträucher, seltener Bäume auf gutem Boden; nur im Gebiete der Edelkastanie erwachsen sie zu minderwertigen Nutzbäumen; im kühleren Klima bleiben sie Sträucher, welche während eines strengen Winters vielfach zurückfrieren. Im Holze, das den Bau der Thujenhölzer zeigt, ist Splint und Kern gleich gefärbt; somit fehlt auch dem Kernholz die Dauer.

*_Cephalotaxus drupacea_
Sieb. et Zucc.
Japanische Kopfeibe,
Inugaya.

China und Japan.

Die Beendelung mag aus beistehender Figur entnommen werden; unterseits sind die Nadeln heller grün als oberseits. Die mit schöner, rotgefärbter Hülle umgebenen, zu einem Köpfchen vereinigten Früchte sind kaum genießbar; in seltenen Fällen erhöht sich der Baum bis zu 20 m Höhe.

Die junge Pflanze trägt längere Nadeln als die vorige, übertrifft sie somit im Schmuckwerte.

Gattung Chamaecyparis, Scheinzypressen.

An den Seitentrieben jüngerer Pflanzen sind die schuppenförmigen Blätter in Kantenblätter und Flächenblätter ausgebildet, wodurch ein

Die Scheinzypressen erreichen ihre beste Entfaltung im Klima der Edelkastanie, im Castanetum; wo die Buche erscheint oder überhaupt das Klima kühler wird, als es für das normale Gedeihen einer Edelkastanie erträglich wird, sind nur noch die wärmsten, luftfeuchtesten Hänge, somit vorzugsweise SO, und NW, günstig. Das natürliche Auftreten der Fichte, d. h. der Übergang zu einem Klima, wie es bei dem Abietum beziehungsweise Piceetum charakterisiert wurde, bezeichnet schon die Grenze einer vorteilhaften forstlichen Kultur. Verspätete Fröste schaden zwar nicht, aber Winterfröste unter —25 °C. sind für alle Scheinzypressen gefährlich (Blätterbräune, Zweig- und Gipfeltod). Im Garten und Park mag daher bei kostbaren Exemplaren eine Deckung gegen die Sonne gegeben werden; im Walde werden diese erzielt durch Anbau in engerem Verbande (1 m Abstand), durch Anbau in größeren, luftfeuchtem Waldgebiete, durch Seitenbeschattung oder durch Unterbau und Zwischenbau unter und zwischen einheimischen Lichtholzarten, wie Eichen, Föhren, Lärchen oder zwischen lockereren Eschen, Ahornen, Ulmen, Erlen oder zwischen sehr locker stehenden Schattholzarten, Fichten, Tannen, Buchen. Eine derartige Mischung mit Schattholzarten aber verlangt eine ständige Überwachung und Mitfahndung der Schatthölzer zugunsten der Scheinzypressen; wo dieser Schutz nicht gewährt wird, werden die Scheinzypressen, wie die meisten fremdländischen Holzarten, von den einheimischen überwachsen und erdrückt. Ganz vorzüglich entwickeln sich die Scheinzypressen zwischen Erlen nicht auf nassem, sondern bloß frischem Boden, wobei die Erlen fortgesetzt entästet und schließlich ganz beseitigt werden müssen; auf feuchtem Boden neigen die japanischen Scheinzypressen zur Rotfäule. Luftfeuchte Örtlichkeiten, aber nicht ausgesuchte Frostlagen, sind den Scheinzypressen sehr günstig; wo das Klima trockener wird, muß frischer Boden, enger Schlufs gegeben werden; selbst kühle, höhere Lagen sind besser als wärmere, aber trockene Täler und Niederungen. Die Scheinzypressen muß man Halbschattholzarten nennen, da sie eine längere Überschirmung wohl ertragen. Holzarten für Aufforstungen von kahlen Flächen sind sie nicht; kahle Löcher eines älteren Bestandes sagen ihnen besser zu. Die japanischen Scheinzypressen erwachsen in ihrer Heimat lange Zeit im lockereren Schirme der Laubhölzer um
Abb. 74. 20jähriger, geschlossener Zwischenbau von Lawsons-Scheinzypressen zwischen 35jährigen Eichen; letztere bis auf die besten Stämme bereits durchlichtet; Scheinzypressen durchschn. 6 m hoch mit 10 cm mittl. Durchm. in 1,3 m Höhe.
Irene Mayr photogr.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Licht kämpfend, bis sie nach etwa 40 Jahren das Kronendach der Laubbäume durchstoßen und mit astlosen Schäften und mächtig emporstrebenden Kronen zu gewaltigen, massenreichen, hochwertigen Individuen aufschwimmen.

Von Scheinzypressen erwähnt man nur Freude und Erfolg auf gutem Boden: auf allzu festem Tonboden und auf Boden, der geringeren Nährwert als Sandboden III besitzt, ist kein Erfolg zu erwarten; in feuchten, frostigen Lagen stellt sich gerne Pestalozzia ein.

Bei reinen Bestandsanlagen wähle man eugen Verband (1 m Abstand) schon aus dem Grunde, weil die Scheinzypressen zur Mehrgipfligkeit schon von Jugend an neigen und ihre Äste schwierig abstoßen; zur Pflanzenersparnis dient die Staffelpflanzung, d. h. Auspflanzen der fremden Holzarten in weitem Verbande (1,5—4 m Abstand) und Ausfüllen der Zwischenräume mit später zu entfernden einheimischen Laubbäumen.

Die aus dem kleinen Samenkorne kommenden Pflänzchen sind gegen Vertrocknen und im Winter gegen Auftauen zu schützen; sie lassen sich leicht umpflanzen und leicht selbst noch als größere, 2—3 m hohe Pflanzen ins Freie bringen.

Ist der Sommer des Verpflanzjahres abnorm trocken, dann muß freilich gegossen werden; im folgenden Jahre schon ist diese Maßnahme entbehrlich; bei kleineren Pflanzen bis zu 1 m Höhe fällt diese Maßregel ganz weg. Die Scheinzypressen färben sich meist nur im Winter bei direkter Besonnung violettrötlich; bei Lawsonie unterbleibt diese Färbung regelmäßsig auch in besonnnten Örtlichkeiten.

A. Die Nadelhölzer, Koniferen.

Wo für Mäusevermehrung besonders günstige Verhältnisse bestehen, durch Graswuchs, enggeschlossene Buchengruppen, Heidelbeerfilz, da sind die zwischenstehenden Scheinzypressen der Gefahr ausgesetzt, daß sie am Wurzelhals von den Mäusen geringelt werden; ohne Schutz durch Umzäunung gegenüber den Rehen sind die Scheinzypressen kaum emporzubringen. Dem Nachteil der Zwieselbildung muts durch möglichst frühzeitige Beseitigung der schwächeren Nebengolven begegnet werden; erfolgt die Vergabelung nahe am Boden, so können die Seiten-triebe zur Stecklingsbildung benützt werden (Abschnitt XII).

Alle Scheinzypressen sind, wo immer sie anbautauglich sind, mit Sicherheit auch forstlich anbauwürdig. Ihr Holz, Anatomie nach Tafel II, ist weich, leicht, sehr feinfaserig, gleichmäßig, vorzüglich zu bearbeiten, da die Spätholzzone sehr schmal ist: Kernholz je nach Art (Tafel V und VI) verschieden gefärbt, ist bei allen Scheinzypressen von großer Dauer; die Verwendungsfähigkeit des Holzes geht vom Zundholz bis zu den Balken, Brücken, Dämmen und Werften. Alle Holzer zeichnet ein ganz besonderer, eigenartiger, leider nicht näher zu beschreibender, aber für jede Spezies typischer aromatischer Geruch aus. — so daß die Holzarten leichter an ihrem frischen Geruch als an den schwachen Farbenton zu unterscheiden sind.

Die Scheinzypressen sind ganz hervorragende Zierden der Gärten und Parke geworden; alle Scheinzypressen werden in ihrer Heimat zu Bäumen von 40 m Höhe und darüber.

Chamaecyparis Lawsoniana Parl. Lawsonie, Lawsons-Scheinzypresse, White Cedar, Lawsons Cypress, Port Orford Cedar.

Westamerika.

Tafel I Figur 1 macht eine weitere Beschreibung der Erkennungsmerkmale dieser Holzart an der Unterseite von Seitenzweigen überflüssig; in Farbe und Wachstum wechselt die Lawsonie mehr als irgendein anderer Nadelbaum: solche Formen erscheinen zufällig insbesondere unter dem Einfluß sehr günstiger oder sehr ungünstiger Bodenverhältnisse; aus diesem Grunde ist die Lawsonie zu einem Liebling der Parkbesitzer geworden; sie hat sich aber auch als Windmantel, zum Schutz gegen Straßenstaubverwehungen, an Zäunen vollbewährt. Von den bis jetzt forstlich geprüften Scheinzypressen scheint die Lawsonsche die wichtigste zu sein. Ein abschließendes Urteil wäre verfrüht, daher kann die Holzart auch nicht zum Anbau im großen empfohlen werden; Versuche kleineren Umfangs sollten aber unter möglichst vielseitigem Boden, Klima und Bestandsverhältnissen angelegt werden. Über Bestandsanlage usw. siehe die Angaben bei der Gattung: eine Eigentümlichkeit der Lawsonie muts aber erwähnt werden: wird in Frostlagen ein Zwischenbau von Erlen, Hainbuchen.

Auf frischem sandig-lehmigen Boden fand ich in ihrer Heimat hart am pazifischen Ozean 80jährige Stämme, 35 m hoch, mit dem be- rindeten Durchmesser von 78 cm; überall in der Heimat, wo Axt oder Feuer kahle Flächen schaffen, selbst auf allen Wegen und auf allen von alten Stämmen umschlossenen Feldern und Gärten siedelt sich die Lawsons-Scheinzyppresse an, da ihr leichter Same ziemlich weit vom Winde verschleppt wird und junge wie alte Bäume fast alljährlich

Abb. 75. Typische Schaft- und Kronenbildung eines Urwaldstammes der Lawsonischen Scheinzypressen (Chama Lawsoniana).

H. Mayr n. d. X. gez.
mit Zäpfchen überladen sind. Die Rinde des jungen Baumes im Be-
stande ist braunrot, glatt, im Lichte heller; später wird sie kleins-
chuppig und geht im höheren Alter in eine Borke über mit sehr
langen, tiefen, vertikalen Rissen; die Dicke der Borke beträgt bis
5 cm, die Breite der Platten 5 cm; dabei verlaufen die Risse eine
Strecke abwärts, enden plötzlich, während unweit davon andere ein-
setzen und weiter abwärts verlaufen. Im Stangenholzalter sind die
Zweige etwas aufrecht gerichtet, während die Spitzen stets abwärts
hängen; an alten Bäumen kehren sie sich etwas nach abwärts, in der
Regel mit gabeliger Teilung; die Krone, in der Jugend kegelförmig,
greift im Alter weit aus und nimmt Zuckerhutförm an; die gesamte
Färbung ist blaugrün. Der Same erhält sich lange keimfähig. Samen,
den ich im November 1885 in der Heimat der Lawsonie in Coos Bay
gesammelt habe, erwies sich, im Frühjahr 1888 in Japan ausgesät, noch
gut keimfähig; dabei hatte derselbe mit dem Schreiber dieser Zeilen
eine Reise über den Stillen Ozean und zwei Reisen durch die Tropen
über Singapore nach Deutschland und wieder zurück nach Japan
zurückgelegt.

Wenn man sich einer Sägemühle nähert, die Lawsonieholz ver-
arbeitet, so fällt der durchdringende, süßlich aromatische, angenehme
Geruch auf, den das frische Holz von sich gibt. Manche Holzstücke
der Lawsonie sind so mit dem ätherischen Öl durchtränkt, daß man
sie, analog der Verharzung bei den Nadelhölzern, als „verölt“ bezeichnen
könnte; solche Stücke sind außerordentlich schwer, rötlich und
emittieren einen Geruch, der Kopfsweh verursacht.

Der 4 cm breite Splint ist in Farbe nur unmerklich von dem
delleren, gelbblichen Kerne verschieden (Tafel V, 2); schwach seiden-
artig glänzend, mit feinen Jahrringgrenzen, nimmt das Holz eine gute
Politur an; das spezifische absolut trockene Gewicht mit 44,4 ist für eine
Scheinzypressenart auffallend hoch; es ist sehr leicht zu bearbeiten und
dient besonders zu Brettwaren für die innere Fertigung der Häuser,
zur Dulung, zu Eisenbahnschwellen, Zaunpfosten usw. In sumpfigem
Terrain an der Meeresküste werden die Bäume zu Rostbauten benutzt,
bei welcher Verwendung sie 4—5 mal längere Dauer besitzen als das
Holz der Douglasie, das unter diesen ungünstigen Verhältnissen schon
nach 4—5 Jahren zerstört ist. Bei solchen Bauten muß man aber
erwähnen, daß die ganzen Stämme eingerammt werden, ohne Rinde
oder Splint zuvor zu entfernen oder mifs-farbige, pilzkranke Stücke
auszuschneiden, wie dies überhaupt in Amerika bei keiner Ver-
wendungsweise des Bauholzes geschieht. Holz ist ja nach Ansicht der
meisten Amerikaner in unerschöpflichen Mengen vorhanden. Über
den Zustand der Lawsoniewaldungen möge das Wissenswerte der Schil-
derung der Heimat derselben im I. Abschriite entnommen werden.
Chamaecyparis nutkaënsis Spach. (syn. Nootkatensis Lamb.).
Sitka-Scheinzyppsere, Nutka-Scheinzyppsere, Jellow Cypress.
Westamerika.

Unter allen Scheinzypressen ragt die Nutka-Art durch kräftigste, mit scharfen Spitzen versehene Schuppenblätter hervor; die Zweigunterseite ist nur wenig heller als die Oberseite, weißschuppige Grenzlinien fehlen ganz. (Tafel I, Figur 5.) Die Heimat dieser Scheinzypressse ist das milde, luftfeuchte Klima der Insel- und Küstengebirge von Oregon, Britisch Kolumbien bis in das südwestliche Alaska. An der ganzen Küste entlang ist sie jene Art, welche das wertvollste, dauerhafteste Nutzholz bringt. Als Schmuckpflanze ist sie wie ihre südlichere Schwester sehr beliebt, fürstlich dagegen hat man sie in Mitteleuropa aus unbekannten Gründen ganz vernachlässigt; sie ist unter ähnlichen Verhältnissen wie die Lawsions-Scheinzyppsere anzubauen, teilt aber auch, soweit die bisherigen Erfahrungen im Walde im Versuchsgarten zu Grafrath reichen, die Gefahren durch Pilze und Tiere. Das als besonders dauerhaft geschilderte Holz mit einem schwach gefärbten Kern nach Tafel V, Figur 3; spezifisches absolut trockenes Gewicht 46.

An der Unterseite der Seitenzweige tragen die scharf zugespitzten Schuppenadeln gegen ihre Basis hin einen weißen Fleck. (Tafel I, Figur 4.) Diese Art ist in Europa als Zierpflanze außerordentlich viel verbreitet wegen ihrer Frosthärte und ihres zierlichen Baues, sie teilt aber alle Gefahren der vorigen Arten, wie sie auch ihre Vorzüge besitzt: nur das Holz dieser Art wird, in Japan wenigstens, nicht so hoch bewertet wie das der folgenden Art; das Sawara-Kernholz (Splintbreite 1,5 cm) ist weniger schön gefärbt, mehr gelblich im Kern und weniger feingeäigt (Holz nach Tafel VI, Fig. 1); es dient jedoch ähnlichen Zwecken wie alle Scheinzypressenhölzer, da es ebenfalls sehr dauerhaft ist. Das spezifische Gewicht absolut trocken beträgt 37, lufttrocken 42; in ganz alten Stämmen sinkt das absolute Trockengewicht bis auf 32,5. Der Baum erreicht im Laubwalde sehr beträchtliche Höhen; in einem mit Edelkastanien und deren Begleitern erfüllten Tale stand eine Sawara von 85 cm Durchmesser und 36 m Höhe; mehrere Stämme im Klimagebiet der Rotbuchen zwischen Eichen stehend, hatten 85 cm Durchmesser und 40 m Höhe; die ersten Äste begannen bei 24 m; eine andere, die höchste, hatte 41 m Höhe und 70 cm Brusthöhen durchmesser; wieder eine andere 2,18 m Durchmesser und 36 m Höhe.

Schuppige Nadeln stumpf oder kurz spitzig, an der Unterseite ebenfalls glänzend dunkelgrün wie oberseits, an der Unterseite aber sind die Flächen- und Kantenadeln an der Berührungslinie weiß, so daß eine x- oder y-förmige weiße Zeichnung entsteht (Tafel I, Figur 3). Der Feuerbaum färbt sich während des Winters wie die Sawara bei vollem Sonnenschein violetot. Die Biologie des Baumes ist von jener der Gattung Chamaecyparis nicht verschieden; dementsprechend ist auch die Verwendung dieser Art zu Schmuck- und Nutzwecken jener der übrigen Arten gleich. Fast scheint es, als ob die beiden japanischen Scheinzypressen mehr durch die Pestalozzia zu leiden hätten als die übrigen Scheinzypressen. Die Bezeichnung Hinoki, wörtlich Feuerbaum (nicht Sonnenbaum), wird von den einen dahin gedeutet, daß der Baum leicht vom Blitz getroffen wird und Feuer fängt; andere glauben daß die Bezeichnung daher rühre, daß hart aneinanderstehende Stämme bei Sturm durch Reibung sich entzünden.

Wer die Heimat der Hinoki und ihr Vorkommen selbst noch in der Rotbuchenregion bis zum ersten Auftreten der Fichten (Picea bicolor und hondoensis) in Zentraljapan kennen gelernt und mit zahlreichen Messungen und Baumanalysen ihren Zuwachs erhalten hat, wird zustimmen, daß dieser Baum systematische, forstliche Versuche verdient. Im Gebiete der Edelkastanie erwächst diese Scheinzypresse auf gutem Boden, eingebettet im Laubwald, dessen Kronendach der Baum mächtig überragt, bis zu 42 m Höhe, bei 0,7 m Durchmesser und einer Länge des astlosen Schaftes von 18 m (Goshasan); im Mitzumine fand ich eine den Laubwald von Zelkowa, Ahornen und Eichen überragende Hinoki mit 48 m Höhe und 2 m Durchmesser; im Fagetum sinkt die Höhe auf 35 m maximale und 30 m durchschnittliche Erhebung. An der Fichtengrenze ist 25 m die beste Leistung. Die in breiten, langen und dünnen Platten sich ablösende Borke ist im Laubwalde wegen der Besonnung während der Winterzeit mehr grau gefärbt, im reinen Bestände aber schön braunrot.

Chamaecyparis sphaeroidea Spach. (syn. Ch. thyoides Britt. Kugelscheinzypressen, White Cedar). Ostamerika.1

Die Triebe dieser Art sind sehr zierlich, die Schuppennadeln der leitenden Triebe an den Zweigen zugesetzt mit weißem Rande; übrige Seitennadeln kurz mit weißlichem Rande; am Rücken jeder Nadelgruppe eine deutliche hervorstehende, meist etwas rötlich gefärbte Öldrüse (Tafel I, Fig. 2). Sie ist bisher allein unter den Scheinzypressen von der Pestalozzia-Krankheit verschont worden, hat jedoch im Versuchsgarten zu Grafrath von Agaricus melleus und von Schneedruck gelitten.

Der Umstand, daß sie in den Südstaaten des Ostens von Nordamerika vorzugsweise die Sümpfe bewohnt, kann nicht entscheidend für das kühlere Europa sein; nur für Südeuropa kommen derartige Standorte in Frage. Es ist allerdings überraschend, daß in ganz Spanien, Italien, Griechenland, an der Adria und anderen warmen und feuchten Lagen noch keine Versuche mit diesem Baum angelegt wurden. Diese Scheinzypressen würden zusammen mit Taxodium distichum sicher in solchen Lagen prächtig gediehen und diese Fiebersämpe, die keinen Nutzen geben oder nur mit geringwertigen Holzarten (Eucalyptus, Pappeln, Weiden, Erlen) entwässert werden, in nutzbringendem Wald umwandeln. Für Mittel- und insbesondere Nordeuropa dagegen sind sumpfige Orte für die Kugelscheinzypressen wie für Taxodium zu kalt. Es gelten dort die für alle Scheinzypressen aufgestellten allgemeinen Regeln der waldbaulichen Behandlung und Verwendung; je kühler das Klima wird, um so besser gedieht sie auf frischem Hartlandboden; reine Bestände müssen eng geschlossen sein. In der Heimat steht sie auf sumpfigem Boden außerordentlich dicht, in reinen Beständen bis zu 30 m emporwachsend.

Das gelbe Kernholz (Tafel VI, Fig. 2) mit dem spezifischen Gewichte von 31,3 teilt die guten Eigenschaften aller Scheinzypressenhölzer, insbesondere deren hohe Dauer.

Cryptomeria japonica Don. Kryptomerie, Sugi.
China und Japan.

Nadeln an den Seitentrieben pfriemenförmig, dreieckig mit weit am Triebe herablaufender Basis; der Längstrieb des ersten und zweiten Jahres grün, im dritten Jahre durch innere Korkbildung sich oft prächtig hellrotbraun färbend; von da an blättert sich die äußerste, tote Rinde ab in einer dünnen, sehr weichen, im Lichte grauen, im Bestandsschlafs rotbraunen Borke; im höchsten Alter Borke weich, dick, mit schmalen aber langgestreckten Rissen. Die Kryptomerie ist eine raschwüchsige, ziemlich lichtbedürftige Holzart, welche auf gutem, nahrungsreichem

Abb. 77. Natürliches Vorkommen der Kryptomerie (Cryptomeria japonica) zwischen Laubhölzern des Castanetums in Nordjapan.

Die japanischen Pflanzenzüchter und Forstwirte unterscheiden zahlreiche Formen der Kryptomerie oder Sugi, insbesondere auf der Insel Kinshu; solche Formen werden durch Stecklingspflanzung vermehrt und dann als Waldbestand begründet. Ob man diese Formen als Varietäten bezeichnen kann, sei dahingestellt. So ist z. B. Forma Benisugi bekannt mit safrangelbem Kernholz, Nadeln von mittlerer Länge; das Holz ist zu Fässern für Sake (Reisbier oder besser Reisschnaps) am besten geeignet; gleichem Zwecke dient die Forma Honsugi mit dunklem, engringsigem, sehr dauerhaftem, daher auch zu Dachschindeln benütztem Holze; es ist fast zweifellos, daß es sich hier bloß um Verschiedenheit im Holz- und Nadelbau durch Verschiedenheit des Standortes und des Wirtschaftsbetriebes der Sugi sowie um Vielgestaltig-
ist. Auf geringer wertigem Boden ist die Kryptomerie überhaupt nicht zu verwenden. Plötzlich freigestellte Exemplare überkleiden ihren Schaft mit einer Fülle kurzer Triebe, so daß die normalen Äste schließlich absterben; aufgeästet bis zum Gipfel (im Schneitelbetrieb) überzieht sich der ganze Stamm mit einem fast undurchdringlichen Dickichte von Ausschlägen an den Astwunden. Diese Triebe werden gesammelt und zur Herstellung von Räucherkerzen (Senko) benützt. Die Kryptomerie färbt sich im Winter bei voller Besonnung violetttrot. Die Tiefe der Färbung hängt bei dieser Holzart wie auch bei den Chamaecyparis-Arten von der Tiefe der Wintertemperatur und von der Entwicklung der Pflanze ab. So ist in den kühleren Lagen des Hakonegebirges die Färbung violettbraungrün; auf der Südseite des in den warmen Meeresstrom vorspringenden Amagi-gebirges ist die Färbung nur gelbgrün. Je jünger die Pflanze, um so dunkler violett die Färbung; aber einzelne Pflanzen, etwa zwei vom Hundert, bleiben bald grasgrün, bald gelbgrün; je älter die Pflanze, desto mehr herrscht die grüne Färbung vor. Ziegelrote Farben deuten auf eine schädliche Verfärbung durch Nadelbräune (Chlorophylltod); die violette Färbung

Abb. 80. Kryptomerien im forstlichen Versuchsgarten zu Grafrath zwischen Eichen, Buchen, Bäumen angepflanzt; aller Zwischenstand bis auf die besten Eichen allmählich entfernt, da die Kryptomerien bereits in Schlufs treten. Alter 9 Jahre. Höhe durchschnitt 2,7 m, niederste 1,5 m, höchste 4 m. H. Mayr photogr.
des Winters verschwindet im Frühjahr wiederum vollständig, sie ist weder ein Zeichen des Wohlbefagens noch der Krankheit, wie sie Laien zu deuten pflegen.

Die junge Pflanze, im Meterquadrat-Verbande in Japan als Bestand vielfach auf kahlen Flächen begründet, erwächst in kühlen Lagen mit 14 Jahren zu durchschnittlich 4 m Höhe, in den wärmsten Lagen der immergrünen Eichen, Nutzhölzerträge vielfach leicht nach von allergrößter weiche Erle herabsinken, tiefeingeschnittene Fagetum von Eso waren 28 m hoch mit 90 cm Durchmesser. 80-jährige Sugi im Castanetum maß ich mit einer durchschnittlichen Höhe von 38 m und einem Durchmesser von 90 cm.

Die Kryptomerie liefert das meiste und am meisten verwendete weiche Nutzholz in Japan; sowohl in schwachen Stangen als in den allergrößten Dimensionen wird es nach den waldarmen Küsten von Süd- und Mittelkorea und China transportiert; ja ehe das Redwood von Kalifornien bekannt war, ging es selbst über den Großen Ozean nach Amerika. Der Splint ist bei allen alten Stämmen 4 cm breit, sinkt aber bei sehr alten 3—400-jährigen Stämmen bis zu 6 mm herab. Kern rothbraun (Tafel VI, Fig. 3). Holz weich, leicht, außerordentlich leicht zu bearbeiten, sehr dauerhaft im Kern. Das Gewicht des Holzes fand ich an 30-jährigen Stämmen als Durchschnitt mehrerer Bäume: Splint frisch 70, lufttrocken 38 und absolut trocken 36. 100-jährige Stämme als Durchschnitt mehrerer Bäume: Splint frisch 90, lufttrocken 42 und absolut trocken 40. Kern frisch 50, lufttrocken 44 und absolut trocken 40. An 300 und 400-jährigen: Splint frisch 60, lufttrocken 30, absolut trocken 28, Kern frisch 60, lufttrocken 40, absolut trocken 38. (Anatomic des Holzes nach Tafel II Fig. der Gattung, Cupressus usw.)

Das Holz besitzt keine Harzgänge, und damit unterbleibt auch der Harzausfluss aus denselben; dagegen erscheint goldgelbes Harz aus dem Bastteil der Rinde, das dem Sake ein eigentümliches Aroma ver-
Die lebende Rinde färbt sich an der Luft rasch schwefelgelb. Die borkige Rinde hat eine außerordentliche Dauer, so daß sie zum Dachdecken, zu Verkleidungen von Brettern und dergleichen sich wohl eignet.

Dafs auch in Deutschland in luftfeuchteren Lagen die Kryptomerie Baumdimensionen erreicht, beweisen die Anlagen des Fürsten zu Lun- und Knyphausen auf Lütetsburg in Ostfriesland; ein kleiner reiner Bestand der Kryptomerie hatte mit 25 Jahren 12 m Höhe und 23 cm Brusthöhendurchmesser; auf der Insel Mainau im Bodensee steht ein Exemplar, das ich 1897 maß, mit 18 m Höhe und 40 cm Durchmesser. Die Berichte über die Anbauversuche in Preußen, erstattet von Dr. Schwappach, lauten für die Kryptomerie ungünstig; es ist aber dagegen zuhalten, daß am Mißlingen eines Versuches sowohl die Holzart als auch die Art der Anlage des Versuches schuld sein kann. Gegenüber den im kälteren Klima erzielten Erfolgen mit dieser Holzart dürfte sich eine andere Anordnung der Versuche, ähnlich wie sie in den vorausgehenden Zeilen geschildert wurde, empfehlen.

Gattung Cupressus. Zypressenarten, Cypress, Cyprés.

Seitentriebe vierkantig und auf dem Rücken einer jeden Schuppe zwei parallel verlaufende, rinnenartige Vertiefungen; die junge Pflanze zeichnet ein eigentümlicher Wuchs aus, nämlich völlig gerade sich ausreckende Äste, welche vom darüberstehenden Stamme in einem spitzen Winkel abstehen. Der Wuchs ist außerordentlich rasch, Gesamthöhe 20 m und darüber. Die Zypresse ist ein ziemlich seltener Baum und auf wenige Plätze südlich von San Francisco beschränkt; sie steht an den gefestigten, granitisch felsigen Ufern des Stillen Ozeans, so dass jahraus jahrin die salzige Brise durch ihre Zweige streicht. Der heftige Wind, ständig von einer Seite wirkend, drückt sie zur Seite und verhindert die Ausbreitung von Ästen nach dem Meere hin; viele alte

An der ganzen pazifischen Küste gibt es wohl jetzt keinen Garten, der nicht diesen Baum als Schutz- und Schattenspender enthielt; seine Raschwüchsigkeit und dichte Verzweigung eignen ihn hierzu vortrefflich. Ja man hat diesen Baum, der, soweit bekannt, aus einer Örtlichkeit stammt, in der Frost eine unbekannte Erscheinung ist, sogar in frostreiche Gegenden gebracht, bis hinauf nach Oregon; er wächst dort nur langsamer, gedeiht aber ebenso sicher; auch in England sowie in Tokio, wo während der vier Monate des Winters fast allwöchentlich Frost auftritt und das Thermometer bis zu −10° C. sinkt, bleibt der Baum unverletzt und raschwüchsig. An der Küste von Monterey, einem der schönsten und klimatisch bevorzugtesten Seebäder, die ich kenne, hat man die Monterey-Zypresse zur Festigung des Sandes am Strande benützt; man hat sie mit der Monterey-Kiefer zusammen bis hart an die Brandung hingeplaniert, so dass starke Wellen oder Hochflut das salzige Wasser bis in die Pflanzung werfen. Die Anpflanzung an der mittel-

Abb. 82. Monterey-Zypressen an der Küste von Kalifornien.
Prinz Georg von Bayern photogr.
ländischen und atlantischen Meeresküste, auf dem bereits gefestigten Dünenstand, und zwar in engem Verbande (1 m), müßten ein gutes Ergebnis bezüglich der Festigung der Dünen und dabei ein wertvolles Holzprodukt ergeben. Mouillefert berichtet 1897 in Revue des Eaux et forêts, daß diese Zypresse in Südwestfrankreich bereits mit Erfolg geprüft wurde.

Cupressus sempervirens L. **Zypresse.** Orient.

Die italienische Zypresse ist besonders in ihren Säulenformen ein allbekannter Baum des südlichen Europas und der benachbarten afrikanischen und asiatischen Küste; die Verbreitung dieses Baumes gibt das Gebiet an, in welchem auch die beiden anderen hier genannten Zypressen als forstlich wertvolle Bäume kultiviert werden könnten.

Cupressus torulosa Don. **Nepalzypresse.** Himalaya.

Nach Angabe von Gamble erreicht diese Zypresse in den besten Verhältnissen bis zu 50 m Höhe und liefert ein hochwertiges Holz; die Schuppenadern sind viel robuster als bei allen anderen Zypressen; in ihren Ansprüchen an das Klima ist sie aber von den übrigen nicht verschieden.

Gingkyo biloba L. (syn. *Salisburga adiantifolia* Sm.). **Gingkyo, Ginkyo, Itcho-no-ki.** Heimat unbekannt.

Gingkyo ist durch den Umstand, daß bis heute seine Heimat nicht gefunden ist, einer der merkwürdigsten Bäume, siehe Seite 137. In China ist der Baum augenscheinlich nicht, in Japan und Korea sicher nicht zu Hause; die japanische Bezeichnung Itchō heißt fremdes Land, fremde Regierung, Itcho-no-ki = Baum des fremden Landes. Der Baum ist an seiner eigenartigen Blaubung, welche nicht immer zwei deutliche Lappen zeigt, wie nachstehende Figur wiedergibt, und wie der Name *biloba* vermuten läßt, leicht erkennbar: die Blätter dieses zu den Koniferen zu zählenden Baumes färben sich im Herbst schwefelgelb und fallen nach einem Frühfrost alle gleichzeitig ab. Der Baum wächst sehr rasch, hat aber forstlich keinen Wert; das harzgangfreie Holz ist ohne Kern; ein falscher bräunlicher Kern zuweilen vorhanden. Das Holz hat einen unangenehmen Geruch und wird kaum verwendet. Gingkyo ist in erster Linie Zierbaum in der Nähe von buddhistischen Tempeln, und je weiter nach Norden und im kühleren Gebiet von Korea,

2) Gingko ist zwar ein Wort, das die Europäer sehr wohl bereits memoriert haben, allein es ist eine wieder zu verbessernde Entstellung des chinesischen Wortes Ginkyo.
Japan und China, um so mehr nähert sich der Baum in seinem Habitus einer knorrigen, freiständig erwachsenen Eiche; im wärmsten Klima, zumal in Druck mit anderen Holzarten, erreicht er 40 m und darüber. Seine geraden, in spitzem Winkel abstehenden Äste geben jüngeren Bäumen einen eigenartigen Habitus. Der alte Baum bedeckt seinen Schaft mit großen abwärts gerichteten Holzzapfen.

Glyptostrobus heterophylla Endl.
(syn. _Taxodium heterophyllum_ Brong.). Chinesische Taxodie, chinesische Wasserfichte.

In China lebt der Baum in der Zone der immergrünen Eichen und im Castanetum; er steht unmittelbar am Flusse: ein geringes Steigen der Flüsse setzt den Baum bereits unter Wasser; auf den ersten Blick erinnert der Baum an eine Kryptomerie oder Sequoia, nicht aber an ein Taxodium; insbesondere sind die aufrechten Zapfen tragenden Zweige ganz nach dem Typus der Sequoien gebaut; erst im Winter, wenn die Seitenzweigehen mit nicht gekämmten Nadeln im Herbste abfallen, erkennt man die winterkalte Taxodie. Das einzige größere Exemplar, das im mittleren Europa, von dem insularen Westen abgesehen, bekannt wurde, steht im Park des Herzogs von Ratibor zu Grafenegg. Sr. Durchlaucht verdanke ich auch beide Abbildungen. Das Ratiborsche Exemplar ist 9,45 m hoch mit 80 cm Durchmesser; Alter: 31 Jahre. Das graurot gefärbte Kernholz des Baumes gilt in China als sehr dauerhaft.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Damit würde dieser Baum zusammen mit anderen sumpfbewohnenden Nutzhölzern sich besonders als Nutzbaum für die sumpfigen Standorte von Südeuropa empfehlen.

Juniperus. Wachholderarten, Junipers, Genévriers.

Soweit die Wachholderarten nur Sträucher oder Halbbäume sind, fällt ihre Betrachtung außerhalb des Rahmens dieser Schrift. Nur solche, welche regelmäßig unter günstigen Bedingungen zu Nutz- bäumen emporwachsen, verdienen hier Beachtung: strauch- und baumartige Wachholder sind hervorragende Zierpflanzen. Junge Wachholderpflanzen tragen eine pfriemenförmige Benadelung; bei mehreren Arten stellt sich schon frühzeitig, besonders an blühenden Exemplaren, eine zweite Benadelungsf orm, eine mehr zypressenartige kurze Nadel schuppe ein (siehe Tafel I, Fig. 11). Die Wachholder findet man auf geringem, sandigem, kiesigem Boden in trocknen Lagen ebenso wie auf guten Böden, selbst noch in sumpfigen Örtlichkeiten; sie streichen aus der Region der immergrünen Laubhölzer bis ins kühle Piceum, aber es ist sehr wohl zu beachten, daß alle Wachholderarten auf geringem Boden wie in kühlem Klima, kühler als Castanetum, keine zu Nutz zwecken brauchbaren Dimensionen erreichen. Damit fällt das ganze mittlere und nördliche Europa zur Aufzucht von Bleistiftholz (*Juniperus virginiana*) weg, während das Klima von Südeuropa, insbesonders die bodenfrischen Standorte, sicherlich für diese wertvolle Baumart sich eignen würde. Wenn berichtet wird, daß der virginische Wachholder in Mitteleuropa 25 m Höhe erreicht, so muß noch hinzugesetzt werden, daß der Stamm unregelmäßig, span-
A. Die Nadelhölzer, Koniferen.

Die baumartigen Wachholder ertragen nur schwache oder kurzdauernde Beschattung, sind anfangs zwar raschwüchsig, schon nach zwei Jahrzehnten nimmt die Wuchskraft merklich ab; alle leiden durch Schneedruck und durch Agaricus »teilen« in sehr kaltem Winter leiden alle, sogar der einheimische europäische Wachholder, durch Nadelbräune und Abfrieren der Triebspitzen.

Juniperus excelsa Bieb. (*syn. macrocarpa* Boiss.). Himalaya-Wachholder. Kleinasien bis Himalaya.

Nadeln pfriemen- und schuppenförmig: hohe Baumdimensionen selten. Im übrigen wohlriechendes Holz wie der virginische Wachholder.

Dieser Wachholder mit durchaus pfriemenförmiger Benadelung wird nur selten ein nutzbarer Baum; das gelbe Holz ist besonders zu Bade-

Juniperus virginiana L. **Virginischer Wachholder. Bleistiftholz. Red Cedar. Ostamerika.**

Als hochwertiger, das wohlriechende Bleistiftholz produzierender Baum kann man den virginischen Wachholder nur für Südeuropa empfehlen, wo er auf gutem, frischem Boden oder selbst in feuchteren Lagen ein außerordentlich wertvoller Baum werden müßte. Das rotbraune Kernholz siehe Tafel VI, Figur 4.

Gattung Keteleeria. Stechtannen, Keteleerien. China.

Keteleeria Fortunei Carr. (Fortunes Stechtanne) und *Keteleeria Davidiana* Beifsn. (Davids Stechtanne) sind am längsten bekannt, als junge Pflanzen aber nicht zu unterscheiden; außer diesen beiden hat *M. Masters* neuerdings noch mehrere Arten beschrieben.

Gattung Larix. Die Lärchenarten. Larches, Tamaracks. Mélezès.

Die Lärchen sind winterkalte Nadelbäume, welche frühzeitig im Frühjahr ergrünen; ihre Benadelung besteht hierbei durchaus aus Kurztrieben, in welchen die Nadeln bis zu 50 angehäuft sind. Erst später — anfangs Juni — erscheint, aus den kurzen Trieben mit den Büschelnadeln hervortretend, ein Längstrieb mit zerstreut stehenden Nadeln. Die Nadeln der Lärche sitzen auf einem längswulstigen Vorsprunge der Rinde (siehe obenstehende Figur); sie färben sich im Spätherbst...
sowohl schwefelgelb-angeschmolzen wie dunkelgrünen Nadelwalde beigemengt, ebenso schön sich hervorheben wie im Frühjahr durch ihr helles Grün.

So verschieden nach einzelnen Beobachtungen an dem ursprünglichen Standorte das Verhalten der amerikanischen, europäischen und japanischen Lärche auf den ersten Blick auch erscheint, umfangreichere Beobachtungen und Vergleiche haben mir gezeigt, dass alle Lärchen die gleiche Biologie, die gleichen Standortsansprüche besitzen.

Alle Lärchen sind frosthart; ausnahmsweise früh ergrüneende Lärchen, wie z. B. Larix sibirica, leiden wohl unter starken, verspäteten Frösten, obwohl alle Lärchen — 6° C. selbst in dem Augenblick, in dem die dunkelgrünen Büschelnadeln aus ihrer Knospe hervorbrechen, ohne alle Beschädigung ertragen; ausnahmsweise spät auftretende Fröste (Anfang und Mitte Juni) töten auch die entstehenden Längstriebe der Lärchen wie natürlich auch die Triebe aller anderen einheimischen wie fremden Holzarten, welche zu dieser Zeit in ihrer Gipfelstreckung sind; ausnahmsweise früh auftretende Fröste treffen jene Lärchen, welche spät bis in den Herbst hinein im Gipfeltrieb verlängern und erst Anfang Oktober die End spitzen zu verholzen beginnen, wie z. B. L. leptolepis; je wärmer das Anbaugebiet, desto größer ist diese Gefähr.

Alle Lärchen sind anfangs sehr raschwüchsig, volle Lich tholzarten: sie ertragen die Überschirmung durch Halbschatten- und Schattenhölzer gar nicht, eine solche durch ihresgleichen und andere Lichtholzarten nur kurze Zeit; sie sind ebenso empfindlich gegen eine seitliche Bedrängung ihrer Kronen und verlangen wenigstens während der ersten 15—20 Jahre volle Gipfelfreiheit. Daher hat der Zwischenbau der Lärchen zwischen anderen Holzarten gleichen Alters, wie z. B. der Anbau der Lärchen in lockeren Buchenverjüngungen, zu Nachbesserungen von Fichtenkulturen und dergl., keine Aussicht auf Erfolg, wenn der Lärche nicht durch fortwährendes Zurückhalten und Zurück-
schneiden der umgebenden Pflanzen für mindestens 15 Jahre die volle Gipfelsfreiheit gesichert wird.

Verschieden erweisen sich die Lärchen in ihrem morphologischen Bau und in der Oberflächenbeschaffenheit, d. h. sie sind verschieden in Nadellänge, Nadelform, Triebfarbe, Rindenbildung, Behaarung, Blüten- und Zapfenbau und dergleichen: sie sind sodann verschieden in Färbung und damit im Zusammenhange stehendem Überzuge von Reif: sie sind weiter verschieden in Wuchsgeschwindigkeit und Gerad-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

schaftigkeit. In diesen Verschiedenheiten liegen ebenfalls Unterschiede im Verhalten gegen Gefahren.

Was, um einige Momente hervorzuheben, die Schaftform anlangt, so neigt die europäische Lärche zur Schaftverkrümmung mehr als z. B. *Larix sibirica* oder *occidentalis* und *Principis Rugprechtii*; die japanische Lärche verhält sich hierin wie die europäische. (Siehe Abbildung bei der japanischen Lärche.) Dafs die Krummwuchs­igkeit von äußeren Einflüssen (Wind, Schneebelastung, Beschädigung durch Rehböcke, Drehung nach der Lichtquelle usw.) zumeist hervorgerufen wird, ist bekannt; allein es besteht, davon abgesehen, noch eine innere Veranlagung hierzu, welche bei den einzelnen Arten verschieden ist. Ebenso zeigt sich, dafs nicht alle Lärchen gegen die Pilzkrankheit, gegen Miniermotten und Wollhaus gleich empfindlich sind. Aus diesem Grunde ist daher der Anbau der fremdländischen Lärchen in den oben genannten Gebieten ebenso berechtigt, ja vielleicht sogar vorteilhafter als der Anbau der europäischen Lärchen, welche, mit Ausnahme ihres kleinen Heimatgebietes, für ganz Mittel- und Nordeuropa ebenso Fremdländerin ist wie eine amerikanische und asiatische Lärche; der Gedanke, dafs unter den ausländischen Lärchen eine für Mittel- und Nordeuropa besser geeignete Lärche sich finden möge als die europäische, verdient Prüfung durch Anbau sämtlicher Lärchen, deren Sämereien wir habhaft werden können. Eines aber darf man von fremdländischen Lärchen nicht erwarten, nämlich, dafs sie ein besseres Holz oder größere Mengen von Holz bilden werden als die europäische Lärche, wo diese ihrem Charakter gemäfs aufgezogen wird. Alle Lärchen sind in ihrem Holze gleich: am erwachsenen Baume bedeckt ein schmaler Splint den harten, rotbraunen, schweren (durchschnittliches spezifisches Gewicht 65), sehr dauerhaften Kern (Tafel VII. 9). Härte und Färbung des Kernes hängt ganz vom Standorte und der Erziehung des Baumes ab. Die Verschiedenheit in der Holzqualität, welche die europäische Lärche auf warmem (weitrigig und weich) und auf kühlem Standorte (engringig und hart) aufweist, zeigen unter denselben Verhältnissen auch die Hölzer aller übrigen Lärchen; von fremden Lärchenholzarten zu erwarten, was auch einheimische Lärchen nicht leisten können, nämlich dafs in wärmern Lagen engringiges, hartes Lärchenholz gebildet werde; oder gar zu glauben, dafs in den Sämereien von Hochgebirgs­lärfchen die dortige Holzqualität in die wärmere Ebene herabgetragen (vererbt) werden könne, ist somit naturwidrig.

Die Aufzucht der Lärchen ist so einfach, dafs die allgemeinen Punkte im VIII. Abschnitte für jeden Pflanzenzüchter völlig genügen. Die jungen Lärchen sind dem Mäusefraß an Rinde und Knospe, dem Wildverbisse im Frühjahr, wenn die ersten Nadeln erscheinen, dem Fegen
A. Die Nadelhölzer, Koniferen.

durch den Rehbock, junge und alte Stämme in ihrem oberen, glatten Rindenteile den Ringelungen durch Eichhörnchen ausgesetzt; an den Nadeln schaden neben Motten und Wollläusen auch Rostkrankheiten, z. B. an Larix sibirica sehr häufig Sphaerella laricis; als der schlimmste Feind aber gilt der Erreger des Lärchenkrebses, Peziza Wilkomii, dem alles in die Schuhe geschoben wird, was an Fehlern in der waldbaulichen Behandlung der Lärchen verbrochen wurde.

Neben dem hohen forstlichen Werte ist der Schmuck, den die frisch ergrünenden Lärchen, die in Schwefelgelb bis Orangerot sich herbstlich verfärbenden Lärchen für Wald und Park und Garten bieten, gar nicht genug hervorzuheben. Alle Lärchen können, normal wachsende selbstverständlich vorausgesetzt, schon im jugendlichen Alter unschwer voneinander unterschieden werden; als das beste Kennzeichen haben sich die Farbe des einjährigen, fertigen Triebes und die Knospen, weniger die Nadelform herausgestellt; im Jahre nach der Verpflanzung erscheinen bei größeren Exemplaren in der Regel Zapfen, welche als willkommene Beihilfe zur Erkennung der Lärchen dienen.

Larix americana Michx. Ostamerikanische Lärche. Tamarack.

Ostamerika.

Die junge Pflanze von 5—10 Jahren ist jener der dahurischen Lärche sehr ähnlich. Die fertigen Leittriebe des Gipfels oder der Seitenzweige glatt, schwachglänzend, nur gegen die Triebspitze hin mit rosafarbigem Reife, zumeist aber gelbrot, kahl, mit rotbraunen Knospen wie dahurica, doch ohne deren dunkle Basis; auch die Nadeln an den Seitentrieben etwas sichelförmig nach oben gekrümmt.

An der Südgrenze ihrer Verbreitung (Wärmegrenze), das ist in den Nordstaaten der Union, bewohnt diese Lärche die kühlsten Standorte, sumpfige Örtlichkeiten zusammen mit Balsamteue und Fichte, auch Thujen; ja sie tritt sogar in ganz reinen Beständen auf. Zu ihren Füßen liegen mächtige Polster von Sphagnum, so daß man bei dem Betreten eines solchen Lärchenbestandes bis zu den Knieen im nassen Moose einsinkt; unter dem gut geschlossenen Kronendache dieser 15—20 m hohen Lärchen vermögen nur Vaccinium macrocarpum und Ledum von höheren Pflanzen aufzukommen. Im kanadischen Gebiete und in höherer Elevation der Vereinigten Staaten geht die Lärche auf Hartlandboden über und zeigt ganz das waldbauliche Verhalten ihrer europäischen Schwester mit denselben Leistungen in Stammhöhe und Holzgüte.

Larix Cajanderii n. sp. Cajanders Lärche. Ostsibirien.

Diese Lärche fand sich unter der Ausbeute, welche Dr. A. K. Cajander bei seiner Erforschung der floristischen Verhältnisse des unteren Laufes
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

der Lena in Ostsibirien sammelte. Er selbst nennt 1) die Lärche *dahurica*, mit der sie sicher nahe verwandt ist; es fand sich in der mir zur Verfügung und Bestimmung zugesandten Sammlung auch die *dahurica*. Die neue Lärche bildet von der Mündung des Aldan in die Lena (63. Grad n. B.) an nordwärts Mischbestände mit der sibirischen Fichte (*Picea obovata*) oder *Betula odorata*; reine Lärchenbestände mit über 20 m Höhe finden sich nur auf Böden, welche nicht mehr überschwemmt werden; von der Aldan-Mündung südwärts scheint alles *L. dahurica* zu sein, was von Lärchen sich zeigt: auf Sandboden wächst die euro-

Nach Exemplaren von Dr. Cajander von H. Mayr gez.

päische Föhre *Pinus silvestris* (oder *septentrionalis*?); auf der Meeresinsel Tit Ary unter dem 72. Grad wird Cajanders Lärche nur noch 3—6 m hoch; südlicher, auf sumpfigem Moorboden wiederholt sich an der Lena augenscheinlich dasselbe Bild, das die ostamerikanische Lärche in den Sämpfen von Wisconsin zeigt.

Cajanders Lärche ist folgendermaßen gekennzeichnet: Junge Nadeln haben in dem oben abgebildeten Exemplar, das anfangs Juni gesammelt wurde, noch nicht ihre normale Größe erreicht; an zapfentragenden Zweigen verbliebene vorjährige Nadeln besaßen die ungewöhnliche Länge von 4—5 cm. Beim Platzen der Knospen erscheint mit den neuen Nadeln

ein dichter, weißgelber, lockiger Haarschopf, welcher der *dahurica* fehlt, wohl aber der Prinz Rupprechts-Lärche ebenfalls zukommt. Einjährige Triebe hellgelb-braun mit einzelnstehenden Haaren besetzt; mehrjährige Triebe hellaschfarbig; Zapfen kurz, mit ca. 20 Schuppen; diese am oberen Rande ausgebuchtet, nicht gekerbt wie bei *dahurica*; wenn trocken, klaffen die Schuppen wie bei *dahurica* und *kurilensis*. Zapfenspindel hellbraun behaart; Zapfenstiel haarlos. Angesichts der großen Schwierigkeiten, mit welchen die Entdeckung dieser Lärche in einer fast unbekannten und unbewohnten Gegend verknüpft war, bedarf es keiner weiteren Begründung, weshalb ich diese Lärche nach ihrem Entdecker nannte.

Da alle Lärchen in Mittel- und Nordeuropa prüfungswert sind, wäre die Einführung auch dieser Lärche erwünscht.

Larix chinensis Beifs. Chinesische Lärche. Südchina.

Der fertile, einjährige Längstrieb und die Verlängerungen der Seitenzweige sind ohne Behaarung, auffallend rosa bereift. Knospe braunrot, an der Basis etwas dunkler bis schwarz; Nadeln der Seitenzweige stark sichelförmig aufwärts gekrümmt. An jungen Pflanzen fällt der auffallend gerade Wuchs und die düne, oft in rechtem Winkel abstehende Beästung auf; auch ältere Pflanzen behalten diesen forstlich durch engen Stand zu beseitigenden Wuchs bei. Es verdient die Lärche die forstliche Prüfung. Die richtige Art zu erhalten ist schwierig; die meisten Pflanzenhandlungen liefern, wenn man dahurische Lärchen be- stellt, die europäische oder die ostamerikanische oder die sibirische Lärche.
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Larix europaea DC. Die europäische Lärche.

Alpen, Karpathen und Sudeten.

Der fertige Trieb hellgelbgrün, glänzend, ohne Behaarung und ohne Reif. Knospe hellbraun, mit gleichgefärbter Basis.

Larix Griffithii Hook. Griffiths Lärche, Indische Lärche, Griffiths Larch. Innerer Himalaya und Thibet.

Larix kurilensis Mayr. Kurilenlärche, Shicotanmatzu. Kurileninseln.

Inn- und Knyphausen auf Lütetsburg in Ostfriesland übertrifft sie an Raschwüchsigkeit alles einheimische und fremdländische Gehölz; mit sieben Jahren ist sie 6 m hoch geworden. Über die Verbreitung dieser Holzart hat Maxymowitsch Irrtümer geschrieben, die in alle Schriften übergegangen sind. Er sagt, daß diese Lärche im nördlichen Japan in der Umgebung von Hakodate große Bäume mit dichten Kronen bilde. Hakodate ist die Hafenstadt der großen Insel Eso. Auf Eso
aber gibt es keine einzige wildwachsende Lärche, weder leptolepis noch kurilensis; was Maximovics sah, waren in Gärten gepflanzte hohe leptolepis und niedere kurilensis; die Japaner lieben beide Lärchen ganz besonders; aber ihrem Geschmacke entsprechend sammeln sie insbesondere die an der Meeresküste von Shicotan (Kurileninseln) vom Winde zu Boden geblasenen, knorrig erwachsenen Pflanzen. Wenn aber die Japaner daraus schließen, daß die Kurilenläuche nur krumm und krüppelig erwächst, so ist dies ein vorschneides Urteil, das sie bei näherem Studium der Insel Iturupp als irrig werden erkennen müssen. (Siehe umstehende Abbildung.) Maß ich doch auf dieser im Herbst des Jahres 1890 Stämme mit 65 und 70 cm Brusthöhendurchmesser und 22 m Länge; fünfzigjährige, in einem dichten Bestande aufwachsende, völlig geradschaftige Lärchen hatten 15 m Höhe und 25 cm Durchmesser. Lärchen, die vor 15 Jahren durch Feuer getötet worden waren, hatten inzwischen Rinde und Splint verloren, aber unter der nur 1 mm dicken, verfaulten Oberfläche lag noch ganz unberührt ein 60 cm starkes, rotbraunes Kernholz von einem spezifischen absoluten Trockengewichte von 79.

Kräftige Längstriebe hell bis dunkelrot, zuweilen mit schwach violettem Reife. Knospe rot. Nadeln mit deutlich heller Unterseite, auch Oberseite der Nadeln etwas Reif, daher die Farbe der Benadelung eine helle, blaugrüne: Gröfse der Nadeln wechselnd, (Nadeln und Zapfen schwanken natürlich je nach der Ernährung des Baumes; eine solche schlecht genährte Form hat Maximovics als eigene Varietät beschrieben, was hoffentlich nicht System in der Nomenklatur der Holzgewächse wird!)

Was die Schaftform anlangt, so gibt beifolgende Abbildung von frei erwachsenen Lärchen im forstlichen Versuchsgarten zu Grafrath wenig Hoffnung, daß diese günstiger sein könnte als bei der europä-
ischen Lärche; dagegen spricht sich Dr. Schwappach zugunsten der Schaftform der japanischen Lärchen auf Grund der preußischen Ver-

![22jährige japanische Lärchen (Larix leptolepis). 14 m hoch, 28 cm Durchm. in 1,3 m Höhe, im forstlichen Versuchsgarten zu Grafrath.](image)

Abb. 90. 22-jährige japanische Lärchen (Larix leptolepis). 14 m hoch, 28 cm Durchm. in 1,3 m Höhe, im forstlichen Versuchsgarten zu Grafrath. J. Mochitsuki photogr

...suche aus (l. c. S. 43). Was die Erwartung betrifft, daß die japanische Lärche pilz- und insektenfester sei als die europäische Art, so ist es sehr wohl möglich, daß hierin Unterschiede bestehen, denn die japa-
nische Lärche beginnt früher als die europäische mit einer klein-schuppigen Borkenbildung; die Nadeln haben durch Bereiftheit eine von der europäischen Lärche verschiedene Oberfläche. Den bisherigen Beweisen für die größere Widerstandskraft der japanischen Lärche fehlt jedoch vielfach die Vergleichbarkeit; nur wenn man gleichzeitig auf ein und derselben Fläche und unter derselben waldbaulichen Behandlungen japanische und europäische Lärchen aufzieht, ist der Versuch beweiskräftig.

Wer von der japanischen Lärche ein besseres oder ein schlechteres Holz erwartet, als die europäische Schwester bildet, bewegt sich in Vermutungen, nicht auf naturwissenschaftlicher Grundlage.

Über die japanische Lärche ist bereits eine kleine Literatur entstanden; manches wäre besser nie geschrieben worden, wie z. B. die Behauptung, daß das Klima in Deutschland der Lärche zu kühl sei, im Gegensatz zu dem von mir auf Grund von Vergleichen der klimatischen Ansprüche der Lärche mit dem Klima von Deutschland aufgestellten Satze, daß die japanische Lärche überall wachsen wird, mit allen Vor- und Nachteilen, welche die europäische Lärche zeigt. Unter den Feinden der japanischen Lärche stehen Tiere obenan, vor allem Mäuse und Rehböcke; daß aber unter ungünstigen Verhältnissen Schneebelastung und Sturm die Lärchen dauernd zu Boden drücken können, beweist nur, daß die japanische Lärche keine Ausnahme von ihrem Geschlechte ist; Agaricus melleus schadet der japanischen Lärche häufiger als der europäischen.

In Japan findet sich diese Lärche wildwachsend auf den Vulkanen von Zentral-Hondo, wie dem Fuji, Ontake, Asama, Shiranesan, Norikura und anderen; alle diese Aufschüttungsvulkane sind aus ausgeworfenen Lavablöcken und Sand aufgebaut, so daß durch Verwitterung ein äußerst fruchtbareer, kalkreicher Boden entsteht; die Lärche bildet an allen diesen Vulkanen die oberste Waldgrenze, zusammen mit Abies Veitchii, Birken, Tsuga diversifolia, Picea hondoensis. In allen Örtlichkeiten ergrünen die Lärchen erst anfangs Juni und schließen Mitte August die Vegetation wieder ab. Dafs die Lärche besonders häufig auf der Insel Eso und auf Sachalin sei, ist ein Irrtum, der sich noch lange in den Büchern derjenigen, welche nicht über eigene Beobachtungen in der Heimat der japanischen Lärchen verfügen, erhalten dürfte. Die Japaner haben auch Versuche in wärmerem Klima mit dieser Lärche unternommen; so sah ich auf dem Nordhange des Amagigebirges im Gebiete der Edelkastanie mit Aokiba (Aucuba)\(^1\), immergrünen Evonymus, zwischen Laubbäumen eine Lärchenanlage,\

\(^1\) Das Wort Aucuba ist eine sinnlose Verstümmelung des japanischen Wortes Aokiba (= Blaugrünblatt); die bekannte Pflanze mit ihren zahlreichen Varietäten muß daher Aokiba japonica usw. heißen.
A. Die Nadelhölzer, Koniferen.

Abb. 91. 23jährige, japanische Lärchen mit 1–6jährigem, natürlichem Anfluge im forstlichen Versuchsgarten zu Grafrath.

H. Mayr photogr.

Mayr, Fremdländische Wald- und Parkbäume.
welche 75 Jahre alt war; die Stämme waren zuwachslos geworden und wurden eben gefällt. Sie zeigten alle Nachteile des Lärchenholzes in allzu warmen Klimalagen; ästig, breiter Splint, breitringig, wenig gefärbter Kern; im Durchschnitte besaßen sie nur 29 m Höhe bei 52 cm Brusthöhen durchmesser. Auch diese Lärchen zeigten einen Nachteil, den auch die Anpflanzungen in Europa bereits erkennen lassen, nämlich die starke Entwicklung der horizontalen, weitausgreifenden Äste, so daß nur enger Verband oder Beimischung von fällenden Halbschatten- und Schattenholzarten eine Abstofsung der Äste der japanischen Lärche zu erzielen vermögen. Der Same reift schon an jüngeren Exemplaren und zeigt eine im Vergleiche zum europäischen Lärchensamen sehr hohe Keimkraft. Der Same fällt im Herbst bereits aus den Zapfen; um die Samen zu erhalten, werden die Zapfen aufs eifrigste von Eichhörrchen gesucht. Im forstlichen Versuchsgarten zu Grafrath haben die freistehenden Lärchen mit 22 Jahren eine mittlere Höhe von 14 m und einen mittleren Durchmesser von 28 cm erreicht; reichliche Naturverjüngung durch Samenabfall deckt den Boden zu ihren Füßen. Siehe Abbildung 91.

Die fertigen Triebe sind dicht wollig, hellgelb behaart; Knospenbasis der Kurztriebe dicht hellgelb flockig.

Auch diese Lärche wird ein stattlicher Baum, wie beigegebene Abbildung beweist; sie ist gefertigt nach einer Photographie, welche ich Herrn _Alfred Rheder_ vom Arnold Arboretum zu Brokline (Mass.) verdanke.

Larix occidentalis Nutt. _Westamerikanische Lärche._

Tamarack, W. Westamerika.

Junge Triebe gelbbraun, glänzend, glatt, zuweilen während des Wachstums mit feinen gelblichen Haaren versehen; Knospe braun.

Junge Pflanzen wachsen sehr rasch; in der Heimat sind 1 m lange Triebe auf mit Rosen und wilden Johannisbeeren bewachsenem, somit gutem und frischem Boden häufig genug.

Im Felsenengebirge von Montana bildet die Lärche mit der Douglasie einen locker geschlossenen Bestand. Die Douglasie-Stämme wurden zuerst genützt; 1885 wurden auch einige Lärchen gefällt. Ich maß eine solche mit 37 m Höhe und 81 cm Durchmesser, eine zweite mit 43 m Höhe und 86 cm Durchmesser; sie waren 270 Jahre alt. Splint 1 cm, alles übrige dunkelrotbrauner Kern von vorzüglicher Härte, somit von jener Beschaffenheit, wie sie alle Lärchen auf gutem Boden der kühleren Baumregion erzeugen.

In Trout creek fand ich ein ganzes Tal mit reinem Lärchenbestande von lockerem Schlusse erfüllt; je feuchter aber der Boden
Abb. 92. Lyalls Lärchen (*Larix Lyallii*) aus der obersten Waldregion des kanadischen Felsengebirges

A. Rheder photogr.
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Die natürlichen Nachfolger zu den Füssen der alten Lärchen sind oft ein so enggeschlossenes Dickicht, daß selbst die Douglasie in ihnen ersticken wird. Trotzdem fand sich in solchen Stangenhölzern keine Pilzkrankheit, wohl aber zahlreiche Hexenbesen. In den blauen Bergen endlich bevölkert die Lärche mit *Pinus Murrayana* die oberste Waldregion; in günstigen Lagen maß ich noch 44 m Höhe mit 80 cm Durchmesser. Mit demselben Rechte, mit dem man das förstliche Interesse der japanischen Lärche zuwandte, müßte man auch die westamerikanische Lärche zu Anbauversuchen heranziehen.

Larix Principis Rupprechtii n. sp. Prinz Rupprechts-Lärche.

Wutaishan, Nordchina.

Einjährige fertige Triebe hellgelb an den herablaufenden Nadelbasen mit zwischenliegenden mattgrauen Tönen, kahl; an den Seiten-

VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Die Lärche habe ich zu Ehren seiner Königl. Hoheit des Prinzen Rupprecht von Bayern benannt, Höchstwelcher zu ethnographischen

Abb. 35. Das erste Exemplar der Prinz Rupprechts-Lärche (Larix Principis Rupprechtii), das in einem Tempelhofe zu Wutaishan 1903 beobachtet wurde. Prinz Rupprecht von Bayern photogr.

und naturwissenschaftlichen Studien1) die beschwerliche Reise ins Hochgebirge des Wutai unternommen und hierbei mir die Möglichkeit geboten hat, ein von Pflanzensammlern bisher noch unberührtes Gebiet durchforsten zu können. Seiner Königl. Hoheit verdanke ich auch die Photographie der ersten Lärche dieser neuen Art; sie stand an einem Tempel zu Wutaishan, der großen Wallfahrtsstätte der Mongolen; unweit hiervon hatte sich auf einem steilen Berghange noch ein Rest alter Lärchen erhalten, zusammen mit einer Fichte, welche sich ebenfalls als neue Art erwies. An dieser Stelle hob ich drei kleine

1) Rupprecht, Prinz von Bayern, Reiserinnerungen aus Ostasien, München 1906, S. 177 u. f.
Lärchen mit Erde heraus und brachte trotz ihrer Mißhandlungen während einer fast viermonatigen Reise ein Exemplar lebend nach Grafrath. Auch als junge Pflanze verrät diese Lärche bei sehr kräftigem Wuchse ihre Verschiedenheit von allen bisher bekannten und in Grafrath kultivierten Lärchen, vor allem gegenüber *dahurica* und *sibirica*; Prinz Rupprechts-Lärche steht noch am nächsten der europäischen Lärche; mit der sibirischen hat sie nichts gemein als die Zapfengröße.

Die sibirische Lärche zeichnet in ihrer Heimat eine auffallende Geradschaftigkeit aus, weshalb sie auch verdient geprüft zu werden. Ein prächtiger reiner Bestand der sibirischen Lärche mit Schäften, wie sie nur bei Fichten und Tannen erwartet werden, verdankt einer Pflanzung auf kahlen Flächen unweit von Raivola, nördlich von
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

St. Petersburg, sein Dasein; siehe beigegebene Abbildung. Da dieser Lärchenbestand, wie die Tannenbestände des Fürsten zu Inn- und

Abb. 96. Sibirische Lärchen (Larix sibirica) in reinem Bestande gepflanzt, 155jährig, bei Raivola an der russisch-finnischen Grenze.
Nach russischer Photogr.

Knyphausen in Ostfriesland, zu den großartigsten und ältesten forstlichen Kulturobjekten mit fremdländischen Holzarten zählt, sei etwas ausführlicher seine Entstehungsgeschichte, die besonders lehrreich für
den Anbau der übrigen (eineheimischen wie fremden) Lärchen sein dürfte, beschrieben; ich füge hinzu, daß die Angaben über die Flächenverhältnisse ganz bedeutend schwanken 1).

In den Jahren 1750—1760 wurden auf Befehl der Kaiserin Elisabeth von dem deutschen Forstmann Fockel auf waldentblößtem Gebiete ausgedehnte Anpflanzungen vorgenommen. Der Samen der sibirischen Lärche stammte aus Ufa, einem unter dem 55. Grad n. Br. gelegenen, aber noch hohe Bergspitzen des südlichen Ural in sich begreifenden Gouvernements; die in Saatbeeten erzogenen Pflanzen wurden mit 2m Abstand ins Freie versetzt, und zwar in reinem Bestande volle 65 ha, mit Fichte gemischt 30 ha: der Rest der Pflanzungen, welche Fockel ausführte, bestand aus 25 ha Fichten und Föhren. Jüngere als 80 Jahre alte Stämme sind nicht vorhanden. Was nun den reinen Lärchenbestand anlangt, so stockt dieser auf Boden von sehr wechselnder Güte, teils auf sehr gutem, frischem Boden, wo jetzt vielfach Fichten angepflanzt sind, die bis zu 20 m Höhe einen Füllbestand in den Lärchen bilden, teils auf weniger gutem, aber immer noch frischem Boden mit einer Bodenbedeckung aus Vaccinium, Sorbus, Adlerfarnen; an letzterem waren durch einen Frost am 11. September die Blätter bereits getötet; wo Gras den Boden bedeckt, ist der Wuchs merklich kürzer. stellenweise ist der Untergrund so seicht, daß die Lärchen Wurzeln wie Fichten entwickelt haben, und das ist zum Teil der Grund, weshalb jetzt alljährlich etwa 50 ganz gesunde Individuen durch Sturm zu Boden gelegt werden. Dazu kommen dann noch einige durch Trametes Pini angegriffene Stämme. Die Lärchen standen damals (18. September 1899) in voller goldgelber Herbstfärbung; reichlicher Flechtenansatz an den Ästen verriet die große Luftfeuchtigkeit, ein Moment, das uns überrascht: denn gerade solche stagnierende Luftfeuchtigkeit gilt bei uns als ein Hindernis für die Lärchenaufzucht. Für mich war der große reine Lärchenbestand nur eine Bestätigung dessen, was ich bei anderen Lärchen auch wahrnahm, und was ich längst auch in meinen waldbaulichen Vorlesungen verwerte: Je luftparcher das Klima (Gebirge, Küste, reichliche Bodenfeuchtigkeit), um so größer müssen die Gruppen angelegt werden, bis zu einer Ausdehnung, welche wir bereits als reinen Bestand bezeichnen müssen, um so weiter muß der Pflanzenabstand sein. Auch darin verhalten sich augenscheinlich alle Lärchen gleich. Tadellos war die Schaftbildung. Ohne Blick in die Kronen hätte man den Bestand ebensogut für rauhborkige Fichten oder livländische Föhren halten können. Im reinen Bestande hat sich die Lärche bis zu 20 m von den Ästen gereinigt; darüber ist eine parabolische, noch Gesundheit und Zuwachs verratende Krone; ein ge-

stürzter Baum zeigte während der letzten fünf Jahre 63 cm Längenzuwachs, wobei die Längstrieben zwischen 12 und 13 cm schwankten, somit eine auffallende Gleichmäßigkeit im Wuchs. Vielfache Messungen hat Prof. Dobrowliansky mit den Studierenden des Petersburger Forstinstitutes ausgeführt; es sind Stämme mit 40 m bekannt. Einen zu Boden gefallenen mit 35 m maß ich selbst. Aus einem derselben war ein mehrere Meter langes Sägestück ausgeschnitten, das, mit etwa 70 cm Durchmesser, für die Weltransstellung 1900 zu Paris bestimmt war. Unter dem 2 cm breiten Splinte lag ein rotbrauner Kern mit außerordentlich gleichmässigem Jahrringbau, die steinharte, rotfettig-glänzende Spätholzone etwa die Hälfte der Jahrringbreite einnehmend. Wie bei allen Lärchen, zeigt es sich auch bei der sibirischen, daß sie in reinen Beständen sich schwierig auf natürlichem Wege verjüngt wegen der Vermarknugtung des Bodens unter ihren lichten Kronen, daß sie aber auf benachbarten empfänglichen Böden, frischen Kahlf lächen, Straßendämmen, Wegen, Gärten mit Leichtigkeit sich an-siedelt.

Wegen der großen Ähnlichkeit, welche die sibirische Lärche mit den guten Eigenschaften, wegen der Unähnlichkeit, die sie bis jetzt mit den schlechten Eigenschaften unserer Lärche gezeigt hat, das sind Krummschaftigkeit. Empfindlichkeit gegen Insekten und Pilze — an *L. sibirica* ist Periza ganz unbekannt —, sei die sibirische Lärche warm zum Anbau empfohlen; ihre Langsamwuchsichtigkeit verlangt große Gruppen oder reine Bestände mit weiten Pflanzabständen, welche später unterbaut werden müssen mit einheimischen oder fremdländischen Holzarten.

Gattung Libocedrus, Heyderien.

sehr dauerhaftes Kernholz (Tafel VII, Fig. 10: spezifisches absolutes trockenes Gewicht 38,8); ihr schöner Aufbau verleiht ihnen auch großen Zierwert.

Junge Pflanzen besitzen kurze, spitzige Schuppenblätter nach Tafel I, Fig. 9. An Längstrieben sind die Spitzen etwas vom Triebe weg gerichtet; an Seitenzweigen sind die Spitzen der Schuppenblätter nach dem Triebe zugekehrt. Die ersten fünf Jahre wächst die westamerikanische Heyderie ziemlich langsam, dann aber rasch in die Höhe; dabei geht die Rinde sehr bald in eine Borke mit kleinen Schuppen über, die sich leicht ablösen; später erscheinen dann Längsrisse. Den völlig erwachsenen Baum charakterisiert eine sehr breite, tiefrissige, rotbraune, weiche Borke; Borkenplatten 8—10 cm breit, 4—6 cm dick; dabei unterscheidet sich die Borke von der Lawsonia dadurch, daß viele der Risse diagonal zwischen zwei Längsrissen verlaufen.

Wo ein Borkental verläuft, ist der innenliegende Holzkörper ausgebaucht, so daß der Querschnitt eines Stammes einen grobwelligen Verlauf der Jahresringe freilegt; der helle Splint wechselt zwischen 7 und 16 cm in der Breite.

Der ausgewachsene Baum trägt eine Krone, die im Aufbau ganz wesentlich von einer Thuje verschieden ist: die Krone ist ein langgestreckter Zuckerhut; die Äste sind kurz, kräftig, sparrig und vielfach knieförmig gebogen und etwas aufgerichtet. Beigegebene Figur, nach der Natur gezeichnet, stellt einen erwachsenen Baum dar.

Freistehende alte Exemplare sind auffallend gelbgrün, während im Halbschatten befindliche oder junge Exemplare eine dunkelgrüne, glänzende Färbung tragen.

VII. Abschnitt: Die für Europa anbaufähigen fremden Holzarten.
luftfeuchten Schluchten, hart an den Ufern der Bergwasser, nicht aber im sumpfigen Boden, gedeiht sie am besten.
Aus meinen Messungen ergibt sich als Maximalentwicklung 56 m Höhe und 1,56 m Durchmesser, während Höhen von 50 m einen guten Durchschnitt darstellen.

physikalischen Eigenschaften gleich sein muß —, erscheint versuchs-
würdig sowohl aus forstlichen als aus ästhetischen Gründen.

Gattung Picea. Die Fichtenarten Spruces, les Epicéas.

Immergrüne Bäume mit einspitzigen Nadeln; letztere am Grunde verschmiert und auf einem aus der Rinde des Triebes vorspringenden Nadelkissen aufsitzend; nach dem Nadelabfall bleibt das erhabene Nadelkissen an der Rinde des Triebes zurück, wodurch auch am kleinen Zweigstückchen Fichte und Tanne unterschieden werden können. Die Nadeln sind bald vierkantig, in diesem Falle tragen in der Regel die vier Flächen die Spaltöffnungsreihen als hellere Streifen; oder die Nadeln sind zweikantig, dann liegen die Spaltöffnungen in zwei hellen Parallelstreifen auf der, morphologisch als Oberseite der Nadel zu bezeichnenden Fläche. An der Unterseite der Seitenzweige erreiden Nadelkissen und Nadeln eine Drehung, so daß die eigentliche Oberseite der Nadeln abwärts dem Boden zugekehrt ist. Auf diese Weise bildet sich auch bei einigen Fichten eine hellere Zweigunterseite aus, ein Bild, das dann — entfernt wenigstens — an Tannenarten erinnert.

Der Same liegt in einer lößelartigen Vertiefung des Flügels, aus welcher er sich leicht loslößt; die Fichten sind im Freistande rasch-
wüchsig; unter dem Schirme bleiben sie, wie alle Holzarten, langsam-
wüchsig; sie ertragen aber, da sie alle Schattenholzarten sind, den Entzug des Lichtes längere Zeit, ohne zugrunde zu gehen. Die Fichten verlangen einen guten, frischen Boden, begnügen sich aber wegen ihrer seichten Bewurzelung mit geringer Bodentiefe, selbst mit Böden bis 30 cm Tiefe herab. Wegen ihrer hohen Ansprüche an die Feuchtigkeit der Luft gelten insbesondere die allgemeinen Anbauwege und die Anbauregeln der Bodenfeuchtigkeit; ihre Ansprüche an das Klima sind bei den Vegetationszonen bereits genügend gewährt, indem sie einen Klimastrich bewohnen, der von der Buchenzone auf- oder nordwärts bis zur Waldgrenze sich erstreckt; die kühlere Waldregion wurde dementsprechend das Piceum genannt. Trotzdem leidet die Fichte durch verspätete Fröste bald mehr, bald weniger, je nachdem sie ihre Vegetationstätigkeit früher oder später entfaltet. Einige Fichten schließen ihre Tätigkeit nicht genügend frühzeitig ab, so daß sie dann durch verfrühte oder starke Winterfröste zurückkriechen. Von solchen Arten abgesehen, verlangen die übrigen Fichten in ganz spezifischen Frostlagen (Frostlöchern) einen besonderen Schutz durch Vorbau einer beschirmenden Holzart. Auf geneigtem Gelände ist sicher jeder Schutzholzvorbau überflüssig. Für die Aufzucht der Fichte gelten die allgemeinen Regeln; die verschiedenen Methoden zu erwähnen, die sich bald hier, bald dort bewährt haben, würde den Rahmen dieser Schrift weit überschreiten. Waldbaulich, das heißt mit Rücksicht auf ver-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

scheidene Gefahren, auf Boden usw., sind Mischbestände von Fichte mit anderen Holzarten empfehlenswert; forstlich, das heißt das finanzielle Ergebnis im Auge, sind reine Bestände einer Art oder Mischbestände von Fichtenarten besser als Fichte mit anderen Holzarten.

Die Fichte erfüllt alle Ansprüche, welche an eine moderne Nutzholzart gestellt werden. Unter gleichen Verhältnissen bilden alle Fichten auch annähernd gleiches Holzprodukt; in Bestandsschlufs erwachsene Schäfte sind vollholzig, zweischnürig, astrein; das astlose Holz ist leicht (spezifisches Gewicht 38—44), leicht zu bearbeiten; es ist Holz von großer Tragkraft und starken Dimensionen; es fehlt aber dem Holze aller Fichten die Dauer. (Anatomie des Holzes auf Tafel II sub Picea.)

Der Kern, stets wasserärmer als der Splint, ist in Farbe vom Splinte nicht verschieden, woraus sich zur Genüge der Mangel an Dauer wie bei den Tannen erklärt; Harzgänge vorhanden; beim Abschneiden der Fichten tritt Harz aus dem Splinte aus. Alle Fichtenarten liefern in ihrer Rinde einen nutzbaren Gerbstoff. Die seichte Bewurzelung erklärt die Empfindlichkeit der Fichte, insbesondere gleichalteriger reiner Bestände, gegen Schneedruck und Sturm. Bei freier Kronenentwicklung, freistehend von Jugend auf, wird die Fichte völlig sturmfest. Die Fichten haben zahlreiche Feinde unter den Insekten, besonders Rüsselkäfer, in der Jugend der Pflanzen; Wurzelkrebs, veranlasst durch Agaricus melleus und Polyporus annosus, tötet einzelne jüngere Exemplare; Rehe lieben die kräftige Gipfelknospe der Fichte während des Winters; Eichhörnchen setzen die Arbeit fort, wenn die Fichten einmal den Rehen glücklich entwachsen sind; für diejenige Fichte, welche die größte Knospe besitzt, dies ist *Picea polita*, sind die Nachstellungen des Eichhörnchens geradezu verhängnisvoll. Nadelbräune im Winter infolge von Kälte und Besonnung ist bei den Fichten ebenfalls bekannt. Die Aufzucht der kleinsamigsten Fichten geschieht während der beiden ersten Jahre am besten in Kästen; für Fichten mit größeren Sämereien mögen die Methoden, welche bei der europäischen Fichte bekannt sind,
gewählt werden. Forstlich sind alle Fichten prüfungswert in Örtlichkeiten Europas, in denen die Fichten in natürlicher ursprünglicher Verbreitung fehlen. Die Fichten sind durch ihren schönen, gleichmäßigen Aufbau, durch ihre bald dunkelgrüne, bald bläuliche, ja selbst weifsblaue Benadelung ganz hervorragende Zierbäume.

Picea acicularis Maxim.
	soll aus Japan stammen und soll eine alpine Form der *Picea bicolor* sein. Solange die Heimat nicht gefunden ist, darf man sie wohl nicht irgendeinem Lande aufoktroyieren. In Japan ist sie bis heute nicht bekannt.

VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Abb. 101. Wolfsfichte (*Picea alba*) bei Banff im Staate Alberta (Brit.-Kolumbien),
A. Rheder photogr.
Picea ajanensis Fisch. Ajanische Fichte. **Kuro-Esomatsuz**
(Schwarzfichte von Eso). Ostsibirien. Hokkaido.

Wenn die Festlandsfichte, die wahre *ajanensis*, so merklich verschieden ist von der Fichte, welche man auf Eso und Sachalin als *ajanensis* bezeichnet, daß M. Masters sich veranlaßt sah, die Fichte von Eso als Varietät *microsperma* der Festlands-*ajanensis* gegenüberzustellen, dann dürfte wohl neben der Festlands-*ajanensis* noch die insulare, nahverwandte Fichte, als *Picea microsperma* Curr., zu unterscheiden sein. Für diese wäre aber der ältere Name *Picea Yezoensis* Curr. nicht zu gebrauchen, da diese Spezies ebenso wie *Alcockiana* am grünen Arbeitstische durch Vermischung und Verwechslung von zwei Fichtenarten entstanden ist.

Die Erkennungszeichen der ajanischen Fichte, die Unterschiede gegenüber der *hondoensis* habe ich in meiner Monographie „Die Abietineen des japanischen Reiches“, 1890, ausführlich beschrieben. Was die junge Pflanze anlangt, so sind die Unterschiede folgende:

ajanensis: Fertiger Trieb gelbgrün, glänzend, ohne Haare; die Farbe des ins zweite, dritte, vierte Jahr gehenden Triebes ist der des ersten Jahres nahezu gleich.

Hondoensis: Fertige Triebe der jungen Pflanze mit rötlichen oder auch mit bräunlichen Tönen, glänzend, ohne Haare, die Farbe des ins zweite Jahr gehenden Triebes ist bereits merklich dunkler als die des einjährigen Triebes; der drei- und vierjährige Trieb ist bräunlich; je älter und kräftiger das Exemplar wird, um so früher stellt sich die braunglänzende Farbe des Triebes ein; schon an zehnjährigen Pflanzen sieht man den fertigen einjährigen Trieb glänzend braun. Während die Ajanfichte ihr ganzes Leben hindurch ein-, zwei-, drei- usw. jährige Triebe mit hellgelber Farbe entwickelt.

1) Im Herbarium zu Kew findet sich *Picea ajanensis ex Herbario Acad. Petrop. von Udskoî im östlichen Sibirien gesammelt, welche von der Eso-Fichte grundverschieden ist.

Mayr, Fremdländische Wald- und Parkbäume.
Ein weiterer Unterschied liegt in der Stellung, Form und Spitze der Nadeln; die beigegebene Figur erklärt dies besser als jede Beschreibung. Ein dritter Unterschied liegt in dem Nadelkissen, das bei der *hondoënsis* auf der Trieboberseite schon frühzeitig eine Verbreiterung zeigt, die im Alter zunimmt, bei der Ajansfichte dagegen ohne seitliche Wulste ausgebildet wird. Die übrigen Unterschiede, die im Habitus, in der Ausbildung der Rinde, im Zapfen usw. liegen, mögen in der Monographie nachgesehen werden.

Die Nadeln sind bei beiden Arten flach, zweikantig, auf der anatomischen Oberseite, welche am Seitentriebe dem Boden zugekehrt ist, mit zwei weißen Linien, welche die Spaltöffnungen tragen; es zeigen daher diese zwei Fichten, schöner als irgendeine andere, eine weifsliche Färbung der Unterseite der Zweige, während die Oberseite der Zweige von den prächtig glänzenden, dunkelgrünen Nadelunterseiten (morphologisch betrachtet) gebildet wird.
Die ajanische Fichte erscheint auf Eso in der Buchenregion bereits als hoher Baum, erreicht in vielen Beständen bis 60 m; auf Eso gibt es außer der ajanischen nur noch Gle h n s - Fichte. Was in den Büchern steht, daß auf hohen Gebirgen eine kleinsamige Ajansfichte in rauhen Lagen, an trockenen unfruchtbaren Hängen wüchs, dürfte wohl freie Erfindung sein; nichts von alledem findet sich bei Hakodate, das nur von fruchtaren Ebenen und hügeligem Gelände umgeben ist. Ob die Ajansfichte außerhalb des natürlichen Verbreitungsbereichs der europäischen Fichten irgendwelche Vorzüge besitzt, können nur Versuche nachweisen; bis jetzt hat sich im forstlichen Versuchsgarten zu Grafrath nur gezeigt, daß sie, da sie etwas früher ausreift als die europäische Fichte, empfindlicher gegen verspätete Fröste ist. Die Fichte ist eine prächtige Zierde jedes Gartens; an ihr findet man, wie an allen Fichtenarten, einen Hexenbesen, der wie ein weißer Ball vom Banne herabschimmert. Veredelungen mit solchen Hexenbesen müßten höchst wertvolle, unvergleichlich schöne Garten- und Parkpflanzen liefern.

Niemand kann behaupten, daß Maximovics, der um die Erfindung von Ostasien so große Verdienste sich erworben, bei der Benennung der japanischen Abietineen besonders glücklich gewesen ist; ähnlich wie Lindley bei der Aufstellung seiner Spezies *Alcockiana*, besaß auch Maximovics bei seiner Spezies *bicolor* ein Stück unserer Fichte, so daß mehr die praktischen Erwägungen als die wissenschaftliche Berechtigung hier den Ausschlag geben müssen). Nachdem nun mehrere Jahrzehnte lang unter *Picea Alcockiana* eine ganz andere Fichte verstanden wurde, als unsere *bicolor* ist (nämlich *hondoensis*), nachdem auch heute noch bei jeder Ausstellung (z. B. Düsseldorf 1904) von fast sämtlichen Pflanzenzüchtern und in den meisten botanischen Gärten der Name *Alcockiana* für eine Fichte, nämlich *hondoensis* und *ajancensis*, promiscue angewendet wird, gibt es nur einen Ausweg, diesen nordischen Knoten zu durchhauen, nämlich den immer noch milsbrauchten Namen *Alcockiana* zu kassieren und *bicolor* zu gebrauchen. Nachdem auch die Professoren und Botaniker Dr. Klein, Dr. Wilhelm, Dr. Schirasawa und Dr. Matzumura sich meinem vor 15 Jahren gemachten Vorschlage angeschlossen haben, finde ich keinen Grund zur Änderung.

Nadeln in jedem Alter der Pflanze mit rhombischem Querschnitt, somit vierkantig; die beiden als morphologische Oberseiten anzu-

1) Lindley's *Alcockiana* ist überdies ein Kunstprodukt, zu dem eine Fichte den Zapfen, eine ganz andere Fichte die Nadeln geliefert hat.
sprechenden Flächen tragen in weiflichen Streifen die Spaltöffnungen. Am Längstriebe ist diese Seite demselben zugekehrt, an Seitentrieben, besonders unterdrückten, sind einige Nadeln gedreht, so dafs ver-einzelt die weiße Seite dem Boden sich zuwendet; nie ist die ganze Zweigunterseite so hellbläulich als bei *ajacensis* oder *hondoensis*. Die Benadelung nähert sich vielmehr in ihrer Stellung am meisten der europäischen Fichte, ist aber dichter stehend, so dafs die Triebbrinde nicht sichtbar ist, und nicht so dunkelgrün; alle Nadeln ober- und unterseits nach vorne gerichtet. Die kräftigen Längstriebe des Gipfels (bei sehr kräftiger Entwicklung auch die Längstriebe der Seitenzweige) erscheinen rosarot, dicht behaart, mit scharf stechenden Nadeln, kurze Seitentriebe kahl: dadurch kann die Fichte leicht von *Omorica* unterschieden werden, mit der die Pflanzenhändler dieselbe neuerdings häufig verwechseln. Zweijähriger Trieb rothemail.

Picea Breweriana Wats. Brewers-Fichte. Kalifornien.

Die Merkmale der jungen Pflanze sind nach einem in Kew kulti-vierten Exemplare folgende: Nadelfläche zweikantig, mit kurzer Spitze; die morphologische Oberseite mit zwei weiflichen Streifen, welche, am Leittriebe diesem zugekehrt, an den Seitenzweigen durch eine Drehung etwas nach unten gewendet sind; Trieb rotbraun, kurz behaart, im zweiten Jahre grüngrun; Knospenspachsen am Leittriebe zurückgerollt, wie bei *Picea pungens*. Da in Kalifornien nur höhere Gebirgslagen das Klima besitzen, wie es Fichten beanspruchen, so ist die Fichte ein sogenannter Hochgebirgsbaum. Die Höhe, windige Lage, der freie Stand und die kurze Vegetationszeit bedingen, dafs die Brewers-Fichte mit tief herabhängenden feinen Ästen erwächst, wie die europäische Fichte sie in gleicher Lage zeigt. In der wärmern Ebene wird sich, wie bei

1) Alle Angaben in der Literatur, dafs die *bicolor* kahl oder ganz behaart sei, sind dementsprechend zu korrigieren: die meisten, welche *bicolor* beschrieben, hatten *hondoensis* unter den Händen.
A. Die Nadelhölzer, Koniferen.

Die Nudelhölzer, Koniferen.

32!

der europäischen, so auch bei der Brewersenchen Fichte, die pendulierte Eigenschaft der Zweigchen, das heißt der Hochgebirgscharakter, größtenteils wiederum verlieren müssen.

Picea Engelmannii Engelm. Engelmanns-Fichte, White Spruce.

Felsengebirge.

Nadeln vierkantig, heller und kräftiger, aber oben so gestellt wie bei der europäischen Fichte: Spitzen stehend, doch weniger scharf als bei der _Picea pungens_. Junge Triebe schwach rosa bereift, behaart, beim Zerreiben schwach den Beigeruch, welcher _Picea alba_ zukommt, zeigend: Knospenschuppen hellbraun bis ockerfarbig, glatt, fest anliegend, unterste Schuppen deutlich braun behaart. Den schlanken Aufbau dieser Fichte in ihrer Heimat geben zwei schöne photographische Abbildungen wieder, welche ich Ihren Kgl. Hoheiten Prinz Georg und Prinz Konrad von Bayern verdanke. Diese Fichte ist von seiten der preußischen Versuchsanstalt (Dr. Schwappach) zwar nicht für Ebenen und Mittelgebirge, wohl aber für höhere Lagen empfohlen, wo die europäische Fichte bereits im Wachstum nachläßt. Das Heimatgebiet der Engel-
manns-Fichte gibt zu dieser Empfehlung direkt keinen Anlaß; nach meiner Auffassung kann die Fichte innerhalb des natürlichen Verbreitungsgebietes unserer Fichte nicht mehr leisten als diese; möglich aber ist, daß ihre Begründung leichter und wegen der stechenden Nadeln sicherer ist: der Gerbstoffgehalt der Rinde beträgt 16.5%; Blauweiße Formen stehen im Werte hoch.

Picea excelsa Jk. **Fichte, Rottanne.** Mittel- und Nordeuropa.

Es gibt wenig Holzarten, die eine solche Mannigfaltigkeit in ihrer äußeren Erscheinung schon als junge Pflanzen darbieten wie gerade

Picea Glehnii Mast. **Glehns-Fichte, Aka-Eso-matzu.** Hokkaido und Sachalin.

Picea hondoënsis Mayr. (syn. die Nadeln von *Picea Alcockiana* Carr.). **Hondo-Fichte, Tohi.** Zentralhondo.

Im Zusammenhalte mit der ajanischen Fichte sind die Merkmale junger Pflanzen dieser Fichte genau beschrieben. Die Hondofichte ergrünt später als die ajanische, ist somit härter gegen verspätete Fröste. Diese Fichte fehlt, wie überhaupt alle Fichten, dem ganzen Norden von Hondo: das ihr zusagende Klima liegt im mittleren Hondo bei höherer Elevation; reine Bestände, wie solche die Ajanfichte in größerer Ausdehnung bildet, sind bei der Hondofichte nicht bekannt. Sie erscheint in Mischung mit der Veitch-Tanne und an ihrer Wärmegrenze mit
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

der gleichfalls nur zentralhondoënsischen *Picea bicolor*. Wie hoch die Hondofichte wird, kann ich nicht angeben, da ich die höchsten Stämme nicht gemessen habe; ein freistehendes Exemplar hatte 23 m Höhe und 0,73 cm Durchmesser. Die Bezeichnung To-hi, das heißt Feuerbaum (Hinoki) der Provinz To (Shinano), paßt sehr gut, denn der Splint umfaßt, ganz im Gegensatz zu allen anderen Fichten, einen schwach rosa gefärbten Kern; in dekorativer Hinsicht zählt die Hondofichte zu den schönsten ihres Geschlechtes.

Picea Mastersii n. sp. Masters'-Fichte. Wutaishan, China.

Eine neue Fichtenart zu Ehren Maxwell Masters', des großen Koniferenkenners und des Herausgebers von „Gardeners Chronicle“ zu London, zu benennen, bedarf keiner Erklärung und keiner Recht-

Abb. 105. Links Zapfenschuppen (natür. Größe), in der Mitte Brakteen (4 mal vergr.); rechts Nadeln in natür. Größe, Querschnitte der Nadeln (4 mal vergr.); alles von Masters'-Fichte (*Picea Mastersii*).

fertigung. Als ich das am Wutaishan gesammelte Material Masters zusandte mit der Bitte, die Art zu bestimmen, ja vielleicht die Identität mit Masters' *Picea Wilsonii* feststellen zu wollen, schrieb Masters zurück, daß ich, der ich den Baum in der Heimat studiert hätte, am besten ausgerüstet und berechtigt sein müsse, auch über die Art zu entscheiden; Masters selbst stellt die Fichte in die Nähe der *Picea obovata*; doch steht sie dieser nicht nahe genug, um sie auch nur als Varietät der *oboivata* anzugliedern; die Exemplare, welche Maximovics am Amurfluße sammelte, und welche in Kew aufbewahrt werden, zeigen zwar Ähnlichkeit in den Zapfen, aber Nadeln und Triebe sind ganz verschieden; ein anderes Exemplar, von Regel (wo?) gesammelt, hat ebenfalls Ähnlichkeit; es ist im Convolute Glehnii einstweilen untergebracht. Die von Masters selbst benannten, von Franchet als *Abies* beschriebenen chinesischen Fichten (*Picea brachytyila* Mast. und
Die Nadelhölzer, Koniferen.

329

Picea likiangensis Mast.) kommen hier nicht in Frage, da sie beide der *Picea polita* nahestehen, mit welcher unsere Fichte weder als junge Pflanze noch als Baum eine Ähnlichkeit besitzt, die größer wäre als mit irgendeiner anderen Fichte. Einjähriger, fertiger Trieb hellockerfarbig; zweijähriger rahmweifs; Knospe stumpf, hellockerfarbig, etwas glänzend; Nadeln der jungen Pflanze scharf stechend, vierkantig im Querschnitt; mit weißen Spaltöffnungsstreifen auf allen Seiten. Nadeln des fruchttragenden Baumes in Größe außerordentlich wechselnd; die in der Abbildung wiedergegebenen Nadeln sind alle von ein und demselben Zweige abgenommen; Nadeln im fast rechten Winkel vom Zweige abstehend. Zapfen an einem kurzen Stiele, der am Zweige verbleibt; Zapfenbasis selbst gegen die Anhaftstelle hin konisch zulaufend. Zapfenlänge stets nur sehr wenig schwankend, von 5—6 cm und 3 cm Durchmesser, wenn offen. Zapfen hellgelbbraun, schwach glänzend; Schuppen abgerundet, mit schwachem Kerbe am obersten Rande; dieser Teil stets nach der Zapfenspindel hin gekrümmt. Die Blüte schuppen trägt zwei deutlich hervorragende Harzgänge. Die Rinde des erwachsenen Baumes ist kleinschuppig, hellgrau; die Tracht des erwachsenen, freistehenden Baumes erinnert so sehr an eine Tanne, daß ich wiederholt im Glauben, im Wutaishangebirge auch eine Tanne zu entdecken, verschiedene Bergvorsprünge erkletterte: immer war es unsere Fichte, welche zu-

Abb. 103. Chinesischer Tempelhof; im Hintergrunde die ersten Masters'-Fichten (*Picea Mastersii*), aufgefunden in Wutaishan (Nordchina).
Prinz Ruprecht von Bayern photogr.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

![Zapfen der Masters'-Fichte (Picea Mastersii) in natür. Größe. H. Mayr photogr.](image)

Picea Maximovicsii Regl. (syn. *obovata japonica* Max.).

Hat sich in seiner ersten Beschreibung als identisch mit *Picea bicolor* erwiesen; der Name gehört daher zu den zahlreichen Synonymen dieser Art.

Picea Morinda L.K. (syn. *Picea Smithiana*, *Picea Khutrow Carr.*).

Morinda- oder Himalaya-Lichte. Westl. Himalaya.

Abschnitt.

Die für Europa anbaufähigen fremden Holzarten.

Picea Morindoides Rhed.

Unter diesem Namen beschreibt Alfred Rheder eine Fichte, welche im dendrologischen Garten zu Brokline sich fand und von *Morinda* abweicht und sich *bicolor* nähert. Da weder Zapfen noch Ursprungsland genannt sind, muß die Entscheidung über diese Fichte in suspenso bleiben.

Picea Neoeitchii Masters ¹). Neue Veitchs-Fichte. China.

M. Masters beschreibt unter obigem Namen eine Fichte, welche in Zapfen, Nadeln und Knospen der japanischen *polita* sehr nahesteht und als neue Art so lange gelten muß, bis vergleichende Studien an lebenden Pflanzen in der Heimat beider Arten die Entscheidung bringen können.

¹) Gardeners Chronicle, 1903.
Picea nigra Link. (syn. Picea Mariana B., S. und P.).

Die sibirische Fichte ist durch etwas längere, zierlichere, schmalere, schärfer stechende Nadeln von der europäischen Fichte unterschieden. Die Längstriebe jüngerer Pflanzen sind stets dünner, hellbraunrot, gegen das Ende hin zart rosafarbig bereift. Endknospen an Seitentrieben kegelförmig; gegen den Boden hin rötlichgrün, beleuchtete Seite blaugrün, meist von spiralig gedrehten Nadeln des Triebes völlig eingehüllt. In der Jugend ist der Baum langsamer wüchsig als die einheimische Fichte; wer von der sibirischen Fichte denkt, daß sie, weil sie aus Sibirien stammt, besonders frosthart sein müsse, irrt sich; sie ist unserer Fichte an Frosthärte gleich, womit sie beweist, daß sie eben aus einem Klima stammt (Picetum), das dem sehr ähnlich oder gleich ist, in dem die europäische Fichte ihre ursprüngliche Heimat besitzt. Auch ein dekorativer Vorzug scheint in der sibirischen Fichte nicht zu liegen.

Nadeln zweikantig, mit zwei hellen Streifen an ihrer morphologischen Oberseite, welche am Längstriebe hart angedrückt ist, wobei die Nadeln vielfach eine spiralige Anordnung zeigen. An Seitenzweigen ist die weitselige Seite nach unten gekehrt, wodurch eine verschiedene Färbung des bilateralen Zweiges entsteht; Nadeln an der Oberseite des Triebes dunkelgrün, glänzend, mit kurzer Spitze. (Vergl. Abb. 110c) Nadeln: untere Hälfte dem Trieb etwas parallel, obere Nadelhälften vom Trieb weg gekrümmt. Gipfeltrieb und kräftiger Leittrieb der Seitenzweige deutlich mit braunen Haaren besetzt; Farbe des fertigen Triebes hellbraun bis blaurot, Knospen ebenso. Schuppen pfriemenartig endend: am Gipfeltriebe Nadeln etwas schiefgestellt, am Trieb angedrückt. Der Baum hat sich auch bei uns als raschwüchsig gezeigt, ist ebenso frosthart wie die mitteleuropäische Fichte. Der Zierwert der Omorikafichte ist bereits erwiesen; ob auch ein forstlicher Wert der in ihrer
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Heimat zu sehr starken Dimensionen aufwachsenden Fichte zukommt, müssen erst Versuche ergeben.

Kaukasus und Kleinasien.

Die vierkantigen Nadeln stumpf, kurz, glänzend grün, dichtgestellt; der Längstrieb, der erst vom sechsten Jahre an sich merklich streckt,

ist auffallend dünn gegenüber einer europäischen Fichte; Trieb unterseits hell, oberseits dunkelgelbbraun, deutlich mit Haaren versehen. Die Kaukasusfichte teilt die Frosthärte der einheimischen Art, wird aber vielfach nicht über 20 m hoch; ihr Zierwert ist hervorragend.
Die Nadeln mehr oder weniger vierkantig, an stark unterdrückten Seitenzweigen auch zweikantig, so daß die beiden Seitenflächen an-

nähernd in der Ebene der Marköhre des Triebes liegen: sehr stark stechend, sickelförmig gekrümmt, vom Zweige rechtwinklig abstehend, allseits gleich grün, Abb. 111 c. Knospen sehr groß, rotbraun glänzend; Triebe matt ockerfarbig, ohne Haare. Diese anfangs langsam, vom zehnten Jahre an lebhafter wachsende Fichte ist in Japan nicht häufig und bildet nirgends reine Bestände oder geschlossene Wälder. Sie wird
ein sehr stattlicher Baum; ich selbst maß bis zu 35 m Höhe. Ihre Spätfrosthärte gegenüber der europäischen Fichte ist besonders auffallend; vor Mitte Juni öffnet sie die Knospen nicht, und, was bemerkenswert erscheint, auch in das warme Klima der Subtropen verpflanzt, behält sie ihre lange Vegetationsruhe bei. Mit *Picea bicolor* und *Picea pungens* ist *Picea polita* die letzte Fichte, welche neue Triebe bildet. Dennoch vermöge ich diese Fichte nicht zum forstlichen Anbau zu empfehlen, weil ihre großen Knospen stets eine Beute der Eichhörnchen werden; ja diese gefrässigen Schädlinge können nicht einmal den Herbst abwarten, bis die Knospe ausgereift ist; schon im Spätsommer fallen sie darüber her, ohne daß die scharf stechenden Nadeln sie abhalten würden. Wenn man auch in der Jugend die Knospe durch Anteeren vielleicht schützen könnte, in späteren Jahren ist ein Schutz der Pflanze ebenso unmöglich wie ein Ausrotten der zwar sehr possierlichen, aber überaus schädlichen Eichhörnchen. Von den Rehen wird sie gemieden. Der Zierwert der Rosenfichte liegt mehr in ihrer Eigenartigkeit als in ihrer Schönheit.

Picea pungens Engelm. Stechfichte, Blaufichte, (syn. *Picea Parryana* Sarg.). *Blue or white spruce.*

Südliches Felsengebirge.

Nadeln an kräftigen Pflanzen stark und schärfer zugespitzt als bei *Engelmanns-Fichte* (vergl. Abb. 111 a); Nadeln fast rechtwinklig vom Triebe abstehend (im Gegensatze zu *Engelmanns-Fichte*); Trieb stets glatt, kahl, hellrothbraun, Knospen hellockerfarbig mit an der Basis zurückgerollten Knospenschuppen; beim Zerreifen des Triebes wird ein Geruch wie bei *alba* frei.

Auf Dr. Schwappachs Anregung hin ist diese Fichte in Norddeutschland zu forstlichen Zwecken zuerst angebaut worden. Seiner Empfehlung kann man zustimmen auf Standorten außerhalb des natürlichen Verbreitungsgebietes der einheimischen Fichte oder für Frostlagen oder für Ortlichkeiten, welche dem Wildverbisse durch Rehe und Hirsche besonders ausgesetzt sind. Die sehr empfindlich stechenden Nadeln haben bis jetzt sogar die schlimmsten Knospenräuber, die Eichhörnchen, abgehalten; die Fichte wächst anfänglich mäsig, später sehr rasch, erreicht in ihrer Heimat nach Sargent 50 m. Hellblau Formen dieser Fichte, welche zufällig zwischen dunkelgrünen und hellgrünen Formen erscheinen, sind außerordentlich beliebte Zierstücke für Gärten und Parke geworden.

Ostamerika.

Nach der Beschreibung, die Beilsner, l. c. Seite 338, von *Picea rubra* gibt, sind junge Rot- und Schwarzfichten von einander kaum zu
A. Die Nadelhölzer, Koniferen.

Picea Schrenkiana Fish et May. Schrenksfichte, Tienschanfichte. Tienshan.

Junge Pflanzen mit stark stechenden, vierkantigen Nadeln, welche auf beiden (morpholog.) Oberseiten eine größere Zahl von Splintöffnungsreihen tragen und daher weißlich erscheinen (s. Abb. 110 b); Triebeockerfarbig, Nadelbasis rötlich, kahl; Knospen dick, stumpf, Schuppen fest anliegend, ockerfarbig bis schwach rötlich oder hellgrün, in Farbe der *obovata* fast gleich. Die Fichte des Tienshangebirges bildet reine Bestände und Bestandsgruppen; ihre Kronenform erinnert lebhaft an die schlanke Entwicklung der *Picea alba* in Westamerika (s. Abb. von A. Rheder, S. 320). Sie zeigt bis jetzt mäfsig raschen Wuchs, ist aber so spät frosthart wie unsere einheimische Fichte.

Junge Pflanzen mit scharf stechenden, etwas abgeplatteten vierkantigen Nadeln, welche an ihrer morpholog. Oberseite zwei weiße Streifen tragen; an der Oberseite der Zweige und an den Längstrieben sind diese Streifen dem Triebe zugekehrt; an der Unterseite der Zweige wendet sich die weiße Seite durch eine Drehung von Nadel und Nadelskissen dem Boden zu; auch sonst zwischen den Zweigen die weisschimmernde Nadelfläche vielfach erkennbar. Der Gesamteindruck der Pflanze, von oben gesehen, ist dunkelgrün glänzend; fertige Triebe mit den Blattkissen gelbgrün glänzend, Knospen ockerfarbig glänzend, an

1) Beifsner führt diese Fichte als *P. sitchensis* Trautw. et May. auf: Sargent schreibt *P. sitchensis* Carr.

Mayr, Fremdländische Wald- und Parkbäume.
der Basis etwas eingeengt. An kräftigen Pflanzen sind die Endtriebe der Seitenzweige etwas sichelförmig mit der konvexen Seite nach oben gekrümmt. Diese Fichte streicht von der Küste Kaliforniens bis nach Alaska stets in luftfeuchten, bodenfrischen Gebieten: auf der Süd- oder Wärmegrenze in den feuchtsten Standorten, im kühleren Klima auf normalem Boden. Sie ist sehr raschwüchsig und in der Heimat ein wichtiges Nutzholz; wenn aber von ihr geschrieben wird (Beifsner, l. c. 390), daß ihr Holz außerordentlich wertvoll als Bauholz, von bester Qualität, feingeädert und von blasser Farbe sei, daß deshalb die Sitka-Fichte, welche sich in unseren Kulturen ganz hart zeige, auch immer mehr zur Forstkultur herangezogen werden solle, so ist dagegen zu bemerken, daß das Holz der Sitka-Fichte, das bei uns erwächst, sicher dem unserer einheimischen Art gleich sein wird, so daß keine Ursache vorliegt, aus diesem Grunde die fremde Fichte anzubauen; dazu kommt, daß diese Fichte frostempfindlicher ist als die einheimische; nur Mischpflanzungen der beiden Arten geben ein exaktes und über diesen Punkt entscheidendes Experiment; solche sind in Grafrath ausgeführt.

In feuchtere Lagen des kühlere Binnenlandes gepflanzt, zählt sie zu den von den Spättötern auf das erbärmlichste zugerichteten Pflanzen. Sie hat die Eigenschaft, daß die Gipfelknospen früher treiben, als die Seitenknospen erwachen. Diese unliebe Erscheinung steht im Gegensatze zu dem Verhalten der einheimischen Fichte; es erriert bei Spättötern oft die Gipfelknospe, während die Seitenknospen austreiben. Man kann die Sitka-Fichte eigentlich nur außerhalb des Verbreitungsgebietes der einheimischen Fichte empfehlen. Innerhalb desselben hätte sie eine Anbaumberechtigung, wenn ihre stechenden Nadeln Hirsche und Rehe vom Verfäls der Pflanzen abzuhalten vermöchten. Vielfach hat sich aber gezeigt, daß die Sitka-Fichte vom Wilde angenommen wird. In warmen, luft- und bodenfeuchten Lagen wächst sie sehr rasch, vielleicht rascher als die einheimische. Dr. Schwappach berichtet, daß 23jährige Sitka-Fichten in Varel (an der Nordseeküste, die ich mit Holland, Belgien und Großbritannien als das europäische Optimum der Douglasie, Sitka-Fichte und Lawsonie 1890 bezeichnete) 12,2 m durchschnittliche Höhe und 13 cm durchschnittlichen Durchmesser erreichten. Es dürfte Picea pungens besser den Erwartungen bezüglich der Sicherheit gegen Wildverbifs entsprechen als die Sitka-Fichte. In ihrer Heimat wird die Sitka-Fichte ein gewaltiger Baum; ich kam zufällig an ein Exemplar, das 60 m Höhe und 2,3 m Durchmesser aufwies.

Gärtner und andere Pflanzenzüchter werden dagegen einwenden, daß man sehr wohl wisse, was jetzt unter dem Namen Picea Maximovicsii zu verstehen sei.

deutlich nach auswärts gebogene Schuppen; die Pflanze selbst steht nach Masters der bicolor nahe.

Gattung Pinus. Die Föhren- oder Kiefernarten, Pines, Pins.

Da mir auch heute noch die Lebensgeschichte der Pflanzen viel wichtiger erscheint als das Festhalten an einer unwissenschaftlichen oder irren Benennung der Holzarten — letztere ist doch nur ein Mittel zu dem Zwecke, um genau festzustellen, ob man die gewünschte Pflanze unter der Hand hat oder nicht —, so halte ich an den Sektionen fest, da sie sich für die Aufzucht, Behandlung und Erkennung der Eigenschaften der einzelnen Angehörigen einer Sektion als äußerst fruchtbar erwiesen haben. Die Naturgeschichte der Föhren verlangt diese Gruppierung, wenn man sich nicht entschließen kann, die Sektionen zu Gattungen zu erheben.

Alle Föhren haben gemeinsam, dass die Benadelung des ersten Jahres aus einfachen, mit Sägezähnen versehenen, zerstreutständigen Nadeln besteht; in der Regel schliesst das erste Jahr ohne Schuppenknospe ab. Im zweiten Jahre streckt sich das Ende des vorjährigen Triebes, und in den Winkeln dieser einfachen Nadeln erscheinen kurze

Section Pinaster. Pinasterföhren.

Zweinadelig; neue Zapfen stets an der Spitze des neuen Triebes an der Stelle von Quirlknospen; Zapfen zwischen den Jahresquirlen mit starken Anhäufungen der Zapfen nur als Abnormität, aus Zwitterblüten hervorgegangen1); Knospen am Trieb zwischen den Quirlen fehlen. Same vom Flügel zangenförmig gehalten, flugfähig2); Markstrahlen des Holzes aus dünnwandigen Zellen, anliegende Längstracheiden, mit 1 bis 2 großen, augenlidförmigen Tüpfeln (Tafel II, I. Sektion Pinaster) versehen; nach Dr. K. Wilhelm führen die südeuropäischen Pinasterföhren mehr als zwei Tüpfel in einer Tracheidenbreite. Quertracheiden mit starken, zackigen Verdickungen; Holz mit ziemlich kräftigen Spätholzwänden. Alle Pinasterföhren sind ausgesprochene Lichtpflanzen, welche auf normalem, gutem Boden für die Zwecke der Pflanzen am besten, für forstliche Zwecke weniger gut gedeihen als auf Boden mit stark sandiger Beimengung; selbst auf geringerem und auf geringstem Boden kiesiger oder sandiger Natur finden sie noch ihr Fortkommen; auf solchem Boden vertreten sie andere Holzarten, für welche der betreffende Standort nicht genügt. Doch stehen sie in dieser Eigenschaft der Bescheidenheit den Murrayaföhren noch nach. Anderseits ermöglichen die Pinasterföhren auch auf frischem bis feuchterem, selbst anmoorigem Boden noch, wenn auch kümmerlich, zu wachsen; doch stehen sie auch hierin den Murrayaföhren noch; die Pinasterföhren sind schnellwüchsige Arten, wenn sie auch hierin

1) H. Mayr, Die Zapfensucht der Föhren; Mitteilung der deutsch-dendrolog. Gesellsch., 1902.
von den Murrayaföhren übertroffen werden. Unter ihnen finden sich frosthärtere und frostempfindlichere Arten; die tiefgehende Bewurzelung verleiht ihnen ziemliche Sturmfestigkeit; dagegen sind sie der Schneebruchgefahr in starkem Maße ausgesetzt. Das Holz ist ziemlich breit, Kern, wie bei allen Föhren, schwach hellbraun (Tafel VII, Fig. 11), dauerhaft, im übrigen leicht, ziemlich weich, leicht spaltbar, wenn auch hierin den Fichtenhölzern nachstehend.

Die Feinde der Pinasterföhren sind unter den Insekten und Pilzen zahlreich — eine infolge der großen Ausdehnung, welche die reinen Föhrenbestände wegen der Abnahme der Bodengüte gefunden haben, nicht überraschende Erscheinung. Ob Saat oder Pflanzung mit ein- oder zwei- oder mehrjährigen Pflanzen, volle oder Riefensaat, riefenweise Pflanzung und dergleichen am besten gewählt wird, hängt von so verschiedenen Umständen ab, daß hierüber keine Vorschrift als die beste bezeichnet werden kann. Anleihungen an die Erfahrungen mit der einheimischen Art führen in der Regel zum Ziele; im Zierwert sind manche der Pinasterföhren sehr beachtenswert; es verdient besondere Erwähnung, daß die Pinasterföhren unter sich sehr leicht Bastarde bilden, welche lange Zeit die größte Verwirrung in die Benennung und Abtrennung der Arten gebracht haben.

Zur Sektion Pinaster gehören vorzugsweise europäische, wenige asiatische und nur eine amerikanische Art, nämlich:

Pinus aleppensis, austriaca, densiflora, Laricio leukodermis, Luchuensis, Mughus, Pallasiana, Pinaster, Pinus (?), *Pumilio, resinosa, silvestris, sinensis, Thumbergii, uneinata*.

Pinus aleppensis Mill.

1). **Aleppo-Föhre.** Mediterrangebiet ostwärts von der Adria.

Junge Pflanzen mit dünnten Nadeln von 12—15 cm Länge; Knospe hellbraun, in der Mitte mit glänzenden, dunkleren Linien versehen; Knospenschuppenwand mit weißen Haaren; Schuppen an der Basis der Knospe stets zurückgebogen; fertige Triebe hellgraubraun. Kommt nur für Südeuropa als Zier- und Nutzbaum, insbesondere wegen des Reichtums der Rinde an Gerbstoffen, in Frage.

Nadeln 5—11 cm lang, stärker als bei der vorigen Art und freudiger grün als bei der silvestris; Knospe von weidslichen, ausgefransten, zuweilen verharzten Schuppen eingehüllt.

Die österreichische Föhre ist hinsichtlich ihres forstlichen Wertes (trockene, kalkreiche Hänge, reichlicher Strenabfall, Frosthärte) und ihres hervorragenden Schmuckes allzu bekannt, um an dieser Stelle noch Neues bringen zu können.

Wie die mittel- und westeuropäische Föhre, gehört diese Föhre zur Untergruppe der Rotföhren, weil der junge Stamm, im erwachsenen Baum somit an der obere Teil, eine rötliche, dünne Schuppenborke besitzt. Nadeln länger und zarter, dunkler grün gefärbt als bei der silvestris; ganz junge noch grüne Triebe schwach bereift, die fertigen Triebe hellbräunlich-gelb. Knospe braunrot, mit aufgelockerten oder sogar zurückgerollten Decksschuppen. Diese Föhre ist für das Castanetum und Fagetum geeignet und wird in dieser Klimalage in der Heimat ein Baum von 36 m Höhe und mehr. Ihre Heimat ist mehr das nördliche Hondo, wo sie ebenso zur Straßeneinfassung benutzt wird wie im Süden die japanische Schwarzföhre, Thunbergii. Im mittleren Korea ist sie nach meiner Beobachtung die einzige Pinasterföhre und zugleich die wichtigste Brennholzproduzentin. Aecidium-Beulen und Hexenbesen sind etwas häufiger wie bei der japanischen Schwarzföhre; das Holz steht etwas der Schwarzföhre nach, zumeist aber nur deshalb, weil das Rotföhrenholz schwierig zu erreichen ist. Im Versuchsgarten zu Grafrath hat sie sich seit 25 Jahren als völlig frosthart, aber äußerst empfindlich gegen Schneefall erwiesen. Von der Schütte werden junge Pflanzen stark befallen. Ein forstlicher Vorzug ist bis heute nicht erkennbar; in ihrem Zierwert übertrifft sie die silvestris; 22 Gartenformen dieser Art beschrieb ich 1890 in meiner Monographie.

Das Vorkommen dieser Föhre in China scheint mir zweifelhaft; was bei Peking hoch und niedrig und in den „Westlichen Bergen“ von Peking mir unter die Augen kam, war alles Pinus sinensis: nur eine genauere Prüfung an Ort und Stelle wird entscheiden. Dagegen ist das Vorkommen in Korea sicher; ich brachte lebende Pflanzen von

1) Eine ausführlichere Beschreibung dieser und aller folgenden japanischen Föhren findet sich in meiner Monographie der Abietineen des japanischen Reiches, 1890. Dort sind auch zahlreiche Gartenformen und Bastarde der Föhren eingehender beschrieben und benannt.
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Korea nach Grafrath; auch im jugendlichen Alter ist der Artcharakter keinen Augenblick zweifelhaft.

Pinus Laricio Poir. (syn. _Poiretania_ und _corsicana_.) _Korsische Schwarzlöhe_. Korsika.

Nadeln lang und kräftig über die Endknospe in Becherform hinausragend. In Großbritannien gilt die Löhe als die wertvollste der ganzen _Laricio_- oder Schwarzlöhengruppe, weil sie schneller und stets mit ungeteilter, geradem Schaft wächst. Auch in Deutschland wurde sie von J. _Booth_ zu Anbauzwecken empfohlen; sie hat sich als ganz frosthart erwiesen, wird auch von den Rehen und Kaninchen nicht befressen. Sie ist aber auf gleichem Boden langsamer wüchsig als die einheimische Löhe und die Fichte (Grafrath). Nach _Mathieu_'s „_Flore forestière“ ist sie ein spärlich bestatter Baum bis zu 45 m Höhe.

Pinus leukodermis Ant. _Weißrindige Löhe_. Bosnien und Nachbarländer.

Die Nadeln (nach Dr. _Wilhelm_) gleichen denjenigen der österreichischen Schwarzkiefer, sind aber durchschnittlich kürzer, meist nur 6—8 cm lang; auch die Knospen erinnern an die Schwarzlöhenknospen, sind aber kleiner, rötlichbraun, an der Spitze weifslich; Triebspitze bereift.

Pinus luchuensis Mayr. _Luchuföhre_. _Riukiu_ oder _Taiwanmatzu_. _Riukiu_ und Formosa.

Diese Löhe fand ich auf den japanischen Riukiu-Inseln Oshima und Na'a; Dr. _Honda_ traf sie bestandsbildend auch auf der Insel Formosa an. Die Diagnose dieser Löhe wurde im „_Botanischen Zentralblatt_“ 1894 veröffentlicht.

Pinus Mughus 1) _Scop_. _Sumplföhre_. Mittlere Alpen.

Diese Löhe bewohnt die sumpfigen, kalten Standorte mit anfangs aufrechten, später aber zu Boden gedrückten Stämchen; nie kommt

ein einheitlicher, aufrecht stehenbleibender Stamm zur Entwicklung. Die Ansicht, daß, wie bei den Latschen, die Bodenkriechform durch Schneebelastung hervorgerufen werde, kann jederzeit durch das Experiment widerlegt werden, daß in allen Klimalagen die Föhre ihre liegende Wuchsform beibehält; ganz jugendliche Exemplare der Föhre gleichen jenen der *P. pumilio* und *uncinata*.

Der *Laricio* nahestehend, jedoch durch stets dünneren Benadelung und ihren unschönen, astigen Wuchs mit geteiltem Schafte oder mit aufwärts strebenden, starken Ästen als eine forstlich wertlose Baumart ausgezeichnet; dieser eigentümliche Wuchs gestattet, die *Pallasiana* schon in größerer Entfernung von der wertvolleren *Laricio* zu unterscheiden; in der Heimat der Bäume stehen sie nicht beieinander, aber im großen Garten zu Kew bei London bietet sich eine prächtige Gelegenheit zum Studium der sich nahestehenden Arten der *Laricio*-Gruppe.

Die kräftigen Nadeln sehr lang, steif; Knospe wie bei Aleppo-Föhre, junge Triebe blau bereift (nach v. Tubéuf, l. c.). Zur Anpflanzung auf schneebruchfreien Standorten, auf Sandboden des südwestlichen Europas vielfach benutzt. Ihr Wert zur Aufforstung der Dünen, zur Holz- und Harzerzeugung im Südwesten Europas ist bekannt; es hat aber Jahrzehnte gedauert, bis diese für Deutschland als forstlich völlig wertlos längst erkannte Holzart aus den deutschen Samenlisten und den diese begleitenden Anpreisungen verschwunden ist.

Pinus Pinea L. Pinie, Schirmföhre. Mittelmeergebiet.

Ein alpiner Strauch der obersten, der Kältegrenze der Holzarten; bleibt auch in den wärmsten Klimalagen daniederliegend; er ist als

1) Nach L. de Vilmorin unterscheidet auch die kalabrische Föhre (*Pinus calabrica* Delam) sich in den forstlichen Kulturen von Barres vor allen anderen *Laricios* durch außergewöhnlich lebhaftes Wachstum.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Schutzholz und als Zierpflanze für Felsengruppen von großem Werte. Diese Föhre ist die zweite zur montana-Gruppe gehörige Föhre.

Nordstaaten von Ostamerika.

lehmigem Sandboden eine *resinosa* fällen und zerlegte sie in 4 Sektionen. Das Alter betrug 141 Jahre, Höhe 25 m, Durchmesser 1,5 m über dem Boden = 37 cm ohne Rinde. Das spezifische absolute Trockengewicht aller Splintstücke war 38, aller Kernstücke 41; Gehalt an Harz in allen Splintstücken 3,00 g in 100 g absolut trockenen Holzes aller Kernstücke 6,00 g. Die in Bayern auf ähnlichen lehmigen Sandboden gefallene Föhre zählte 113 Jahre, war 25 m hoch, besaß 31,4 cm Durchmesser; spezifisches Gewicht aller Splintstücke = 46,0, aller Kernstücke 48. Der Gehalt an hartem Harze war im Splinte 3,92 g, im Kerne = 5,24 g. Zuwachsuntersuchungen ergaben, daß die *resinosa* im Urwalde anfangs viel langsamer emporwuchs war als die stets freiständige *silvestris*, dafs aber letztere früher ihr Maximum an Zuwachs erreichte als die amerikanische Föhre. Das Holz der amerikanischen Art war zwar leichter, dafür aber harzreicher als das der europäischen Föhre. Die Splinthöhe des amerikanischen Baumes betrug 6,5 cm, die des bayerischen 4 cm, so dafs bei gleichem Massengehalte der europäische Föhrenstamm mehr Kernholz enthieilt als der amerikanische, vorausgesetzt, dafs mit beiden Stämmen Typen getroffen wurden. So viel darf aber wohl aus diesen Untersuchungen gefolgt werden, dafs die Resinosaföhre der *silvestris* gegenüber keine Vorzüge besitzt — ausgenommen den höheren Schmuckwert.

Pinus silvestris A. Die mitteleuropäische Rotföhre.

Europa und westlicher Teil von Asien.

Die jungen Pflanzen mit kurzen, helblaugrünen Nadeln: Knospe helllockerfarbig, mit Harz dicht überzogen. Weitere Angaben über diese allbekannte Föhre erscheinen nicht nötig. Sie bildet mit der Hackenföhre (*P. uncinata*) sehr leicht Bastarde und wohl an jedem Orte, wo beide Föhren vorkommen, kann man Bastarde als Annäherungsformen bald an die *silvestris*, bald an die *uncinata* auffinden. Brügger hat zuerst diese sogenannten Übergangsformen richtig aufgefaßt als Bastarde, womit sie natürlich aufhören, Übergangsformen zu sein; so ist z. B. *Pinus silvestris engadinensis* Heer ein Bastard; was man in Lapp-land gefunden hat, kann natürlich nicht mit der *engadinensis* identisch sein, da dort die am Bastard beteiligte *uncinata* fehlt.

Die sogenannte nordische Form der Föhre (Norwegen, nördliches Schweden, Finnland), wozu die Rigaföhre, die keine eigene Rasse oder Varietät ist, nicht zählt, da sie wohl nur durch klimatische Einfäße eine bessere Schaffform entwickelt, von der es zweifelhaft ist, ob sie erblich ist1) — zeigt ein von der mitteleuropäischen Art so verschiedene biologisches Verhalten und eine so verschiedene äußere und vollerb-

1) Präsident Max von Sivers auf Römershof hält die Erblichkeit mit vielen anderen Pflanzenzüchtern und -forschern, wie Maurice L. de Vilmorin, für erwiesen.
liche Erscheinung, dafs sie als eigene Art, *Pinus lapponica*, hier aufgefasst wurde.

Pinus lapponica mihi. Nordische Föhre. Europa.

Nordische Föhre (lapponica).

Same durchweg klein, gleichmässig braungrau gefärbt. Keimling auf ein und demselben guten Boden mit der mitteleuropäischen Föhre angebaut: im ersten Jahre nur 3—5 cm; unter 1000 keine mit einem Seitentriebe versehen: Nadeln bis zum fünften Jahre $1/2 - 1/3$ der Länge der Nadeln der *silvestris*, gerade und

Mitteleuropäische Föhre (silvestris).

Same größer, hellockerfarbig bis fast schwarz. Kern von verschiedener Farbe gemengt. Im ersten Jahre 10 bis 15 cm hoch, fast sämtlich mit ein oder zwei Seitentrieben versehen.

Nadeln länger, etwas gebogen, weniger steif und stechend.

Nadeln grangrün, hell, im Winter sich nicht verfärbend.

1) Meidelanden från Statens Skogsfrööksanstalt 1905.
steif; Nadeln dunkelgrau, im Herbst und Winter gelbrün. Knospe drei-
ähriger Pflanzen rotbraun, spärlich mit
Harz überzogen. Einjährige Pflanzen
schließen sämtlich mit einer hell-
roten bis braunroten Ruheknospe ab.
Pflanze bis zum fünften Jahre auffallend geradschaftig mit kurzen Seiten-
ästen. Ein- und mehrjährige Pflanzen
werden vom Schüttepilz *Lophodermium
Pinastri* zwar befallen, aber nicht getötet; sie treiben in der folgenden Vegetations-
zeit fast sämtlich wieder neu aus. Farbe
des fertigen Triebes einjähriger Pflanzen
blaurot, schwach bereift; auf der Unter-
seite der einjährigen Nadeln acht Spalt-
öffnungsreihen.

Der erwachsene Stamm zeigt voll-
ständig geradschaftiger Wuchs in allen
Klimalagen und Böden.

Der Zapfen trägt hackenförmige
Apophysen wie die Spirke (*P. uncinnata*)
oder wie die Bastarde dieser mit *P.
silvestris*. Auch *lapponica* bildet mit
silvestris leicht Bastarde.

Diese nordische Art empfiehlt sich in erster Linie zum Anbau in
vom Schüttepilz verseuchten Gebieten; wenn sie auch langsamer wächst,
so wächst sie sicher und ermöglicht, über die schwere Kalamität, welche
die Schütte auf den geringsandigen, kahlen Flächen an der mittel-
europäischen Föhre verursacht, hinwegzukommen.

Systematiker, welche das Hauptgewicht auf ihr Herbarium legen,
werden sich nicht entschließen können, die nordische Föhre als eigene
Art anzuerkennen; sie werden sich einstweilen mit der Bezeichnung
Pinus silvestris var. *lapponica* begnügen.

Pinus sinensis Lamb. (syn. *P. Massoniana* Lamb.).
Chinesische Rotföhre. China.

Nadeln weich, dünn, sehr lang (15 cm). Knospe braunrot, mit weiß-
lisch befransten Schuppen; die jungen, noch grünen Triebe schwach
bereift, besonders an der Basis der Nadelbüschel; fertige Triebe glatt,
hellgelbrün. Von dieser Föhre wird berichtet, daß sie so frost-
empfindlich sei, daß sie sogar in den wärmsten Lagen erfrüht. Ver-
mutlich stammen die Sämereien gar nicht von der *sinensis*, sondern, wie
ich schon vor 15 Jahren vermutete, von der Rinkiuföhre. *P. luchuensis*,

Von einjährigen Pflanzen schließen unter 100 zwei mit einer hellgelben
Knospe ab; die übrigen zeigen keine
Knospe, welche mit Schuppen bedeckt
wäre. Knospe fünfjähriger Pflanzen
helleckerfarbig, dicht mit Harz über-
zogen. Pflanze schon im vierten Jahre
vielfach gewunden, Äste weit aus-
greifend. Pflanzen werden vom Schütte-
pilz schon im ersten Jahre zum größten
Teile getötet. Erfolgt die Infektion
erst im zweiten Vegetationsjahre, so
fallen 90\% dem Pilze zum Opfer.
indem das Austreiben der Gipfel-
knospen unterbleibt. Farbe des ferti-
tigen Triebes gelbrün. Unterseite der
einjährigen Nadeln mit vier Spaltöff-
nungsreihen. Der erwachsene Baum
dient nur in kühlem, luftfeuchtem
Klima geraden, in warmen Lagern mit
wechselnder Luftfeuchtigkeit aber zu-
meist krummschaftigen Bau.

Der Zapfen ohne hackenförmige
Apophyse; Bastarde mit *uncinnata* und
lapponica häufig.
Die für Europa anbaufähigen fremden Holzarten.

Pinus Thunbergii Parl. Japanische Schwarzföhre, **Kuromatsu, Omatzu**. Japan.

Knospe zylindrisch, rasch in eine scharfe Spitze mit anliegenden hellen, stahlgrauen bis blendend weißen Knospenschuppen endend; nur die obersten Spitzchen der Schuppen zeigen zuweilen eine Auflockerung; Nadeln starr, steif, sehr stechend; deshalb auch von Rehen und Hasen gemieden. Der Trieb glatt hellbraun-grün, glänzend, ohne Reif. Thunberg's-Föhre ist eine, wie es scheint, spezifisch japanische Art, welche die Küsten kaum verläßt. Um so überraschender ist die Angabe, daß sie in China, selbst in den weitab von der Küste befindlichen Bergen von Nordshensi und Szechuen sich finden soll; es unterliegt bei mir keinem Zweifel, daß hier Verwechslungen vorliegen; soweit sich die Angaben auf Chili beziehen, ist Thunbergii und sinensis
sicher verwechselt; auch die Angabe, daβ *Thu**nungi* in Korea sich findet, beruht auf Verwechslung mit *Pinus densiflora*. Die der Thu**bung*sg-Föhre nahestehende *Pinus Bucheii* greift nach meinen Erfahrungen an der Küste von China, die ich von Hongkong bis Taku kenne, nirgends auf chinesischen Boden über.

Die japanische Schwarzföhre eignet sich, wie alle anderen Schwarzföhren, zur Harzverarbeitung. Sie wird in Japan zur Festigung der Dünen, als Schutzmantel gegen Hochfluten der See, gegen die ständigen Stürme an der Küste gepflanzt. Die junge Pflanze leidet in Mitteleuropa sehr stark an der Schütte; der langsamer wachsende Baum fängt mit seinen starren Nadeln so viel Schnee auf, daβ Äste und Gipfeltriebe herunterbrechen; aus diesem Grunde ist ein 25-jähriges Exemplar in Grafrath nur 4 m hoch geworden; schon ganz junge Kulturen leiden unter der Schneebelastung. Unter diesen Umständen dürfte wenig Aussicht bestehen, mit der japanischen Schwarzföhre eine für Mitteleuropa wertvolle Sandbewohnerin zu erhalten; vielleicht ist sie im südlichen Europa günstiger. In der Heimat maß ich 43 m Höhe und 1,1 m Durchmesser. Von der japanischen Schwarzföhre beschrieb ich zehn Gartenformen; ihr knotiger Stamm, wie er aus der stürmischen Küste Südapians erwächst, ist ein außerordentlich beliebtes Motiv im Kunstgewerbe der japanischen Nation. Hochberühmt ist die Karasakiföhre am Biwasee bei Kioto, ein urales Exemplar, ganz niedrig, aber mit weitausgreifenden, auf die Insel herabhängenden Seitenästen.

Diese Föhre erwächst stets aufrecht mit ungeteiltem Schaffe, bewohnt den normalen Boden zusammen mit Fichten, Tannen, selbst Rotbuchen der Alpen und der nördlich gelegenen Mittelgebirge, soweit sie Fichten und Tannen tragen. Sie bildet in der Schweiz noch heute reine Bestände größter Ausdehnung; auf anmoorigem Boden fand man Stämme mit 30 cm Durchmesser und 30 m Länge; Baumreste werden in Torflagern gefunden. Die reinen Bestände wurden und werden noch heute gefällt, um den darunterliegenden Torf zu nützen. Diese Art, die dritte, welche unter dem Namen *montana* beschrieben wird, hat sich als außerordentlich wertvoll zur Bindung der Dünen an der Ostsee und in Dänemark erwiesen, wo man sie noch vielfach unter dem Namen *Pinus inops* kultiviert.

Sektion *Murraya*, Murrayaföhren.

Das bisherige Verfahren der Zuteilung der nachfolgenden aufgeführten Föhren zu den Sektionen *Pinaster* und *Taeda* begegnet fortwährend Schwierigkeiten, indem manche Föhren zugleich zwei- und dreinadellig sind. Sobald man aber zu den bekannten systematischen noch anatomischen und biologischen Merkmalen hinzufügt, schwindet die Schwierig-

Die hierher gehörigen Föhren sind zwei- oder dreinadelig, oder beides zugleich; sie bilden alljährlich einen Längstrieb, der mit Quirlknospen, wie bei *Pinaster* und *Jeffreya*, abschließt; aber zwischen den eigentlichen Quirlknospen bezw. Quirltrieben schieben sich noch ein, zwei, selbst drei Scheinquirl ein, welche von den Pflanzenzüchttern fälschlich für echte Quirle gehalten werden, wobei sie alle behaupten, die Banksföhre würde in einem Jahre infolge einer besonderen Üppigkeit oft zwei und drei Jahresquirltriebe oder Johannitrrieb entwickeln und dergleichen. Die Scheinquirl sind von den Endquirl durch den Mangel an Knospenschuppen bezw. deren Reste am Triebe leicht zu unterscheiden. Die Zahl der Scheinquirl allerdings wechselt je nach der Ernährung der Pflanze; an ganz schwächlichen Pflanzen kommen Scheinquirl gar nicht mehr zur Ausbildung, an kräftigen Pflanzen sind sie aber bereits in der *Knospe* vorgebildet, so daβ das betreffende Jahr, in dem die *Knospe* zur Entwicklung kommt, keinen Einfluβ auf die Zahl der Scheinquirl übt; entscheidend ist das vorhergehende Jahr. An der Stelle der Scheinquirl stehen die Zapfen, welche schon sehr frühzeitig zum Ansatz kommen, und völlig brauchbare Samen.

Das Zapfeneträgnis ist bei diesen Föhren kein Zeichen der Schwäche, sondern des Wohlbefindens. Das Samenkorn liegt in einer löffelartigen Verbreiterung des Flügels; der Löffel ist mit einem Längsschnitte versehen (Tafel IV. *Banksiana*, *clausa*, *inops* und andere).

Die Murrayaföhren sind ausgesprochene Lichtpflanzen, die raschwüchsigsten unter allen Föhrenarten; sie gedeihen noch auf dem trockensten, magersten, verhärterten, vergrasten Sand- und Geröllboden wie auch auf feuchten, sumpfigen Standorten; sie eignen sich am besten zur Aufforstung verkarsteter Gebiete mit etwas feiner Erde zwischen den Steineu; für Ödlandaufforstung sind sie die besten Pioniere: unter ihrem Schutze können in den schlimmsten Forstlagen empfindlichere Holzarten emporgebracht werden. Ihre Frosthärte scheint überall genügend; somit ist ihr forstlicher Wert sehr hoch. Sie werden vom Schüttepilz nicht befallen, leiden somit auch nicht durch die als Schütte bekannte Krankheit der Pinaster- und Jeffreyafohren. Ihr Wert als Schmuckpflanzen scheint jedoch gering zu sein.

Das Holz ist mikroskopisch vom Holz der Pinasterfohren durch zahlreiche kleinere, augenlidförmige Tüpfeln der Tracheiden, wo diese an Parenchymzellen der Markstrahlen angrenzen, gekennzeichnet. (Taf. II. Sekt. Murraya.)

Makroskopisch ist das Holz von dem der Sektion Pinaster nicht unterscheidbar, und wie vergleichende Untersuchungen zeigen,
ist es nicht besser und nicht schlechter wie dieses; es schwankt viel-mehr wie dieses in allen Gütelagen, entsprechend Boden, Klima und Erziehungsweise. (Taf. VII, Fig. 11.)

Hierher gehören folgende Arten: attenuata, Banksiana, chihuahuana, clausa, contorta, glabra, inops. Murrayana, mitis, maricata, pungens, pyreneica, rigida, Taeda.

Seltener zwei, zumeist drei Nadeln zusammen in einem Kurztriebe. Nadeln 7—13 cm lang; Knospe lang zugespitzt, braun-glänzend, Schuppen etwas mit Harz zusammengehalten. Diese Föhre bewohnt kiesige, sandige, heiße Hänge der Sierra und des Küstengebirges; ob sie für Mitteleuropa genügend hart und überhaupt einen Wert besitzt, können nur Versuche klären.

1890 beschrieb ich eine Form dieser Föhre mit auffallend weit vorspringenden, starken Apophysen an den Zapfenschuppen unter dem Namen *Pinus tuberculata* var. *acuta* Mayr. Da der Name *tuberculata* früher einer ganz anderen Föhre beigelegt, durch Missverständnis dann auf die in Frage stehende Föhre übertragen wurde, so muß er kassiert werden; die Varietät hat daher bis zur weiteren Aufklärung hierüber durch Studien in der Heimat *Pinus attenuata* var. *acuta* zu heißen. Diese Form lebt auf den S. Bernardino-Bergen Kaliforniens.

Nadeln der jungen Pflanze länger als jene der alten; besonders in minderwertigen Standorten kultivierte Exemplare sind auffallend kurz-nadelig. Nadeln etwa von gleicher Länge wie bei der einheimischen Föhre, stets zwei in einer Scheide; Knospe hell ockerfarbig, ganz mit Harz übergossen; bucklig infolge der Scheinquirle, welche im folgenden Jahre zur Entwicklung kommen; nur bei Spitalpflanzen unterbleiben bei dieser und den übrigen Murrayaföhren die Scheinquirle. Schon junge Exemplare mit aufrecht stehenden, buckligen, aber glatten, glänzenden Zapfen besetzt, der in der Regel sehr guten, keimfähigen Samen enthält; es ist dieses frühzeitige Zapfenergebnis, wie bereits erwähnt, normal, keine Krankheit. Die Banksianaföhre fand ich 1882 vorzugs-weise auf trockenen, sandigen Höhenrücken mit äußerst geringer Bodenkrume; sie schien mir für Europa begehrenswert. Auf Grund meiner Empfehlungen 1890 hat diese Art neben der Douglasie die weiteste Verbreitung von allen neueren fremdländischen Arten gefunden; in Bayern allein ist über eine halbe Million in den Staatswaldungen ausgepflanzt, und die große Firma J. Heins in Halstenbeck hat allein...
im Jahre 1905 über sechs Millionen dieser Föhren in Deutschland verbreitet. Leider ist der Same sehr teuer, so daß sich der Bezug einjähriger Pflanzen empfiehlt, welche nach zweijährigem Verweilen im Verschulbeete ausgepflanzt werden; auch Klemmpflanzung ein- und zweijähriger Banksföhren hat sich bewährt: selbst 1 m und 2 m hohe Pflanzen sind wegen ihres sehr eng zusammengedrängten Wurzel- systems leicht verpflanzbar.

Auch in Rußland, z. B. auf den Besitzungen Max von Sivers' in Römershof bei Riga, sind ausgedehnte Pflanzungen entstanden, welche bisher sämtlich vollauf befriedigten.

Ich habe die Banksföhre seinerzeit empfohlen für den geringwertigsten Sand- und Kiesboden; sie hat sich in solchen Standorten als beträchtlich rascher wüchsig als die einheimische Föhre gezeigt. Wer freilich erwartet, daß die Föhre auf diesem Boden zu einem Mastbaume aufwachen müsse, um anbauwürdig zu sein, verlangt Unmögliches. Man muß zufrieden sein, solche Örtlichkeiten, welche Schütte und Trocknis verödet haben, wiederum in Bestand zu bringen. Die Banksföhre braucht auf solchem Boden nicht erst zu einem niederem, den Boden schützenden und feuchterhaltenden Busche aneinander zu wachsen; sie geht sofort in die Höhe. Es hat sich die Banksföhre auch auf nassem, feuchtem, anmoorigem, selbst reinem Moorboden, in Lagen, in denen das Maximum der Spätfrostgefahr, wo die tiefsten Winterfröste sich einstellen, als raschwüchsig, völlig harte Art erwiesen, welche den Unterbau einer schutzbedürftigen Art, z. B. einer Fichte oder Tanne, um so mehr erlaubt, als ihre Seitenäste nicht weit ausstreichen und horizontal ineinandergreifen. Die unterbaute Holzart schiebt sich durch die enge, mehr einer Fichte als einer Föhre gleichenden Bekronung leicht hindurch. Sie erwächst durchaus nicht, wie viele vermuteten, als Strauch oder Busch, sondern selbst in den ungünstigsten, nassen wie trockenen Standorten, pfilgerade wie eine Fichte, der sie ihr ganzes Leben hindurch im Habitus gleich.

Die kurze Benadelung bedingt Beschädigungen durch Schneedruck oder Schneebruch vor; Pilze sind bis jetzt nicht beobachtet, dagegen wird sie von Rehen arg befressen, vom Bocke mit Vorliebe verfegt, so daß man zur Einzümmung der Banksföhrenkulturen schreiten muß, wenn man nicht fortgesetzt Verdrufs ernten und unnütze Ausgaben an Zeit und Geld riskieren will.

Den an jungen Banksföhren gewachsenen Samen hat zuerst Forstmeister Boden in Freyenwalde 1898 näher untersucht; er fand eine hohe Keimkraft. Auf meine Veranlassung hin sammelte Dr. H. Unwin 1) 1900 Samen von den ältesten Banksföhren des Grafrather Versuchs-

Abb. 114. 20- resp. 11jährige (siehe Text) Banksföhre (Pinus Banksiana), 7 m hoch; rechts davon zwei 15jährige Douglasien; in Vordergrund eine Pseudotsuga glauca, 2 m, dahinter eine gleichalte Pseudotsuga Douglasii, 7 m hoch.

H. Mayr photogr.
gartens; die Föhren stammten wiederum aus Samen, den ich selbst 1885 in Michigan gesammelt hatte. Unwin fand 41—43\% Keimkraft. Die im Grafrather Versuchsgarten stehenden Banksföhren sind zwar 20 Jahre alt, wurden aber nach den Auspflanzungen ins Freie jahrelang (bis 1894) von den Rehen bis zum Boden hinab verstämmelt; sie sind somit eigentlich nur elfjährig und 7 m hoch: da sehr schlechte Böden im Versuchsgarten leider fehlen, konnte ihnen nur ein Fichtenboden dritter Bonität zugewiesen werden; dieser Boden ist für die Föhre noch zu gut, um ihren Anbau rechtfertigen zu können. Umstehende Abbildung zeigt den völlig geraden Wuchs der Banksföhre; vierjährige Exemplare sind 2,5 m hoch geworden. Die Erfahrungen in Preußen stimmen mit denen in Bayern überein. Professor Dr. Schwappach (l. c. 1901) sagt: „Die vorliegenden Berichte sind voll des Lobes über die Anspruchslösigkeit an den Boden, die Widerstandskraft gegen Dünen, Frost und Schütte P. Bansiana ist erheblich raschwüchsiger als die gemeine Kiefer und übertrifft letztere in Mischkultur im Alter von sieben bis zehn Jahren durchschnittlich etwa um 1 m." Der höchste Baum, der mir in Amerika zufällig begegnete, maß nur 22 m Höhe und 30 cm Durchmesser; inzwischen ist aber durch Macoun bekannt geworden, daß der Baum in Kanada 35 m Höhe erreicht.

Südlicher Anläufer des Felsengebirges, Mexiko.

Junge Pflanzen mit drei dünnen, etwas gelblichgrünen Nadeln von 10—12 cm Länge; junge Triebe glatt, gelb bis ockerfarbig, glänzend; Knospenschuppen braun mit hellen Wimpeln, an der Knospe fest anliegend, ohne Harzausscheidung. Die frühzeitig erscheinenden Zapfen am oberen Triebdrittel oder auch am Triebende. Dieser Baum ist für Nordmexiko ein wertvoller Nutzbaum, bildet aber im Castanetumklima nur lichte, mit Gras und Buschwerk durchstellt Bestände. Der höchste Baum, den ich auf Unionsgebiet fand, war 25 m hoch. Es scheint, daß die Art in Europa noch gar nicht eingeführt ist; sie wäre vielleicht für Standorte im Castanetumklima, auf karstigem oder grasigem Boden eine wünschenswerte Holzart.

Pinus clausa Vasey (Sargent?). Vaseys Föhre, Scrub or Spruce-Pine. Südstaaten von Ostamerika.

Die Knospe junger Pflanzen hellbraun, glänzend, Schuppen anliegend; Nadeln zu zweiern, auch dreien; 7 cm lang; fertige Triebe dünn, weißlich bereift. Der Baum bewohnt trockene, sandige Lagen, Dünenzüge, wo er sich ganz besonders raschwüchsig zeigt. Für solche Standorte Südeuropas käme daher die Holzart in Frage.
Pinus contorta Dougl. **Gedrehte Föhre, Scrub-Pine.**

Pazifische Küste von Nordamerika.

Knospenschuppen fast anliegend, mit Harz verklebt, Nadeln zu zweiern, seltener auch zu dreien; 5 cm lang, sehr kräftig, 1 mm dick; am Triebe ziemlich spärlich sitzend, so das der Trieb deutlich sichtbar ist. Sie hat sich bis jetzt in den schlimmsten Frostlagen des forstlichen Versuchsgartens als völlig hart erwiesen; sie verdient auf nassem wie auf trockenem Boden, auch auf Dünensand, Beachtung.

Pinus glabra Walt. **Glattöhre, Spruce-Pine.**

Südstaaten von Ostamerika.

Die meist zu zweiern stehenden Nadeln zart, durchschnittlich 7 cm lang, in einem rechten Winkel vom Triebe abstehend; Knospe schmal (1,5 mm), aber lang; Schuppen anliegend, mit brauner, glänzender Spitze; junge Triebe in ihrem obersten Teile zart bereift; wird auf den feuchten, sandigen Standorten im Castanetum und Lauretum, oft zwischen den Taxodien stehend, ein Baum bis zu 35 m Höhe. Erfahrungen über die Art fehlen; sie käme wohl nur für Südeuropa in Frage.

Pinus Henryi Mast. **Henrys Föhre.**

China.

Zwei Nadeln zusammenstehend, Knospe nach M. Masters' Angaben braunrot, am Rande zerfasert, weifslich; Triebe glatt, braunrot; sollte „Strobili laterales“ bedeuten, das die Zapfen zwischen den Quirlen sitzen, dann dürfte diese Föhre zur Sektion der Murraya gehören.

Pinus inops Ait. (syn. *virginiana* Mill.). **Jersey-Föhre, Jersey-Pine.**

Mittlere Staaten von Ostamerika.

Nadeln zu zweiern, zuweilen auch zu dreien in einem Kurztriebe; 5 cm lang; einjährige Triebe dünn, weifsblau bereift; auf geringwertigen trockenen Höhenlagen und sandigem Boden in der Heimat häufig und durch die Mitshandlungen des dortigen Laubwaldes ständig an Boden gewinnend. Für Mitteleuropa ist die Frosthärte im Versuchsgarten zu Grafrath feststellbar. Sie scheint bis jetzt nirgends zu Versuchszwecken herangezogen zu sein, obwohl sie die Aufmerksamkeit verdient. Was die Dünen und die Ostpreußen unter dem Namen *P. inops* zur Festigung der Dünen benützen, ist eine europäische Föhre, nämlich *P. uncinata*.

Pinus insignis Dougl. (syn. *radiata* D. Don.). **Monterey-Föhre, Monterey-Pine.** Kalifornische Küste.

Nadeln bis 15 cm lang; meist drei in einem Kurztriebe; Knospenschuppen braun, nicht ausgefranst, anliegend, in der Regel mit weifs-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

lichem Harze überzogen; jüngere Triebe braun und glatt. Die sehr raschwüchsige Art hat sich auf den Dünen der sehr sandigen Küsten Kaliforniens als brauchbare Art erwiesen. Für Mitteleuropa kommt diese Föhre in ähnlichen Verhältnissen wohl kaum in Frage, wiewohl sie in England — 15° C. ohne alle Beschädigung erträgt: für Südeuropa mag sie sich brauchbar erweisen; sie ist sehr dekorativ.

Malakka und Sunda-Inseln.
Nadeln 20—23 cm lang, sehr dünn, fein, herabhängend; Triebe hellbraun, glatt, glänzend; für das Lauretum von Südeuropa als Zierbaum.

Nadeln 8 cm lang, im unteren Triebteile zu zwei, während des ersten Jahres 10 cm. Knospenschuppen festanliegend, durch Harz verklebt; Ende der Knospe hellrötlich, schwach glänzend. Triebe braungrün, glatt, glänzend.

Biologisch und botanisch steht die Murrayföhre der Banksföhre sehr nahe; man findet die Murrayföhre in ihrer Heimat ebenfalls auf sehr magerem Sandboden als sehr raschwüchsige Pflanze, ebenso in kühleren, feuchten Einsenkungen, und schließlich noch als oberste Bergvegetation im Felsengebirge. Aus diesem Grunde habe ich diese Föhre 1890 zur Aufforstung kalter Lagen, von Hochmooren, empfohlen. Die nur im engen Schlusse astfrei erwachsenden Föhren haben sich im forstlichen Versuchsgarten zu Grafath in kalten, anmoorigen Standorten mit — 30° C. tiefster Wintertemperatur als völlig frosthart und raschwüchsig gleich der Banksföhre erwiesen; es scheint mir deshalb
unmöglich, daß die bei Nürnberg in feuchten Lagen ausgepflanzten 65000 Murrayföhren wegen ihrer Frostempfindlichkeit die Note IV verdienen; fast scheint es, nach dem Verhalten in Grafrath, als ob die Murrayföhre noch schneller wüchsig sei als die Banksföhre. Die jungen Murrayföhren sind wegen ihrer prächtigen dunkelgrünen

Benadelung eine ganz hervorragende Zierde; die Nadeln stehen so dicht, daß der Trieb ganz verdeckt wird. Parkbesitzer lieben diese Föhre wegen ihres Gegensatzes zu den hellgrünen Stroben ganz besonders. Der Zierwert nimmt freilich später mit der Nadellänge wiederum ab.

Ob Pinus Murrayana var. Sargentii Mayr als Varietät oder als eigene Art betrachtet werden muß, können nur neue vergleichende Studien in der Heimat der Holzart endgültig feststellen.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Nadeln zu zweien, seltener zu drei en in einem Kurztriebe, steif, dick, stechend, bis 9 cm lang, dunkelgrün: junge Triebe braun, glänzend, solange noch grün, mit schwachem Reife versehen. Die Stechöhre wächst auf den trockensten, kiesigen Hügelköpfen der Alleghanies und dem tafelförmigen Plateau dieser Gebirge; sie scheint für Europa ziemlich geringwertig zu sein.

Diese Föhre ist wohl die einzige europäische Föhre, welche zur Sektion der Murraya zu rechnen ist, nachdem die Zapfen an den Scheinquirlen der Triebe zwischen Basis und Ende derselben sitzen; ob die Zuteilung richtig ist, könnte nur durch eine anatomische Untersuchung des Holzes bestätigt werden, das den Typus der Murraya- föhre, nicht der Pinasterföhren zeigen müsste. Das Holz dieser Art stand mir nicht zu Gebote. Nadeln bis 15 cm lang, sehr dünn, zu zweien, aber meist so eng aneinander liegend, daß man auf den ersten Blick eine einnadelige Föhre vor sich zu haben glaubt. Rinde lange Zeit hellgrau, glatt. Im Karstgebiete wird diese Art als *P. Paroliniana* zur Aufforstung der trockenen, heissen, windigen Felsenköpfe und -Hänge mit großem Vorteile benützt. Es verrät sich dadurch abermals der Murrayacharakter; anderseits aber kann mit ziemlicher Sicherheit erwartet werden, daß auch unter den übrigen hier aufgeführten Murrayas sich noch manche als vorteilhaft für die Karst-Aufforstungen der Alpen wie für Odlandsaufforstungen überhaupt erweisen dürften.

Küstenstaaten von Ostamerika.

Junge Pflanzen mit ungefähr 10 cm langen, vorwiegend zu dreien stehenden Nadeln: Knospe hellbraunrot, mit Harz überzogen, Spitze heller; fertige Triebe hellbraun, glänzend. In den ersten Jahren sehr raschwüchsig, jedoch erlahmt die Wuchskraft bald. Auch in der Heimat wird diese Föhre von anderen, wie *inops, Banksiana, wilis*, im Höhenwuchs übertriffen. Diese Föhre wurde bei Beginn der neuen Versuche am meisten von allen Holzarten begünstigt; in Bayern, wo damals Professor Dr. R. Hartig die Leitung der Anbauversuche in Händen hatte, wurden nur bis 1886 Versuche vorgenommen; auf Grund meiner unzähligen Berichte sinkt mit jedem neuen Quinquennium das Urteil über die Brauchbarkeit dieser Art für das Binnenland von Mitteleuropa. 1901 schrieb Professor Dr. Schwappach: „Unzweifelhaft erscheint *Pinus rigida* zum Anbau von Ödländereien wegen ihrer Genügsamkeit, leichten Kultur, Raschwüchsigkeit und wegen des reicheren Nadelabfalles in hervorragender Weise geeignet“... Doch fügt er schließlich hinzu: „Die Bestände verlichten aber ungemein rasch und machen schon im 20. Jahre meist den Eindruck, da’s ihr gesamtes Wachstum im wesentlichen beendet sei.“ Dagegen rühmt Schwappach das vorzügliche Aussehen der einheimischen Föhre, wenn eine *rigida* dazwischen gebaut wird. Im Jahre 1890 schrieb ich: „Da das unter dem Namen Pitch-Pine zu uns- gelangende nordamerikanische Kiefernholz von anderen, südlicheren Kiefern stammt, die in Europa nicht erzogen werden können, da das Holz der *rigida* vielmehr im Worte unserer Kiefer kaum nahekommt (Splint 10 cm breit, astreich), da sie ferner im Binnenlande in Europa wie in Nordamerika sich ungünstiger in Wuchskraft und Wuchsform als unsere Kiefer verhält, da ferner ihre Ausschlagfähigkeit eine Eigenschaft ist, von der im forstlichen Betriebe kaum Gebrauch gemacht werden kann, so habe ich geglaubt, diese Kiefer nur für den Dünen- sand am Meere empfehlen zu dürfen.“ Die praktischen Versuche haben diese Feststellungen volllauf bestätigt; denn die günstigen Berichte über die Pechföhre stammen von den Küsten von Mitteleuropa: auch die neueren Versuche in Bayern sind nur ein weiterer Beleg dafür, daß *P. rigida* keine begehrenswerte Holzart für Mitteleuropa ist. Keine einzige Kultur mit dieser Art hat von den Revierbeamten Note I erhalten; 61,2 °/o erhielten Note II, der Rest III und IV; zur Begründung dieser Note ist fast allein Schneebeschädigung angegeben. Auch die in Grafrath angelegten Pflanzungen sind nach 18 Jahren vom Schnee völlig zu Boden gelegt worden; was noch übrig ist, deziiniert Agaricus melleus; ehe der Zaun angelegt und in Stand gehalten wurde, haben
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten

Bureau of Forestry photogr.
die Rehe die Föhren bis zum Boden hinab abgefressen. Dr. Schwaupper berichtet von einer anderen, noch unbekannten gefährlichen Pilzkrankheit.

Dafs das Holz der Pechföhre in Amerika stets minderwertig war, teilt die Föhre dort mit allen anderen Föhren, welche nicht *P. Strobos* heissen. Jetzt, nachdem das Strobs aholz dem Verschwinden nahe ist, wächst der Gebrauchswert der übrigen Föhren. Das amerikanische Urteil über das Holz ist somit für Mitteleuropa nicht maßgebend; die Föhre kann auch zur Harznutzung herangezogen werden.

Leider hat man gerade nach dieser Art eine ganze Sektion benannt; die morphologischen Verhältnisse (Scheinquirle, an deren Stelle die Zapfen gebildet werden) und die Lebensgeschichte verweisen jedoch die Taedaföhre in die Sektion *Murraya.* Nadeln 25 cm lang, vordiegend zu dreien, seltener zu zweiern stehend; Knospe mit anliegenden gelbbräunen, an der Spitze etwas dunkleren Schuppen, mit Harz etwas verklebt; junger Trieb glatt, hellbraun; Zapfen an Scheinquirlen in der Mitte der Triebe. Rinde anfangs kleinschüppig, hellgrün. Mit ihrer grofsen Bescheidenheit in den Ansprüchen an den Boden gelingt es dieser Föhre, die hügelige Heimat der viel wertvolleren *P. palustris* an sich zu reißen. Versuche mit dieser Holzart auf schlechtem Boden

1) Auch Dr. H. Unwin, Future forest trees. 1905.
sind im Castanetum von Europa gerechtfertigt. In den Nadeln liegt ein hervorragender Zierwert; ob sie sehr strengen Wintern in Mittel-europa standhält, ist noch eine offene Frage.

Section Jeffrey 1). Jeffreyföhren.

Diese Sektion umfasst die meisten Angehörigen, die Sektion Taeda anderer Autoren und auch meiner eigenen Zuteilungen in den Waldungen von Nordamerika 1890; die Bezeichnung Jeffreya wurde gewählt, um einen den übrigen Sektionen konformen Namen zu besitzen; zu ihr gehören sehr weit verbreitete und sehr seltene Arten, solche mit leichtem und mit sehr schwerem Holze; in ganz Ostasien ist diese Sektion, wie es scheint, gar nicht vertreten.

Bei diesen Föhren sind stets drei Nadeln in einem Büschel vereinigt; der Zapfen geht aus echten Quirlknospen hervor; der Same wird vom Flügel zangenförmig gehalten. Das Holz zeigt in den Markstrahlen bei den ostamerikanischen Arten dünnwandige, bei den westamerikanischen Arten dickwandige Parenchymzellen; Täpfel der an die Parenchymzellen ausstoßenden Tracheiden zahlreich (4—8) innerhalb einer Tracheidenzellenbrute (Tafel II, 4. Sekt.); mikroskopisch sind die Hölzer von den Pinaster- und Murrayaföhren mit Sicherheit nicht zu unterscheiden; nur die extremsten Arten dieser Sektion, die am weitesten nach Süden vordringenden, wie P. palustris (Pitch-Pine) und P. cubensis, zeigen in ihrer außerordentlichen Härte eine plötzlich einsetzende Spätholzschichte als Unterschied im Gefüge, der aber durchaus nicht konstant ist und als unfehlbares Kennzeichen angesehen werden kann (Tafel VIII, 13). Die Murrayaföhren sind raschwüchsige Lichtholzarten; sie geben nur auf bessarem, kiesig-sandigem Boden noch gute Erträge; sie scheinen somit den Pinasterföhren gegenüber in den Ansprüchen an Boden etwas wählischer zu sein. Wenn von einer oder der anderen Art berichtet wird, daß sie auf nacktem Felsen noch wachse und Erträge gäbe, so ist das Täuschung; die Bäume haben mit Sicherheit ihre Wurzeln in Felsspalten, in denen sich der abgewaschene gute Boden angesammelt hat; auch mancher Boden, der heute ganz arm erscheint, war zur Zeit des Aufwachens des daraufstehenden Baumes viel besser, so daß leicht Täuschungen in bezug auf Ansprüche an den Boden unterlaufen können. Unter den Föhren sind sehr frostempfindliche und ganz frostharte Arten. Sie liefern das schwerste, wenn auch nicht das beste und feinste Material. Wird die Schwere und die parallelgehende Härte beansprucht (wie Strafsemipflaster, Brückenbelege usw.), so sind unter diesen Föhren die besten, welche

1) Nachdem die Föhre Pinus Taeda als Angehörige der Sektion Murraya sich erwies, blieb nichts übrig als die bisherige Sektion Taeda in „Jeffreya“ umzutrauen.
Die Nadelhölzer, Koniferen.

Hierher gehören: *Pinus canariensis*, *Coulteri*, *cubensis*, *Jeffreyi*, *Magriana*, *palustris*, *ponderosa*, *Sabiniiana*, *scopulorum*, *serotina* u. a.

Nadeln 20—25 cm lang, dünn; Knospenschuppen braun, am Rande zerfasert und abstehend; ob diese Art für Mitteleuropa beachtenswert ist als Nutz- oder Schmuckpflanze, müssen erst Versuche ergeben.

Junge Pflanzen dieser nur durch ihre riesigen Zapfen bemerkenswerten Föhre tragen Nadeln mit 27 cm Länge; Nadeln zierlich, spärlich am Baume vorhanden; der ganze Baum durchsichtig; Nadeln hellgrün; junge Triebe gelbgrün, ohne Haare. Knospe braun, mit etwas weifslichem Harze bedeckt, in eine lange Spitze ausgezogen; sie bewohnt kiesigen, aber nicht nahrungsarmen Boden mit geringer Sickerwasserbefeuchtung.

Nadeln durchschnittlich 23 cm lang, kräftig; Knospenschuppen braun anliegend, stark mit Harz verklebt; diese Art ist auffällend raschwüchsig; 28jährige Bäume besaßen in Alabama auf mittelgutem Sandboden bereits 16 m Höhe und 30 cm Durchmesser. Das schwere Holz wird von den Sägemühlen mit dem der eigentlichen Pitch-Pine (*P. palustris*) vielfach gemischt. Die Holzart kommt wohl nur für Südeuropa in Frage.

Es ist mir unverständlich, wie man diese Föhre mit der ihr allerdings nahestehenden *ponderosa* hat vereinigen können, so dafs man die Jeffreyföhre nur als Varietät der *ponderosa* gelten lassen will. Die Anatomie der Rinde, die Zapfen, die junge Pflanze, die Lebensgeschichte beider sind doch so verschieden, dafs man nur wünschen könnte, dafs alle Föhrenarten gleich gut und leicht voneinander unterschieden werden könnten; möglich, dafs beide Arten leicht Bastarde bilden und dafs
Diese Bastarde als Übergangsformen aufgefasst wurden, was sie natürlich nicht sind. Nadeln 25 cm lang, weißlichgrün, gerade vom Trieb abstehend; Knospen ohne Harzaustritt: Schuppen eng anliegend, hellrotbraun mit dunklerer Spitze; fertile Triebe kräftig, hellweißblau bereift.

Erst an dem ins dritte Jahr gehenden Trieb verliert sich die Bereiftigkeit. Eine graue, dünne Borke tritt an die Stelle: die Föhre liebt in ihrer Heimat lockeren, kiesig-sandigen, guten Boden mit reichlich sich erneuernder Bodenfeuchtigkeit.

Hart an den Flussufern stehen die schönsten Exemplare mit 60 m Höhe; in kühlerem Klima sinkt die Höhe nach meinen Messungen auf 44 m herab. Die Gelbföhre (ponderosa) steht nicht mit Jeffrey zusamm, sondern bewohnt die trockneren Gebiete. Das Holz der Jeffrey mit schönen rosafarbenen Kerne wird etwas höher geschätzt als das der Gelbföhre. Jeffreys Föhre wächst in den ersten Jahren ziemlich langsam; der erwachsene Baum zeigt den Typus beifolgender Abbildung, die ich im südlichen Oregon auf bestem Standorte 1885zeichnete.

Professor Schwappachs Berichte über diese Föhre lagen nicht günstig, obwohl er hinzufügt, daß sich Jeffreys Föhre noch besser gehalten hat als die Gelbföhre. 16jährige Pflanzen sind dort bis zu 6 m emporgewachsen. Vielleicht würde ein dem heimatlichen Standorte mehr genährter Boden, frisch sandiger bis lehmiger Boden, besseres Ergebnis liefern. Für erneute Versuche ist daher durch das bisherige Ergebnis noch nicht all Hoffnung genommen. Jeffreys-Föhren-Gruppen auf besseren und bestem Föhrenboden innerhalb der einheimischen Föhre oder innerhalb der Eichen dürften vielleicht zum Ziele führen. Unter allen Umständen bleibt die Föhre eine hervorragend schöne Schmuckart; ihre weniger dichter und lange, aber nicht genügend starke Benadelung läßt auch erwarten, daß sie gegen Schneebelastung weniger empfindlich sein werde als die starknadelige ponderosa und die scopulorum-Föhre.
Pinus Mayriana Sudw. (syn. *latifolia* Sarg.\(^1\)). **Mayrs Föhre.** Arizona.

Nadeln 27—30 cm lang, sehr kräftig, fast 2 mm breit. Knospenschuppen breit, ausgefranst und zurückgerollt. Bis heute nirgends in Kultur, ist dieser Baum sicher wegen seiner außerordentlich langen Benadelung von hohem Zierwerte. Gemessene Höhe 25 m.

Nadeln 34 cm lang. Knospe mit weißen, am Rande ausgefransten Schuppen bedeckt; Schuppen an der Basis der Knospe zurückgeschlagen. Im ersten Jahre entwickelt sich ein Büschel längerer, einfacher Nadeln, während zahlreiche Achselknospen derselben zu dreinadeligen Kurztrieben werden, ohne dafs die Stammachse eine erkennbare Verlängerung erfährt; dasselbe findet im zweiten und dritten Jahre statt, auf geringen Standorten, auch noch im fünften Jahre und darüber hinaus: erst wenn die junge Pflanze den Boden mit ihren langen Nadeln genügend beschattet, erhebt sich der Gipfeltrieb. Eine zierlichere, junge Föhrenpflanze als die *palustris* kann man sich nicht vorstellen: solange sie unmittelbar über dem Boden mit der ganzen Benadelung liegt, ist sie einem hellgrünen üppigen Grasstocke täuschend ähnlich. Später wächst sie ofters bis zu 2 m Höhe empor, ohne Seitenäste; dann gleicht sie einer schmalblättrigen Yucca; weil diese Föhre anfänglich so langsam wächst, erliegt sie regelmäßig den Bodenfeuern, welchen die schnellerwüchsige *Pinus mitis* entgeht. Die Parkettholz liefernde Föhre dürfte wegen ihres vorzüglichen, sehr harten, schweren Holzes eine

\(^1\) Die Zusammenstellung *Pinus latifolia* H. Mayr ist irrig.
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Die Nadelhölzer, Koniferen.

369

sehr begehrenswerte Holzart für Südeuropa sein; schon in Südwestfrankreich müßte sie ebensogut wachsen wie die im Holze äußerlich ihr nahestehende P. maritima; Holz nach Tafel VIII, 13; vom Holze abgesehen, übertrifft nach den bisherigen Erfahrungen und Untersuchungen die Parkettföhre auch alle europäischen Föhren im Harzgehalte. In der Harzindustrie liegt eine weitere Ursache für die Verwüstung der Parkettföhrenwaldungen und für das allmäßliche Verschwinden der Vorräte dieses wertvollen Baumes. In Mitteleuropa ist die Föhre durch die Winterfröste nicht hindurchzubringen.

Pinus ponderosa Dougl. Gelbföhre, Yellow Pine.

Pazifische Küstenregion von Nordamerika.

Nadeln bis 25 cm lang, an der Basis kräftiger Triebe etwas gedreht und rechtwinkelig vom Trieb abstehend. Knospe zylindrisch, plötzlich in eine kurze Spitze endend; Schuppen anliegend, bräunlich, mit weisigen Spitzen. An sehr kräftigen Exemplaren sind die Knospen bis daumendick, das ist die grösste Winterknospe, welche Nadelholzbäume bilden; sie sind ein Leckerbissen für Eichhörnchen und Mäuse. Der fertige Trieb glänzend grünbraun, mit weislichen Harzkörnchen bestreut, aber ohne Reifbildung. Später wird die Rinde hellgrau, kleinschuppig.

Über die neueren Ergebnisse mit dieser Art und mit Jeffreys Föhre sagt Professor Schwappach: „Das Ergebnis ist wenig günstig, weil sie in Norddeutschland jedenfalls eine zu niedere Wärme und zu trockene Luft angetroffen haben." Winterfröste von — 27 ° C. haben beiden Arten in Grafrath nicht geschadet; untern der Küste oder, wie in Grafrath, mitten in einem großen Waldgebiete bei mittlerer Elevation dürfte diese Föhre doch auch für Mitteleuropa beachtenswert sein; über die Ursache des Absterbens der Gelbföhre in Norddeutschland ist nichts Positives bekannt geworden; ich halte für den schlimmsten Feind in Europa das Eichhörnchen. In dem Winde ausgesetzten Örtlichkeiten haben auch Schneedruck bis
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

heute nicht geschadet. Wenn auch der Nutzwert für Europa gering bleibt, der Zierwert ist nicht abzuleugnen.

Nadeln hellgrün, bis zu 30 cm lang; Knospe dick, lang zugespitzt, hellbraun; jüngere Triebe bläulich-weißbereift. Auf trockenen, heißen, aber doch mit besserem Boden versehenen Hängen von Südeuropa mag

[Image]

Abb. 120. Drei jüngere Gelbföhren (*Pinus ponderosa*) im Yosemite-Tal von Kalifornien. Prinz Georg von Bayern photogr. 1903.

dieser Baum vielleicht einige Bedeutung erlangen; in seiner Heimat zerteilt sich der Schaft regelmäßtig schon wenige Meter über dem Boden, so daß er von ferne mehr einem Olivenbaum oder einer Weißweide als einem Nadelbaum gleicht.

Diese zwei, auch drei Nadeln in einem kurzen Triebe führende Föhre ist durch äußere und innere Merkmale als Art charakterisiert: Nadeln stets kürzer als bei der Gelbföhre, mehr dem Triebe anliegend; Knospe braun mit weißem Schuppenrande, kleiner als bei der Gelbföhre, meist ganz mit weißlichem Harze überzogen; Nadeln über der

Nadeln 18 cm lang, Knospschuppen hellbraun, fest anliegend und mit Harz verklebt; die Föhre bewohnt die Ränder feuchter Bodenausformungen; wohl nur in Süd Europa kultivierbar, aber wahrscheinlich ohne forstliche Bedeutung.

Section Parrya, Parryaföhren.

Die Zuteilung der nachstehend aufgeführten Föhren zu den früheren Sektionen *Pinaster* und *Taeda* hat stets Schwierigkeiten bereitet, welche durch die Zusammenfassung dieser Föhren in die Sektion „Parrya“ beseitigt sein dürften. Neben botanischen Merkmalen ist es insbesondere die Holzanatomie und die gesamte Entwicklungsgeschichte dieser Föhren, welche freilich den Botanikern der alten Schule für die Bildung von Sektionen nebensächlich sind.

Hierher zählen Föhren mit einer, zwei und drei Nadeln in einem Kurztriebe; Nadeln kurz, an ihren Berührungsflächen auffallend weiß durch die Spaltöffnungen. Zapfen kurz und dick. Same ohne Flügel, von einem Wulste der Fruchtschuppe des Zapfens festgehalten; Same eßbar; das Holz nach dem mikroskopischen Typus des Fichtenholzes (Gattung *Picea*) gebaut, nämlich: Markstrahlenparenchym dickwandig, mit sehr zahlreichen kleinen einfachen Tüpfeln. Tracheiden der Markstrahlen ohne zackenförmige Verdickungen (Tafel II, 8. Sektion): mit
freiem Auge ist das Holz von dem der *Pinaster* nicht unterscheidbar (Tafel VII, Fig. 11).

Hierher gehören: *Pinus Bungeana, cembroides, edulis, Gerardiana, monophylla, Parryana* u. a.

Pinus Bungeana Zucc. Chinesisiche Silberföhre.
(Silberfichte der in China lebenden Europäer.) Nördliches China.

Zwei und drei Nadeln von 5—7 cm Länge in einem Kurztriebe; Knospe von hellbraunen, anliegenden Schuppen bedeckt, harzfrei; fertige Triebe gelbgrün, glatt, schwach glänzend. Noch im ersten Jahre bei kräftigem Wachstume in Längsrissen aufplatzend, so daß eine grüne Rindenfarbe zutage tritt. Im zweiten Jahre Triebrinde grünbräunlich überraucht. Der erwachsene Baum mit sparriger Krone, kurzem Schafte, von dem die Borke in dünnen Platten, wie bei einer Platane, sich ablöst; Farbe der Rinde an der Sonnenseite blendend hellweiß-blau, auf der Schattenseite grünlichweisß; diese raschwüchsige Föhre findet sich auf den kiesigen, geröllreichen Hängen der nordchinesischen Berge. Ob forstlich als Holzart für karstige Örtlichkeiten brauchbar, müssen Versuche ergeben; sicher ist die chinesische Silberföhre die originellste, wenn auch nicht schönste Föhre, die die Gärten in Süd- und Mitteleuropa schmücken würde. In Grafrath hat sie sich als völlig frosthart erwiesen.

Pinus cembroides Zucc. (syn. osteosperma Engelm.).

Zwei und drei Nadeln von 5 cm Länge in einer Scheide; nach Sargent dunkelgrün, gekrümmt, zart. Vielleicht für trockene, heiße Hänge Südeuropas eine Holzart zum Schutze gegen weitere Abwaschungen.

Pinus edulis Engelm. Pinionföhre. Piñon. Südliches Felsengebirge.

Vorwiegend drei, auch zwei Nadeln in einer Scheide; Nadeln 2.5 cm lang. Rinde der Triebe graugrün, glatt. Kommt nur für Südeuropa und ähnliche Standorte, wie bei der vorigen Art erwähnt, in Frage.

Drei Nadeln von 8—10 cm Länge in einem kurzen Trieb. Fertige Triebe schwachbereift, hellbraun, Knospenschuppen braun, fest anliegend; Same langgestreckt, sehr wohlgeschmeckt.

Nadeln zumeist einfach, auch zwei und drei in einem Kurztriebe. Nadeln 5 cm lang, Nadelscheide in drei Teilen zurückgerollt. Verdient nur für Südeuropa an ähnlichen Standorten wie die vorige Art eine Versuchsbeachtung.

Section Khasia ist nur durch *Pinus Khasia* Royle, Khasiaföhre, Khasia Pine vertreten.

In den Khasia-Bergen und den Gebirgen der Shan-Staaten. Vorwiegend dreinadelig; Nadeln 14 cm; Knospenschuppen braun, mit weifslichem, zerfetztem Rande; an der Spitze von der Knospe etwas abstehend. Fertige Triebe glatt, hellgelbbraun, glänzend; das Holz mikroskopisch völlig dem Pinasterholze gleich (Tafel II, 2. Sektion).

Vielleicht gehören hierher: *Pinus insularis* Endl. mit drei dünnen, langen Nadeln von den Philippinen; nur für Südeuropa.

Pinus yunnanensis Franch. Yunnanföhre. China.

Drei Nadeln in einer Scheide. Zapfen der vorigen Art nahestehend,
Section Sula ist bis jetzt ebenfalls nur in einer Art bekannt, nämlich: Pinus longifolia Roxb., Chir. Westhimalaya.

23 bis 30 cm lange Nadeln zu drei in einem Kurztriebe vereinigt; über die Heimat dieses Baumes gibt die Schilderung der Waldungen des westlichen Himalaya Aufschluss. Das Holz ist makroskopisch ein Jeffrey-Holz, mikroskopisch aber so verschieden von allen Fichtenhölzern, daß die Sektion Sula errichtet werden mußte (Tafel II. 10. Sektion); vielleicht gehört Pinus Merkusii hierher.

Section Strobus. Weymouthsföhren, Stroben, Korkföhren.

Fünf weiche Nadeln in einem Kurztriebe; Nadeln an den Berührungsf lächen weißlich, äußerlich grün. Same mit dem Flügel auf einer Seite innig verwachsen, Same flugfähig. Parenchym der Markstrahlen des Holzes dünnwandig, anstoßende Längstracheiden mit ein bis zwei schlitzzahnförmigen Tüpfeln. Tracheiden der Markstrahlen ohne Verdickung (Tafel II. 6. Sektion). Mit dem freien Auge fällt der Mangel einer harten und breiten Spätholzschicht auf; daher ist das Holz außerordentlich leicht und gleichmäßig zu bearbeiten, es ist weich und doch etwas spröde, hat einen rötlichen Kern, welcher dem Holze eine große Dauer verleiht (Tafel VII, Fig. 12). Das spez. abs. Trockengewicht der Hölzer schwankt zwischen 37 und 42.

Alle Stroben sind Halbschattenholzarten mit den unter Punkt 39 des VIII. Abschnittes erwähnten Abweichungen: sie sind mittel- bis sehr raschwüchsig, verlangen guten Boden, d. h. Föhrenboden I. bis III. Bonität einschließlich. Der frische bis feuchte Boden, d. h. von Buchenfrische bis zur Eschenfeuchtigkeit, sagt ihnen am meisten zu: im Erlenbruch gedeihen sie noch meistens forstlich genügend; am günstigsten daher Sumpfränder; die Stroben müssen in ziemlich engen Schlufs frühzeitig gebracht werden zum Abstossen der Äste; bei Einmischung von anderen Holzarten ist bemerkenswert, daß die Stroben in der Heimat vorzugsweise mit Laubhölzern oder mit Tsugen oder mit anderen Föhren sich mischen; mit Fichten in engen Schlufs gebracht (Ausbesserung der Schlaglücken), werden sie zumeist erdrückt; in Gruppen und kleineren Beständen auf kahlen Flächen — denn die Stroben sind größtenteils völlig frosthart — als Unterbau unter gelichtete Eichen, Föhren (besserer Bonitäten), Lärchen, als Zwischenbau bei Kultur feuchterer Lagen mit Eschen, als Schutzholzart in ausgesprochenen Frostlagen selbst auf anmoorigem Boden haben sich mehrere Weymouthsföhren, insbesondere die amerikanische, bereits bewährt. Die Stroben erreichen rasch sehr starke Dimensionen. Da sie im mitteleuropäischen Waldgebiete völlig fehlen, sind sie alle präfungswert und die besten von ihnen anbauwürdig. Die schlimmsten Feinde sind der Wurzelkrebs, Agaricus melleus, der Blasenrost, Cronartium
ribicolum, welche beide Pilze manche schöne Kultur zugrunde richten können. Das Wild verheißt Weymouthsföhren mit Vorliebe, der Bock fegt die glatte Rinde; Schneebruch schadet zuweilen.

Hierher zählen: Pinus Ayacahuite, excelsa, Lambertiana, monticola, pentaphylla, Peuke, Strobus.

Junge Pflanzen der japanischen Pinus parviflora täuschend ähnlich, jedoch durch steifere Benadelung von ihr unterscheidbar; im übrigen ungenügend bekannt.

Nadeln an jungen Pflanzen 12—15 cm lang, hellblaugrün bis saftgrün, weich, durch ihr eigenes Gewicht auseinanderfallend, vielfach gerade herabhängend. 19jährige Versuche im forstlichen Versuchswalde zu Grafrath haben ergeben, daß die Himalaya-Strobe der ostamerika-
nischen an Frosthärte etwas nachsteht; bei −25° beginnt für die Himalaya-Art die Lebensgefahr. In geschützten Lagen, auf geneigtem Boden, im Schutze unter lockerstehenden Liechtolzarten hält sie in Mitteleuropa gut aus, wächst sogar sehr schnell, leidet aber wegen der langen, vollen Benadelung durch Schneedruck. Besser scheint ein Klima, das etwas wärmer ist wie Südtirol, das Küstenland der Adria, zu passen, für welche Ortschaften sie von Dr. Cieslar empfohlen wurde. An Schönheit übertrifft die Himalaya-Strobe alle übrigen Angehörigen der Sektion; kleine Pflanzen, auch wenn in Blumentöpfen verpflanzt, bilden eine ganz hervorragende Zierde des Blumentisches. In der Heimat (siehe diese) ist die Tränenföhre ein wichtiger Baum zur Wiederbestockung von durch Feuer versengtem Gelände; es fällt überall die Leichtigkeit ihrer natürlichen Wiederverjüngung auf; vorstehende Abbildung zeigt die Naturverjüngung der Himalaya-Strobe.

Nadeln 7 cm lang, steifer als bei allen anderen Angehörigen dieser Sektion, fast etwas stechend; das untere Drittel des Triebspitzen nadelloser; Knospe zylindrisch mit fingerhutförmiorm Enden; Knospenskuppen am obersten Rande etwas abstehend; Seitenknospen etwas länger als die eigentliche Haupt- oder Mittelknospe. Rinde der fertigen Triebe spärlich mit kurzen, bräunlichen Haaren besetzt, braungrau; die Rinde erhält sich lange Zeit dunkelgrangrün, dann erst erscheinen kleine, schmale, dunkelgrone Borkenschuppen. Die Zuckerföhre ist der stattlichste Baum unter den Weymouthsfohren: Bäume mit 90 m Höhe und darüber sind bekannt. Das Alter solcher Bäume ist ganz beträchtlich, denn der Baum ist auch im Optimum seiner Heimat langsames Wachstum; selbst an in ihrer vollen Wuchskraft stehenden Pflanzen kann man Längstriebe über 40 cm nicht auffinden; die weit horizontal ausgreifenden Äste der Kronen in dem lockeren Bestande der Sierra gestattet die Erkennung der Zuckerföhre bereits von großer Entfernung (Abb. 16). Über die Bedeutung des Holzes dieser Art wolle die Schilderung der Heimat der Föhren beachtet werden. An frischen Splintwunden des Baumes tritt ein Saft aus, der eingetrocknet ein gelbweisses, krümeliges Mehl zurücklässt, das im Wasser völlig sich löst mit süßem Gesellschaft, ein Mittel gegen Husten; daher rührt der Name Zuckerföhre. Diese riesenzapföge Strobe ist bis jetzt im großen Mäßtgenmaß noch nirgend in Deutschland kultiviert; auch in Grafrath sind nur einzelne ältere Exemplare vorhanden, welche bisher als ganz winterhart sich erwiesen. Aus diesem Grunde und angesichts des vorreißlichen Holzes mit ganz speziellen, von unseren Holzarten nicht gebotenen Eigenschaften sind Anbauversuche mit dieser Strobe unter
Benützung der oben für alle Stroben gegebenen Winke dringend wünschenswert.

Nadeln 10 cm lang, ziemlich hart; Knospe von grauen, der Peuke ähnlichen Schuppen eingehüllt; Triebe mit ganz kurzen bräunen Haaren bedeckt, braungrün. Diese Art ist im kontinentalen Europa, wie es scheint, noch nirgends geprüft, obwohl sie, nach den Erfahrungen in Grafrath, ebenso frosthart ist wie die ostamerikanische Art; sie ist raschwüchsig, leidet aber, wie die ostamerikanische Schwester, außerordentlich durch Agaricus melleus. Dr. Somerville teilt mit, daß in England der Anbau dieser Holzart für forstliche Zwecke aus diesem Grunde aufgegeben wurde. Siehe Abb. 11.

*Pinus Peuke*¹) *Griseb. Rumelische oder griechische Strobe oder Weymouthsföhre.* Südost-Europa.

Nadeln 9—10 cm lang, etwas steifer als bei der ostamerikanischen Art, dunkler grün gefärbt, am Triebe etwas angedrückt, daher Trieb nicht sichtbar; Knospe weißgrau mit etwas dunklerer Spitze der Deckschuppen. Die griechische Strobe ist ebenso schnellwüchsig und ebenso frosthart wie die ostamerikanische. —30° hat sie in Grafrath ohne alle Beschädigung ausgehalten. Augenscheinlich verdankt die ostamerikanische Strobe ihren Vorzug und ihre Einbürgerung in den Waldungen Europas nur dem Umstande, daß sie 180 Jahre früher eingeführt wurde als die griechische. Bis heute hat jedoch die Peukestrobe einen Vorzug gegenüber der ostamerikanischen im forstlichen

¹) Der Name *Peuke* bedeutet in Griechenland nur Föhre; soll daher eine bestimmte Föhre bezeichnet werden, so erhält sie im Griechischen noch einen Zusatz.
Versuchsgarten zu Grafrath gezeigt, das ist ihre Widerstandskraft gegen Agaricus melleus; sollte sich die griechische Strobe gegen diesen Wurzelkrebs besser bewähren als die ostamerikanische, so müßte erstere geradezu künftighin im Walde an Stelle letzterer gesetzt werden; ebensowenig wäre festzustellen, ob die griechische Strobe durch Blasenrost leiden aus diesen Gründen verdient die griechische Art unsere volle Aufmerksamkeit: zehnjährige Pflanzen tragen bereits keimfähigen Samen auch im Zierwerte steht die amerikanische Art gegen die griechische etwas zurück (s. Abb. 133 bei der Dougiasie).

Pinus Strobus L. Ostamerikanische Strobe, Weymouthsföhre, With Pine. Ostamerika.

Abb. 125. Ostamerikanische Strobe oder Weymouthsföhre (*Pinus strobus*) in den Adirondacks zusammen mit Hemlock (*Tsuga canadensis*).

Bureau of Forestry photogr.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

einer Fläche von 8,74 ha im Reviere Ansbach vorkommen, sind zwar wässrig und geschlossen, zeigen jedoch nur einen geringeren Zuwachs und Massenertrag als die vereinzelt unter anderen Holzarten eingesprengten Weymouthskiefern; bis zum 40. Jahre ist der Zuwachs und Massenertrag sehr gut, dann kommen aber alljährlich Dürrhölzer vor, als Brenn- und Baumutzholz ist das Weymouthskiefernholz nicht beliebt."

Zum Vergleiche mit dieser halb ich im September 1885 in Wisconsin auf sandigem Lehmboden, auf einem Standorte, wie er später ausführlicher beschrieben werden soll, eine Weymouthskiefer fällen und zerlegte sie in Sektionen, wie dies mit der Ausbacher Kiefer geschehen war; aus jedem Baume wurden etwa 50 Stücke einer genauen Bestimmung des spezifischen Gewichtes und des Gehaltes an fester Harzmasse unterworfen.

Auffällend war die Verschiedenheit in der Splintbreite der beiden Stämme; der bayerische Stamm hatte an der Basis eine Splintbreite von 2,7 cm, in der Mitte von 2,4 cm, in der Krone von 2,3 cm; der amerikanische Baum hatte entsprechend 9 cm, 6 cm und 4 cm.

„Im höheren Alter bekommt die Weymouthskiefer ein dunkles harzreiches Kernholz“, hört man bei uns viele sich vertrösten.

Was die Farbe anbelangt, so ist in dem frisch gefällten Baume Splint und Kern oft kaum zu unterscheiden: das Austreten von Harz markiert die Grenze zwischen beiden besser als die Farbe. Später erscheint im Lichte, unter Einwirkung der Luft, eine Kernfarbe, die von der unserer Kiefer im Tone kaum verschieden ist; die gleichmäßig gelagerten Stücke der bayerischen und amerikanischen Kiefer zeigen keinen Unterschied in der Farbe.

Hinsichtlich des Gehaltes an fester Harzmasse beider Bäume, den ich für diese beiden und die wichtigsten europäischen Nadelhölzer ermittelte, ergab sich folgendes Resultat:

Der durchschnittliche Gehalt an festem Harze in 100 g absolut trockener Holzmasse betrug:

bei der bayerischen Weymouthskiefer für alle Splintstücke 3,920 g, durchschnittliches spezifisches Gewicht 36,7;

die Strobe von Wisconsin zeigte für den Splint 5,211 g festes Harz und 38,7 spezifisches Gewicht.
Forstr. Dr. Wappes photogr.
Die Kernstücke aller Sektionen der bayerischen Föhre hatten in 100 g absolut trockenen Holzes 6,457 g Harz und 38,3 spezifisches Gewicht.

Die Kernstücke aller Sektionen der Wisconsin-Föhre hatten 7,444 g Harz, 38,1 spezifisches Gewicht.

Spezifisches Gewicht und Harzgehalt waren nur geringen Schwankungen unterworfen.

Dabei bemerke ich, daß die Kernstücke der einzelnen Sektionen noch weiter in zwei bis drei Teile, von innen nach außen, behufs der Untersuchung zersägt wurden, so daß die Durchschnitte für die ganzen Bäume aus 18 bezw. 24 Stücken genommen wurden. Der unterste Teil des Baumes, bis zwei Meter über dem Boden, ist stets am harzreichsten, und die Harzmenge geht bis auf das Doppelte des Durchschnittsgehaltes.

Dies fand ich auch an einer Weymouthsföhre, die sehr rasch auf lehmigem Boden in Kleinflottbeck bei J. Booth erwachsen war; sie hatte am Fuße 4 mm Ringbreite im Kernholz, 33 spezifisches Gewicht und einen Harzgehalt von 13,6 g.

Gleiches zeigte eine von Dr. Wilhelm 1884 aus Österreich zugesandte Weymouthsföhre; der innerste Kern (zehn Jahresringe von durchschnittlich 6,4 mm Breite umfassend) hatte 5,95 g feste Harzmasse, der äußere Kern mit 1,4 mm Ringbreite zeigte 14,46 g Harz; der Splint mit 1 mm Ringbreite 3,32 g Harz.

Die Weymouthsföhre steht unter den in Mitteleuropa wachsenden Nadelhölzern hinsichtlich ihres Harzgehaltes an erster Stelle. Wenn ich die Durchschnitte aus den Kernstücken der wichtigsten mitteleuropäischen Nadelhölzer berechne — eine Berechnung, die sich auf über hundert Analysen gründet, die ich vor Jahren in München ausführte — und sie mit den Durchschnitten einiger amerikanischer Nadelhölzer vergleiche, so hat in 100 g absolut trockenen Holzes.

<table>
<thead>
<tr>
<th>Holzart</th>
<th>Harzgehalt (g)</th>
<th>spezifisches Gewicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkettföhre (P. palustris)</td>
<td>11,1</td>
<td>78</td>
</tr>
<tr>
<td>Weymouthsföhre von Wisconsin</td>
<td>7,4</td>
<td>38</td>
</tr>
<tr>
<td>Weymouthsföhre von Ansbach</td>
<td>6,5</td>
<td>38</td>
</tr>
<tr>
<td>amerikanische Rotföhre (P. resinosa)</td>
<td>6,0</td>
<td>41</td>
</tr>
<tr>
<td>gemeine Föhre (P. silvestris), 113-jährig</td>
<td>5,2</td>
<td>48</td>
</tr>
<tr>
<td>gemeine Föhre (P. silvestris), 235-jährig</td>
<td>4,9</td>
<td>47</td>
</tr>
<tr>
<td>Lärche (Larix europaea) in der Ebene</td>
<td>4,8</td>
<td>55</td>
</tr>
<tr>
<td>Lärche (Larix europaea) im Hochgebirge</td>
<td>2,8</td>
<td>62</td>
</tr>
<tr>
<td>Fichte (Picea excelsa)</td>
<td>1,6</td>
<td>41</td>
</tr>
<tr>
<td>Tanne (Abies pectinata)</td>
<td>1,0</td>
<td>41</td>
</tr>
</tbody>
</table>

Die Weymouthsföhre liefert demnach in Mitteleuropa ein entschieden harzreicheres Holz als jedes andere Nadelholz; ob damit aber
A. Die Nadelhölzer, Koniferen.

Irgend etwas gewonnen ist, möchte ich bezweifeln, daß die Schwere und die Dauer des Nadelholzes durch den Harzgehalt wesentlich bedingt wird, kann man nach obiger Zusammenstellung nicht behaupten, denn das sehr dauerhafte und schwere Lärchenholz des Hochgebirges enthält nicht halb so viel Harz als das leichte und schneller im Boden zersetzte Holz der Weymouthsföhre.

Da allein das feste Harz, das Kolophonium, imstande ist, die Dauer eines Nadelholzes zu erhöhen, so ergibt sich hieraus, daß sowohl uraltes Kernholz im Baume wie auch lange Zeit luftig aufgespeichertes Nutzholz eine größere Dauer besitzen müssen als verhältnismäßig junges Holz oder bald nach der Fällung unter Verhältnissen verbautes Holz, welche den Luftzutritt mehr oder minder hemmen. Bekanntlich zeigt sich viele Jahre nach der Verwendung des Nadelholzes immer noch welcher Harzfluß aus Harzzellen, ein Beweis, wie langsam die Austrocknung des Holzes und die Verhärtung des Harzes vor sich gehen.

Was die Formverhältnisse der amerikanischen und bayerischen Strobe anlangt, so berichtete ich hierüber 1890 folgendes:

a) Bayerische Strobe.

Gesamthöhe 31 m, Alter 84 Jahre, Inhalt des ganzen Schaftes 3,310 cbm, Formzahl des Schaftes 44, Jahrringbreite der untersten (I) Sektion 3,6 mm.

b) Strobe von Wisconsin:

Gesamthöhe 28 m, Alter 138 Jahre, Inhalt des ganzen Schaftes 2,679 cbm, Formzahl des Schaftes 35, durchschnittliche Jahrringbreite der I. Sektion 2,3 mm.

Eine andere 240 Jahre alte Strobe hatte (ebenfalls in Wisconsin) eine Höhe von 37,7 m, und 1 m über dem Boden, 1,1 m Durchmesser. Dies gibt nach Abzug von 4 cm für die Rinde eine Ringbreite von 2,2 mm und bei Annahme einer Formzahl von 30 einen Kubikinhalt des Holzes im Schaft von 4,748 cbm.

Hieraus erheilt das anfängliche langsame Wachstum der Weymouthsföhre im Urwalde gegenüber der ständig mit freiem Gipfel aufgewachsenen bayerischen Föhre; die Freistellung im Urwalde erfolgt allmählich, der Zuwachs steigt langsamer an, die einzelnen Bäume stellen sich lichter, eine Abnahme der Formzahl ist die Folge, welche bei der im dauernden Schlusse erwachsenen bayerischen Föhre günstiger sich stellt. Trotz der Langsamwuchsichtig ist das nordamerikanische Holz, so weit das spezifische Gewicht in Frage kommt, nicht schwerer als das rasch gewachsene europäische; dagegen steht die europäische Föhre der amerikanischen an Feinheit ihres Holzgefüges weit nach.

Solches gröberes Holz bilden sicher alle Stroben in Nordamerika, die von Jugend an mit freier Krone aufwachsen können; nach meinen
Messungen in Amerika erreichen völlig frei und fast ohne seitliche Beengung erwachsene Stroben (so wachsen mehr oder minder alle *second growth* auf!) in einem Alter von 80 Jahren auf gutem Boden eine durchschnittliche Höhe von 25 m und 60 cm Durchmesser; zieht man vom Durchmesser 3 cm doppelte Rindendicke ab, so bleiben 57 cm Durchmesser mit 3,7 mm durchschnittlicher Jahrringbreite 1,3 m über dem Boden, also nahezu die gleichen Dimensionen in Stärke und Breite wie die bayerische Strobe. Seit Abschluß meiner Arbeiten sind sowohl in Amerika wie in Europa zahlreiche Untersuchungen über die Leistungsfähigkeit der Weymouthsföhre erschienen. Es ist hier genügend darauf hinzuweisen, daß die Strobe in ihren Wuchsleistungen auf dem ihr zusagenden Boden (siehe obige waldbau-

![Diagram](image.png)

Abstand der Höhenlinien - 30 cm.

Abb. 125. Profil aus dem Waldgebiete von Nordwisconsin; die Ansprüche der Holzarten an die Bodenfeuchtigkeit im Klima des kühlern Castanetums zeigend.

lichen Notizen für alle Weymouthsföhren) von keinem Nadelholze Mittel-Europas übertroffen wird.

In Amerika erwächst die Strobe in den Erlenbrüchen am schnellsten, sie bildet aber ein astreiches und sehr weiches Holz. Ihre beste Entwicklung findet sie auf schwachsandigen Erhebungen im Laubwaldgebiete.

Für die Weymouthsföhren gilt Winterfällung bei weitem Transporte zur Säge als Regel, damit die Rinde am Stamme erhalten bleibt; wird diese entfernt, wie dies bei der Sommerfällung zu leicht geschieht, so befällt das saftige Splintholz sehr bald ein Pilz (Ceratostoma), der es blauschwarz färbt und dadurch in seiner Qualität schädigt.
Section Cembra. Zürbeln, Zirben.

Fünf meist steife Nadeln zusammen in einer Scheide; Same ohne Flügel oder nur mit Flügelstummel, nicht flugfähig; die Verbreitung der Samen ist auf Tiere angewiesen; Samen aller Arten genießbar. Holz im mikroskopischen Charakter dem der Sektion Strobus völlig gleich (Tafel II, 7. Sektion); mit freiem Auge sind die Hölder jüngerer Stämme von Zürbeln und Stroben dadurch unterscheidbar, daß die Jahresringe der Stroben breiter sind; in höherem Alter fällt mit den feineren, schmaleren Jahresringen auch dieser Unterschied hinweg (Taf. VII, Fig. 12). Das Holz der Zürbeln ist ebenso leicht, weich und leicht zu bearbeiten wie jenes der Stroben; auch im spezifischen Gewichte (37—45) sind sie gleich, ebenso in Kernfarbe, Dauer und Verwendungsweise.

Hierher zählen: *Pinus albicaulis, Armandi, Cembra, flexilis, korensis, parriflora, pumila, reflexa, sibirica.*

In jüngeren Exemplaren ungenügend bekannt. Nadeln 4 cm lang; viele Jahrgänge von Nadeln erhalten sich am Leben; mehr Strauch als Baum.

Pinus Armandi Franch. Armands Zürbel, China.

Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Nadeln und Knospen sind im Zusammenhange mit *sibirica* beschrieben, Triebe rostbraun-filzig behaart, wodurch sie auf den ersten Blick von der *Strobus* unterschieden werden kann, mit welcher Holzart sie in der forstlichen Praxis noch vielfach verwechselt wird. In der Heimat an der Kältegrenze des Waldes zerstreut zwischen Fichten und Lärchen stehend, wird sie von Schnee, Wind und Blitz zu eigenartig geformten Stämmen verunstaltet; in der Ebene erwächst sie mit tadellos geradem Schafte; sie eignet sich dort auf frischen bis feuchten Böden, auf kühlen, feuchten Nordhängen gut zu reinen Beständen; in der Heimat ist sie zur Aufforstung verödeter Berge von größter Bedeutung: in geschützten Lagen wird die Zürbel 30 m hoch; in allen Parkanlagen ist sie ein sehr beliebter Schmuckbaum.

Junge Pflanzen nicht genügend bekannt, Nadeln 5—6 cm lang, 1 mm dick. Wo andere Holzarten fehlen, wie in Nevada, kann auch diese wenig schönschaftige, nur bis zum Halbbaum emporwachsende Zürbel einen hervorragenden Nutzwert für Bergwerkbauten sich erringen.

Nadeln 15—20 cm lang, von dreikantigem Querschnitt, äußerlich dunkelgrün, Innenseite weißlich; die häutigen Scheideschuppen bis 3 cm lang; Knopenschuppen hellbraun, nicht sehr fest anliegend; mit brauner Spitze und etwas weißlichem Harze. Junge Triebe kräftig, rotbraun behaart; in den ersten Jahren langsam, später ziemlich raschwüchsig. In Japan dem Laubwalde des Fagetums beigemengt, erreicht sie nach meinen Messungen 32 m Höhe. (Siehe Abb. 26.) Die Koreazürbel ist nach meinem Dafürhalten nicht bloß die schönste aller japanischen Föhren, sondern die schönste Föhre überhaupt; siehe nebenstehende Abbildung, welche die üppige Entwicklung nach der Veredelung auf eine ostamerikanische Weymouthsföhre wiedergibt. Auch vom forstlichen Standpunkte aus verdient der Baum volle Beachtung und Erprobung unter den Verhältnissen, wie sie für Weymouthsföhren angegeben wurden.

Hinsichtlich dieser Art könnte man im Zweifel sein, ob man sie zur Sektion *Cembra* oder *Strobus* rechnen soll; Zapfen kurz und dick, Samen nur mit Flügelstummeln; die schwache Behaarung des Triebes
A. Die Nadelhölzer, Koniferen.

H. Mayr photogr.
weist mehr auf Sektion *Cembra* hin, obwohl die Nadelanatomie (Harzgang unmittelbar unter der Epidermis) wiederum auf *Strobus* hindeutet; M. Masters\(^1\), der bei seinen Sektionen mit Engelmann hierauf das größte Gewicht legt, rechnet die Mädechenzübel zu den Stroben. Nadeln 5 cm lang, meist etwas gekrümmt; Knospenschuppen glänzend hellbraun mit weifslich häutigem Rande, Ende frei. Diese Zürbel ist ziemlich raschwüchsig, frosthart, hat aber in Grafrath ziemlich stark durch Agariens melleus gelitten. Ausführlicheres über diese Art und ihre Gartenformen wolle in meiner Monographie der Abietinen des japanischen Reiches nachgesehen werden.

Pinus pumila Mayr\(^2\). Kriechzübel. *Haimatzu.*
Japan und Ostsibirien.

Nadeln 7 cm lang, etwas gewunden und dem Triebe angedrückt; fertige Triebe rotbraun, kurzfilzig behaart. Obwohl diese Art sicher eine *Cembra* ist, zeigt sie doch nicht die Anatomie der Zübelnadeln, weil die Harzgänge unmittelbar an der Epidermis anliegen. Diese Zürbel bleibt ein Strauch der obersten Waldregion, wo sie als Schutzholzart Wert besitzt; ihre Sämereien sind efsbar; aus diesem Grunde wäre der Anbau in der Region der europäischen Kriechföhren wohl beachtenswert.

Ob diese Art zur Sektion *Strobus* oder *Cembra* gerechnet werden muß, ist noch strittig; sie ähnelt in diesem Punkte der japanischen Mädechenzübel.

Wenn man die Biologie dieser Holzarz zusammen mit der geographischen Verbreitung und den morphologischen Merkmalen berück-

\(^1\) A general View of the genus Pinus. Lin. Soc. XXXV.
\(^2\) Einige Autoren schreiben: *Pinus pumila* Regel, andere *P. p. Mayr.* Wenn nachgewiesen werden kann, daß Regel vor mir die Kriechzübel von Ostasien (aber nicht kümmernde Exemplare der Koreazübel) *P. pumila* nannte, so ist die Zusammenstellung *Pinus pumila* Mayr irrig; siehe meine Monographie 1890.
A. Die Nadelhölzer, Koniferen.

sichtigt, erhält man einen Komplex von Eigenschaften, welche meiner Auffassung nach gross genug sind, um die sibirische Zürbel als halbständige Art gelten zu lassen; die sibirische Zürbel rundweg als Klimavarietät der Alpenzürbel zu bezeichnen, ist so lange unangänglich, als die Verschiedenheit im Klima der Standorte der Zürbel nicht nachgewiesen werden kann; es besteht vielmehr die gröfste Wahrscheinlichkeit, dass eine Klimadifferenz überhaupt nicht besteht.

Die junge sibirische Zürbel hat dunklere Nadeln als Cembra, vielfach etwas gewunden-, Knospe mit kurzer Spitze von den aufgelockerten borstigen Enden der Schuppen und deren häutigen Verbreiterungen gebildet; Schuppen braun, glänzend; Rand und Ende der Schuppe hellgrau und breithäutig: Glanz und häutige Verbreiterung fehlen der Cembra fast ganz. Grofse Basalhaut der fünfadigen Kurztriebe in drei bleibende Teile geteilt, welche sich zurückrollen; bei Cembra nur kurze Reste, welche nach oben gerichtet sind, vorhanden.

Dazu kommen noch Unterschiede im Zapfen und Samen; verschiedenen gegenüber der Alpenzürbel ist sodann die hohe Entwicklung; sibirische Zürbeln werden bis zu 40 m hoch; sie bevölkern neben den Standorten, wie sie Fichten, Tannen und Lärchen innehaben, in den wärmeren Ebenen die kälteren, feuchten, fast sumpfigen Gebiete als hochwertige Nutzbäume.

Es dürfte sich für Mittel- und Norden Europa empfehlen, diese vor allen anderen Zürbeln, einschliesslich der Alpenzürbel, im forstlichen Betriebe zu begünstigen und in Ortlichkeiten, z. B. feuchten, frostgefährdeten Standorten der Ebene zu verwenden, in denen allerdings auch die Weymouthsföhren angebaut werden könnten; ob der sibirischen Zürbel der Weymouthsföhre gegenüber der Vorteil grösserer Härte gegen Agaricus melleus und Blasenrost zukommt, muss durch Versuche erst erforscht werden.

Section Pseudostrobus. Scheinstroben.

Fünf Nadeln in einem Büschel; Same vom Flügel zangenförmig gehalten, Holz vom anatomischen Bau der Sektion Murraya (Tafel II, 5. Sektion). Hierher zählen vorwiegend mexikanische Arten.

Südlicher Ausläufer der Felsengebirge.

Nadeln zierlich, 10—17 cm lang und fast 1 mm breit: der einjährige und auch noch der zweijährige Trieb sind hellblauweiß bereift. Knospen- schuppen schmal, hellbraun, anliegend, nicht durch Harz verklebt. Nach dem Vorkommen des Baumes in der Heimat dürfte der Baum in ganzen Castanetum anbaufähig sein, er erreicht in seiner Heimat 30 m Höhe; sicher ist der Baum als Schmuckbaum hervorragend.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Junge Pflanzen mir nicht bekannt.

Die Zuteilung zur Sektion *Pseudostrobus* ist sehr zweifelhaft. Fünf sehr große, 26 cm lange, 2 mm dicke Nadeln in einem Büschel; Knospe lang, Schuppen lang zugespitzt, ohne Harzausscheidung, an den Trieben weißlich bereift.

Ein großer Strauch an dem luftfeuchten Strande, wenige Stunden von San Diego entfernt; eine durch die geringe Zahl ihrer Individuen und den äußerst kleinen Verbreitungsbezirk merkwürdige Art; sie kommt wohl nur als Zierstrauß für Südeuropa in Frage.

Section Balfouria. Balfouriaföhren.

Fünfnadelige Föhren; Same mit dem Flügel auf einer Seite ver- wachsen wie bei der Sektion *Strobus*, jedoch zeigt das Holz völlig den anatomischen Charakter des Fichtenholzes (*Picea*), wie er bei der Sektion *Parrya* näher beschrieben (Tafel II, 9. Sektion); wenn der Anatomie des Holzes in der Systematik der Laubhölzer eine so wichtige Rolle zuerkannt wird, muß diese auch bei den Nadelhölzern beobachtet werden; deshalb sind die unten angeführten als eigene Sektion zu betrachten.

Auch diese Föhren sind Halbschattenholzarten, vielfach Bäume der obersten Waldgrenze, an denen die Nadeln vieler Jahrgänge am Triebe sich lebend erhalten; sie wachsen langsamer, aber aufrecht, erreichen aber nur selten 30 m Höhe. Hervorragende Schmuckpflanzen. Es gehören hierher *Pinus aristata, Balfouriana*.

Nadeln durchschnittlich 3—5 cm lang, junge Triebe rothäutig behaart. An den Nadeln vielfach weiße Punkte von Harzausscheidungen. Sie hat sich im forstlichen Versuchs- garten zu Grafrath als völlig frosthart, aber langsam wüchsig bewährt; auf sumpfigen Standorten gepflanzt ist sie zugrunde gegangen; in der Waldgrenzregion der Hochalpen ist sie unbeschädigt geblieben.

Nadeln 2,5—3 cm lang; übrige Merkmale ungenügend bekannt; neben dem Zierwerte scheint dieser und der vorigen Art nur eine Bedeutung an der obersten Waldregion als Schutzholzart zuzukommen.
Gattung *Podocarpus*. Steineiben.

China und Japan.

Die breitblätterige Benadelung ist aus nebene-stehender Figur zu entnehmen. Der Baum kommt nur für Südeuropa als Schmuck in Frage; das Holz ist gelblich, ohne Dauer; ohne Harzgänge; pathologi sche Harzgallen vorhanden. Fertiger Trieb grün; später tritt eine platanenartig sich ablösende dünne Borke auf. Der raschwachsende Baum ist auf den Inseln Shikoku, Kiushiu und dem südlichen Houshiu nur kultiviert in der Nähe von Tempeln; gegenteilige Angaben in der Literatur sind irrig. Erst auf den Riu Kiu-Inseln wächst der Baum wild; er fruktifiziert oft so massenhaft, daß vom Boden zu seinen Füßen nichts sichtbar ist; das höchste Exemplar, das ich sah, war 23 m hoch mit 50 cm Durchmesser.

Blätter schmal, lanzettlich, gerade oder schwach sichelförmig gekrümmt; das Holz dieser Art gleicht dem der vorigen Art in seinem Aufbau, seinem spezifischen Gewichte (52 bis 60), in seinem Mangel an Dauer und technisch hervorstechenden Eigenschaften; nur als Zierpflanze könnte die Maki für Südeuropa empfohlen werden. Er wächst nur auf der Insel Kiushiu wild, überall sonst in Japan ist er gepflanzt. In Japan fand ich Bäume mit 20 m Höhe und 80 cm Durchmesser; die Rinde ist bei solchen Bäumen eine dünne, kleinschuppige, ocker-farbige Borke.

¹) Das Wort „Nageia“ ist eine prächtige Probe von polyglottom Kauderwelsch, nämlich: die latinisierte, englische Aussprache des japanischen Wortes Nagi! Mehr kann man in sechs Buchstaben nicht leisten und Nageia soll beibehalten werden, weil der Unsinn schon so lange in Übung ist!
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Pseudolarix Fortunei Mayr (syn. Ps. Kaempferi Gord.).
Chinesische Goldlärche. China.

Die Nadeln dieser Art sehr lang, weich, meist etwas abwärts gebogen; Trieb glatt, rötlichbraun; ebenso die Knospen, an denen die Schuppen zugespitzt sind. Was man von Gärtnern geliefert erhält, ist

1) Monographie der Abietinen usw., 1890.
meistens veredelt oder durch oftmaliges Umpflanzen so geschwächt, daß die Pflanzen Krüppel bleiben; aus Samen gezogen, erwächst die Lärche rasch zum hohen Baume empor. Für Europa als Zier- und Nutzbaum im Castanetum, als Zierbaum im wärmeren Fagetum beachtenswert.

Gattung Pseudotsuga. Douglasien. Douglas firs, Red firs.

Je mehr neben der Anatomie und den äußeren Merkmalen auch die Lebensgeschichte der Douglasien bekannt wird, um so mehr zeigt sich, daß die ursprünglich als eine einzige Art aufgefaßte Douglasie von ihrem Nimbus verliert, der darin bestand, daß sie mit einer ganz auffallenden Verschiedenheit in der Biologie ausgestattet war, daß sie eine ganz auffallend großartige Territorialverbreitung besaß. Sargent nennt sie die weitestverbreitete Holzarzt in Nordamerika, mit einer Konstitution, die sie befähigt, in 32 Breitengraden zu gedeihen, die scharfen Stürme und langen Winter des Nordens ebenso wie den fast andauernden Sonnenschein der mexikanischen Kordilleren zu ertragen. Diese wunderbare Fähigkeit hat sich auf naturgesetzlich einfache Weise aufgeklärt: es gibt nicht eine, sondern drei Douglasien in Nordamerika. In jüngster Zeit ist eine vierte Art in Japan von Dr. Shirasawa entdeckt worden.

Gesamtmerkmale der Gattung sind folgende: Nadeln ziemlich flach, in der Douglasii-Art mehr den Tannen, in der Glauca-Art mehr den Fichten sich nähern; Knospen ziemlich groß, größter Durchmesser etwas oberhalb der Basis; der Same mit dem Flügel auf einer Seite verwachsen, vorwiegend dreikantig, flugfähig; Holz mit durchschnittlich 3 cm Splint und rotbraunem Kerne (Tafel VIII, 14). Kern in Farbe und Jahrringverlauf selbstredend wie bei allen Holzarten je nach Boden, Klima und Erziehung wechselnd; anatomisch zeigt es spiralische
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Verdickungen in den Tracheiden wie das Eibenholz 1) (Tafel II, Fig. 2 und 3). Meine Untersuchung (1884) dürfte wohl die erste gewesen sein, welche feststellte, daß das Holz der Douglasie im spezifischen Gewichte dem der Lärche nahekommmt. ja daß es das in der Ebene gewachsene weiträumige Lärchenholz hierin sogar übertrifft; der Kern hat eine sehr hohe natürliche Dauer, so daß zu erwarten steht, daß die Douglasie im Tieflande von Mitteleuropa die Lärche ersetzen wird, während sie im Hügel- und Gebirgslande von Mitteleuropa mit der Lärche als die wertvollste Bereicherung der einheimischen Laub- und Nadelholzwaldungen sich erweisen wird. Zu dem hohen Werte des Holzes kommt noch der genügend hohe Gerbstoffgehalt der Rinde (13,4 %) und ihre Harzbeulenbildung für die Gewinnung des wohlriechenden Balsams.

Über das waldbauliche Verhalten der Douglasie ist nach dem Er- scheinenn meiner „Waldungen von Nordamerika“. 1890, sehr vielgeschrieben worden, so daß man glauben könnte, die Lebensgeschichte dieser Holzart, wie ich sie darstellte, sei wesentlich bereichert, ergänzt oder berichtigt worden. Nichts von alledem ist eingetreten; die Kenntnisse haben sich verbreitert, aber nicht vertieft; ja man kann sagen, eine Konfusion ist entstanden, weil man nicht meinem Vorgehen folgte und die beiden Hauptarten mit ihrem verschiedenen Verhalten scharf auseinanderhielt. So sagen die einen, die Douglasie sei vollständig frost- hart, die anderen, zu denen auch ich gehöre, behaupten, sie sei recht frostempfindlich; die einen nennen sie schnell-, die anderen langsamwüchsig und dergleichen; auf diese Punkte werde ich bei den einzelnen Arten zurückkommen.

Auch bezüglich der Ansprüche der Douglasie an den Boden haben die bisherigen Versuche Neues nicht ergeben; ich kann wörtlich unter Ausdehnung auf alle Douglasien anführen, was ich vor 15 Jahren schrieb: „Die Douglasie paßt sich mit Leichtigkeit dem gegebenen Boden an; sie entwickelt auf seichten Böden ein flach streichendes Wurzelsystem, dringt in die Felsspalten, in lockere Böden mit kräftiger Pfahlwurzel ein, meidet aber stets harte Tonböden und fehlt in ihrer Heimat auch auf mageren Sandböden; sie wird dort durch die Gelbkiefer vertreten; auf lehmigem Sandboden oder sandigem Lehm entwickelt sie eine zentrale Partie von zwei bis drei kräftigen Wurzeln, welche in die Tiefe gehen, während die übrigen Wurzeln sich verlaufen.“

Holzarten zur Aufforstung magerer, trockener Böden oder gar des Düensandes sind die Douglasien nicht. Auf Föhrenböden III. Bonität bleiben sie unterständig gegenüber etwa vorhandenen Föhren. Die Ansprüche an den Boden kommen denen der einheimischen Tanne am

1) Zuerst von Dr. K. Wilhelm, Österr. Forstzeitung, 1886, beobachtet.
A. Die Nadelhölzer, Koniferen.

nächsten; das Verhalten gegen Licht, gegen Frost kommt dem Verhalten der Fichte am nächsten; die Douglasien verlangen eine Begründung in engem Schlusse, geben dann aber feine, schlanke, astreine Stangen und Stämme von vollendeter Beschaffenheit.

Unter den Feinden aus der Tierwelt wären Hirsche und Rehe zu nennen, welche zuweilen die Triebe abäsen, jedoch an vielen Orten dieselben verschmähen; dagegen fegt der Rehbock an Douglasien noch häufiger als an Lärchen; Mäuse fressen an glattrindigen, also jungen Baumtrieben; ältere Pflanzen werden deshalb von den Mäusen erstiegen und an den Kronen befressen; von den Insekten ist der Rüsselkäfer merklich schädlich; es verdient besondere Beachtung, dass in dem von Agaricus melleus total verseuchten forstlichen Versuchsgarten zu Grafrath bis heute erst zwei Exemplare der Douglasie abgestorben sind,

Bureau of Forestry photogr.
während zahlreiche zwischen den Douglasien stehende Fichten und Lawsons Scheinzypressen dem Schmarotzer zum Opfer fielen.

Die Nadeln der jungen Pflanzen sind an unterdrückten Pflanzen gekämmt, somit tannenförmig, an kräftigen Trieben dagegen meist mehr oder weniger allseits abstehend, wie beistehende Figur ergibt: im Querschnitt den Tannennadeln ähnlich, Farbe hell bis dunkelgrün, Knospen groß; wenn auch die Schuppen am Rande etwas Harzausscheidung zeigen, bleibt doch der mittlere Teil der Knospe harzfrei und glänzend rotbraun; Trieb gelbgrün, die schwach erhöhte Insertionsstelle der Nadeln rötlich.

Die Heimat der Küsten-douglasie gehört klimatisch zum Castanetum und Fagetum; in den höheren Elevationen der Kaskaden und Sierra mag sie auch noch bis in das Abietum und Picetum eintreten. Dadurch sind die Ansprüche an das Klima genügend gekennzeichnet, und das Wunderbare, das der Erscheinung anhaftet, das die Douglasie noch in der Fichtenzeone höherer Gebirge von Mitteldeutschland gedeihen kann, löst sich als selbstverständlich und natürlich auf, zumal wenn beachtet wird, daß die Douglasie um so besser gedeiht, je höher die Luftfeuchtigkeit ist, mag diese Anreicherung durch die Meerennahe oder durch höhere Elevation oder im Herzen größerer Waldbuchten bedingt sein. So haben sich auch, wie ich auf Grund der Studien in der Heimat voraussagen mußte, Großbritannien, die belgische, holländische und norddeutsche Küste, Dänemark als die zweite Heimat der grünen Küsten-douglasie erwiesen. Aus diesen Gebieten stammen Nachrichten von außerdentlichen Wuchsleistungen mit Jahrestrieben von über 1 m Länge; aber auch die luftfeuchten Waldbuchten der Mittelgebirge stehen hierin nicht nach. Die grüne Douglasie ist beträchtlich schnellwüchsiger als die blaue Kolorado-Douglasie. Im forstlichen Versuchsgarten zu Grafrath ist die grüne Art an ein und demselben, wenig günstigen Standorte mit 17 Jahren 8 m, die blaue* 2 m hoch geworden.
Dr. Schwappach berichtet 1) 1896, Dr. Somerville 1903 über die Anbauversuche in Schottland: Mit 42 Jahren hat die Douglasie 27 m mittlere Höhe und 45 cm mittlere Durchmesser in Brusthöhe erreicht. In derselben Zeitschrift veröffentlichte sodann Dr. Schwappach 1905 die Ergebnisse einer Massenaufnahme in einem reinen Douglasienbestande, der auf deutschem Boden heranwuchs. 22-jährige Douglasien haben zu Lonau (Hildesheim) auf gutem Boden 13,6 m mittlere Höhe, 5—24 cm Durchmesser; 21-jährige Douglasien haben in Varel (Nordseeküste) 12,2 m Höhe und 6—18 cm Durchmesser erreicht; eine freistehende 24-jährige Douglasie im forstlichen Garten zu Grafrath zeigt 1905 15 m Höhe, 30 cm Durchmesser in 1,3 m Höhe; siehe Abb. 134.

*) Prof. Dr. Schwappach, Zeitschr. für Forst- und Jagdwissenschaft, 1896.
Ich selbst machte 1890 Angaben über die Zuwachsleistungen der Douglasie in ihrer Heimat, wovon einige hier wiedergegeben werden sollen. Auf bestem sandigen Lehmboden mit kräftigem Urwaldhumus im Castanetumklima des südlichen Oregon erwächst die grüne Douglasie in 80 Jahren zu 40 m Höhe; ein dort liegender gefällter Stamm hatte nur 30 m Höhe mit 3,82 Festmeter Inhalt. Auch die auf voriger Seite Fig. 132 abgebildeten etwas jüngeren Douglasien hatten die gleiche Höhe. Durch sekantensweise Messungen lüf sich dann nachweisen, daß der Schaft der Douglasie in seiner Formzahl hinter der europäischen Tanne nicht zurücksteht. Die höchste Douglasie, die ich zufällig zu Gesichte bekam, maß 90 m Höhe mit 1,8 m Durchmesser; hart daneben standen zwei mit 80 m Höhe und 2—3 m Durchmesser; das Alter solcher Riesen ist entsprechend der Höhe. Eine Douglasie von 82 cm Durchmesser war 237 Jahre alt, eine andere mit 1 m Durchmesser war 241 Jahre alt; selbstverständlich ist nicht die Dicke eines Baumes ein Maßstab für das Alter, wie Laien zu glauben pflegen, sondern die Dicke ist neben dem Alter in erster Linie eine Funktion der besseren oder schlechteren Ernährung. Über das Holz sind die nötigen Angaben bereits bei der Betrachtung der Gattung hinterlegt; hier sei noch hinzugefügt, daß ich eine besondere Sorgfalt der Ermittlung des spezifischen Gewichtes und des Harzgehaltes der Douglasie widmete. Von J. Booth erhielt ich ein Stück einer in Kleinflottbeck erwachsenen Douglasie, welche 52 Jahre alt geworden war. Das junge, kräftig in die Dicke gewachsene deutsche Exemplar zeigte volle 8 cm Splintbreite mit Jahrringen von 8—10 mm Breite; aber mit dieser außerordentlichen Jahrringbreite ging nicht auch eine außerordentliche Verschlechterung (Weichheit, Schwammigkeit) des Holzes Hand in Hand, sondern, da die harte Sommerholzregion die Hälfte bis zwei Drittel der Jahrringbreite einnahm, fand sogar eine Steigerung des spezifischen Gewichtes statt; auch ein alter Baum, der in Oregon gefällt und von mir untersucht worden war, bestätigte die Erscheinung.

100 Volumenteile des absolut trockenen Holzes der amerikanischen Douglasie hatten:

bei 0,8 mm Jahrringbreite 46,64 g feste Substanz (spezifisches Gewicht),

<table>
<thead>
<tr>
<th>Breite (mm)</th>
<th>Gewicht g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>47,20</td>
</tr>
<tr>
<td>1,7</td>
<td>48,95</td>
</tr>
<tr>
<td>2,0</td>
<td>56,00</td>
</tr>
<tr>
<td>3,0</td>
<td>59,00</td>
</tr>
</tbody>
</table>

Bis 4 mm Jahrringbreite nimmt die Substanzmenge in einem gegebenen Volumen Holz zu, von da an zeigen die amerikanischen Exemplare eine Abnahme.

100 Volumenteile des absolut trockenen Holzes der in Deutschland gewachsenen Douglasie hatten:
bei 6 mm Jahrringbreite 50,99 g feste Substanz (spezifisches Gewicht).
8 mm 54,90 g
Zum Vergleiche mögen einige Angaben über die europäischen Nadelhölzer hier folgen.
Es enthält in 100 Volumenteilen des absolut trockenen Holzes:
die Tanne bei 1,0 mm Ringbr. 48 g feste Substanz (spez. Gew.) bayer. Hochebene,
 " 1,4 mm 41 g " " " " " Toskana,
 " 2,7 mm 39 g " " " " " Hamburg,
 " 6,0 mm 39 g " " " " " " Fichte,
 " 7,0 mm 38 g " " " " " Nörwegen,
 " 1,0 mm 48 g " " " " " bayer. Hochebene,
 " 1,0 mm 47 g " " " " " " Hamburg,
 " 2,9 mm 42 g " " " " " Lärche,
 " 6,0 mm 36 g " " " " " Hochgebirge,
 " 1,0 mm 66 g " " " " " bayer. Hochebene,
 " 2,0 mm 55 g " " " " " Hamburg,
 " 2,2 mm 51 g " " " " " Lärche,
 " 6,0 mm 41 g " " " " " bayer. Hochebene,
 " 6,0 mm 41 g " " " " " Hamburg.

Daraus ergibt sich eine zweifellose Überlegenheit der Küsten-douglasie, die in ihrem substanzreichsten, schwersten Holze der Lärche nahekommt, in ihrem leichtesten Holze aber mit unseren schwersten Fichten- und Tannen-(auch Kiefern-)Hölzern auf einer Stufe steht; da mit dem spezifischen Gewichte der Brennwert des Holzes parallel geht, so dürfte das Douglasiaholz auch in diesen Eigenschaften den einheimischen Nadelhölzern (Lärche ausgenommen) überlegen sein; für die Dauer ist weniger das spezifische Gewicht als die intensive Imprägnierung mit Kernstoff entscheidend: auch in dieser Hinsicht steht die Douglasie mit der Lärche auf gleicher Höhe: was endlich die Tragkraft anlangt, so zeigt die Verwendung in Amerika kein Zurückstehen gegenüber den Föhren, Fichten oder Tannen.

Der Gehalt an Harz, dem wenigstens im völlig ausgetrockneten Holze eine konservierende Rolle zugeschrieben werden muß, stellt sich bei der amerikanischen Douglasie folgendermaßen:
Es sind in 100 Gewichtsteilen fester Substanz bei 1,0 mm Ringbreite 2,204 g festes Harz (Kernholz).
 1,7 mm 2,498 g
 0,8 mm 1,101 g (Splint).
Die deutsche Douglasie hatte bei 8,6 mm Ringbreite 4,073 g festes Harz (Kernholz).
 5,0 mm 2,426 g
Ich glaube, daß der große Harzgehalt in der deutschen Douglasie darauf zurückgeführt werden muß, daß die Scheiben unmittelbar (30 cm) über dem Boden entnommen wurden, in welcher Höhe alle Holzarten das Maximum ihres Harzgehaltes besitzen.
Es zeigt die europäische

Tanne	2,7 mm	1,299 g			Hamburg,
--------	--------	---------			
	7,0 mm	2,283 g			
Fichte	1,0 mm	0,652 g			Norwegen,
	1,0 mm	1,260 g			Bayern,
	2,0 mm	0,857 g			Tirol,
	3,3 mm	1,419 g			Hamburg,
Lärche	1,0 mm	2,010 g			Hochgebirge,
	1,0 mm	6,629 g			Hochebene,
	1,5 mm	7,275 g			Hamburg,
	2,0 mm	4,586 g			Hochebene,
	2,2 mm	4,106 g			Hamburg,
	6,0 mm	3,702 g			

Daraus ergibt sich, daß der Harzgehalt nicht nur nach Baumarten verschieden ist, sondern auch innerhalb einer Art wechselt, und zwar, von der Baumhöhe und von individuellen geringen Schwankungen abgesehen, insbesondere mit dem Klima, indem das wärmere Klima harzreicheres Holz produziert, außerdem, daß bei gleichem Klima mit dem spezifischen Gewichte auch die Menge an Harz abnimmt; es ergibt sich ferner, daß das Holz der Douglasie gleich viel Harz enthält wie das der Hochgebirgslächer, somit mehr wie Fichte und Tanne.

Eine weitere Ähnlichkeit des Holzes der Douglasie mit dem der Lärche besteht endlich noch darin, daß der innere Kern am Fuße erwachsener, stehender Bäume in Radialspalten aufreiβt, in welchen das Harz aus den benachbarten Harzkanälen sich ansammelt, da offenbar in dieser Region nicht alle Harzgänge bei dem Übergange vom Splinte in Kernholz sich durch die Füllzellen verschließen; bekanntlich werden diese Spalten bei der Lärche angebohrt, um das Harz der Harzspalten und das aus dem Splinte ausströmende Harz auszuschöpfen; gleiches könnte bei der Douglasie, deren Harz einen köstlichen, sehr kräftigen Wohleruf von sich gibt, stattfinden.

Der rotbraune Farbstoff des Kernholzes, der nicht nur die Wände der Zellen durchtränkt, sondern auch in den Parenchym-Markstrahlzellen und in den Harzganggeleitzellen in dickflüssigen Tropfen sich anhäuft, hat sich als ein Oxydationsprodukt des im Splinte in reichlichem Maße nachweisbaren Gerbstoffes erwiesen; diesen Verkernungsprozeß, sowie die Folgerung, daß diese intensive Imprägnierung mit Kernfarbe, insbesondere wenn die Umwandlung durch die Außenaufbewahrung an warmen, luftigen Orten beschleunigt wird, die Dauer des Holzes wesentlich bedingt, habe ich schon 1890 in meinen „Wanderungen durch Nordamerika“ hervorgehoben.

Das bisherige Verhalten der Douglasie im Walde veranlaßte Forstrat Wittzel in Trier zu dem Ausspruche: „Die Douglasie ist die wert-
vollste der fremdländischen Holzarten; ihre Einführung allein wiegt die für die gesamten Anbauversuche aufgewandten Kosten reichlich auf.« Mag auch dieses Urteil etwas gar zu gut und noch etwas zu früh ausgesprochen sein, es schmälert dies nicht J. Booths großes Verdienst, auf diese Holzart zuerst und ganz besonders die Forstwirte aufmerksam gemacht zu haben.

VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Die Nadelhölzer, Koniferen.

frostgefährdeten Lagen, eine schwache, vorübergehende Schirmstellung von anderen Holzarten, wie Buche, Eiche, Birke, Erle, Esche und}

Abb. 134. 24jährige, freiständige Küstendouglasie (Ps. douglasii), 15 m hoch, 30 cm Durchmesser in Brusthöhe, 48 cm Durchmesser unmittelbar über dem Boden.

II. Mochizuki photogr.

ganz besonders Weymouthsföhre. Eine solche Schutzstellung äußert ihre Wirkung auch, wenn sie nicht belaubt ist; wo ein lockerer Schutz
fehlt und die Frostgefahr groß ist, verzichtet man besser auf die raschwüchsige Küstendouglasie und wählt die langsamer, aber sicherer wachsende blaue Art. Diese mag, wie die Fichte, auch auf kahlen Flächen ohne Schutz gewählt werden, auf denen alle 4—6 Jahre starke Frostbeschädigungen erwartet werden müssen. Die Douglasie ist leicht zu verpflanzen; die grüne Art ist aber in Parkanlagen kein besonders schöner Schmuck, weil sie in dem meist guten Boden mit allzulangem Triebe in die Höhe schießt, an welchem Hagelschlag und Vögel durch Aufsitzen Krümmungen oder häßliche Mißbildungen hervorufen können. An der Douglasie in Grafrath (Abbildung 134) gingen mehrere Längs-triebe durch Aufsitzen von Raben verloren.

So gut man reine Bestände von Fichten und Tannen begründet, kann man auch die Anlage von reinen Beständen der Küstendouglasie wie der folgenden Art rechtfertigen. Die Douglasie kann aber auch anderen Holzarten mit großem Vortheile beigemengt werden, so zum Beispiel zur Verbesserung des Nutzwertes des Rotbuchenbestandes an Stelle der Lärche oder, wie die Bilder aus der Heimat der Douglasie (Seite 44 und 45) beweisen, auch der Tsuga heterophylla und der Tanne; mit Fichten sieht man die Douglasie nur dann in Amerika, wenn die Fichte ganz vereinzelt steht. In Deutschland wird gerade die Fähigkeit der Douglasie zur Ausbesserung von Fichtenverjüngungen hervorgehoben: auf gutem Boden und vor allem tiefgründigem Boden mag dies gerechtfertigt sein, auf seichtgründigem Boden aber findet zwar noch die Fichte, aber nicht eine tiefwurzelnde Douglasie genügend Nahrung; auf solchem Boden wird die Douglasie untertauchen, und die Mischung wird ein ähnlich trauriges Ende nehmen wie die gleiche Mischung mit der Lärche, die man ebensowenig wie die Douglasie als Fichte behandeln darf. Auf ungenügend guten Standorten kann man die Douglasie nur retten mittelst der „Wurzelschwägung“, d. h. durch Abstößen der stärksten Wurzeln der bedrängenden Nachbarn. Um allen Enttäuschungen vorzubeugen, dürfte sich, wie bei einheimischen Nadel- oder Laubbäumen, der Anbau in großen Gruppen oder kleineren reinen Beständen empfehlen.

_Pseudotsuga glauca Mayr_1) (syn. _Ps._ Douglasii var. glauca Hort.).

Kolorado-Douglasie, blaue Douglasie, _Colorado Douglas fir._

Felsengebirge.

Nadeln meist kürzer, steifer, im Querschnitte dicker und mehr nach vorne am Triebe gerichtet als bei der grünen Art: Farbe ziemlich dunkel bläulichgrün bis hell weißgrün, wechselnd wie bei der Stechfichte (_Picea pungens_), welche ebenfalls eine Bewohnerin des Felsen-

1) Dr. H. Mayr, Mitteilungen der Deutschen Dendrologischen Gesellschaft, 1902.
gebirges ist. Trieb gelbgrün, matt, an der Sonnenseite besonders lebhaft rot werdend; Knospen an der Basis etwas dicker am Triebe sitzend als bei der grünen Art; Schuppen mit weiflslichen Harzausscheidungen, so dass eine glänzende Stelle an der Schuppe und somit auch an der ganzen Knospe fehlt; Schuppen von der Knospenspitze abstehend. Die junge Pflanze mit kurzästiger kegelförmiger Krone, als wäre durch Bescheidung die Form erzielt worden. Das Wachstum ist anfangs nur halb so schnell als bei der grünen Art. Bei Saaten oder bei Verschulungen, bei denen die beiden Arten nicht auseinandergehalten wurden, kann schon nach kurzer Zeit an der verschiedenen Wuchsgestalt der Verschiedenheit der beiden Arten erkannt werden. 17-jährige, auf ein und derselben Stelle stehende grüne Douglasien wurden im forstlichen Versuchsgarten zu Grafrath 8 m hoch, die zahlreich darzwischen stehenden blauen Douglasien sind nur 1,5—3 m hoch geworden. Die blaue Art kennt eine frühere Zapfenbildung, die wiederum durch die weit vorstehenden Blütschuppen (Basalteil der Blütschuppe viel länger als die mittlere Spitze des dreiteiligen Endes) und überdies darin auffällt, dass die Blütschuppen des Zapfens rechtwinkelig vom Zapfen während des Heranwachzens desselben abstehen; am abgeflügelten Zapfen rollt sich die Blütschuppe vielfach ganz rückwärts; diesen auffallenden Unterschied gibt auch Sargent in seiner großen Flora der nordamerikanischen Bäume an.

Durch das ehemässige Jugendwachstum ist die blaue Douglasie ein prächtiger Zierbaum; ja die hellblaue Form, wie sie zum Beispiel auf den südlichen Ausläufern des Felsengebirges in Santa Rita wächst, dürfte im Preis der blauen Stechfichte (Picea pungens) nahekommen, wenn sie besser bekannt wäre (vgl. Abb. 114). Auf ihrem nördlichsten Standpunkte, zum Beispiel an Fraserflusse, ist nur noch ein blauer Schimmer auf den Nadeln vorhanden.

Was den forstlichen Wert anlangt, ist die blaue Douglasie der Baum des kontinentalen Klimas und der Ebene mit ihren Extremen in Temperatur und Feuchtigkeit, während die grüne Douglasie der Baum des insularen oder Küstenklimas und des Gebirges ist. Es ist selbstverständlich, dass die blaue Art im günstigen Klima der grünen ebenfalls vorzüglich wächst, während das Umgekehrte nicht der Fall ist. Das Verhalten gegen Frost wurde bei der grünen Art ausführlich besprochen, die Ansprüche an den Boden sind dieselben; in Holzgittern steht unsere Douglasie der grünen Art nicht nach; in ihrem Verhalten
und in ihrer Erscheinung nähert sich die blaue Douglasie der Fichte; sie ist wie diese empfindlich gegen verspätete Fröste, aber auch wie diese ganz unempfindlich gegen Herbst- und Winterfrost. Die blaue Douglasie erreicht in ihrer Heimat zwar nicht die enormen Höhen der grünen Art von der Küste, doch dürften ihre heimatlichen Dimensionen mit 45 m für forstliche Zwecke vollumfassend. Diese Art ist zur Ausbesserung von Fichtenkulturen ganz unbrauchbar wegen ihrer Langsamwüchsigkeit. Mehr noch als bei der vorigen Art soll ihre Anlage in großen Gruppen und reinen Beständen, in ausgesprochenen Frostlöchern aber nur unter dem lockeren Schirm einer anderen Holzart erfolgen.

Über diese von Homi Schirasawa entdeckte Douglasie ist mit Ausnahme der botanischen Diagnose wenig bekannt. Nach Untersuchung des Holzes kann ich hinzufügen, daß es dieselben spiraligen Verdickungen, somit dieselbe Anatomie wie das amerikanische Douglasienholz besitzt; der Baum ist somit zweifellos eine Douglasie. Sie wird zwar in Japan ein hoher Baum, steht aber dort wegen ihrer Seltenheit im Nutzwerte anderen Nadelbäumen nach; die bisher erhaltenen Sämereien haben nicht gekeimt, so daß eine Beschreibung der Merkmale der jungen Pflanze nicht gegeben werden kann.

Pseudotsuga macrocarpa Mayr. Große Früchtige Douglasie. Südlisches Kalifornien.

Nadeln länger und breiter als bei der grünen Art; Knospen glänzend braun, etwas größer als bei der grünen Art, ohne Harzausscheidung und ohne Ausfransung der Knospenränder; junge Tribe kurz behaart. Über das Verhalten dieser Art in Europa ist nur so viel bekannt, daß sie bis spät in den Herbst hinein treibt und somit in größter Gefahr gegenüber Früh- und Winterfrösten sich findet. Es könnte somit diese Art für das Castanetum von Südeuropa Bedeutung erlangen.

Retinispora umfaßt nur Gartenformen (Jugendformen) von *Thuja-, Biota- und Chamaecyparis*-Arten, welche früher als Angehörige einer eigenen Gattung aufgefaßt wurden; nachdem Individuen gefunden wurden, an denen nur einzelne Zweige *Retinispora*, die übrigen *Chamaecyparis* waren, mußte man die Gattung *Retinispora* fallen lassen. Die zahlreichen zierlichen, schönen Formen hat Beifsnor in seinem Handbuch 1891 in wünschenswertesten Ausführlichkeit und Genauigkeit beschrieben; eine Jugendform der Lawsons Scheinzypresse: *Chamaecyparis Lawsoniana squarrosa*, fand ich unter den Tausenden von Pflanzen des
A. Die Nadelhölzer, Koniferen.

forstlichen Versuchsgartens zu Grafrath; die prächtig hellgrüne, aus schmalen, feinen Nadeln gebildete Pyramide ist leider bei der Verpflanzung zugrunde gegangen.

Gattung und Art: *Sciadopitys verticillata* Sieb. et Zucc.

Am ganzen Triebe verkümmern die einfachen Nadeln zu Schuppen, in deren Winkel sich erst an der Spitze des Endtriebes Kurztriebe ausbilden; diese bestehen aus je einer breiten, steifen Nadel, welche aus

Verwachsung von zwei Nadeln entstanden ist; die Unterseite der Nadel führt in dem vertieften, weissen Mittelstreife die Spaltöffnungen. Dadurch entsteht eine quirlständige Benadelung der Pflanze; alle Jahre entsteht — entgegen der Auffassung vieler japanischer Forstwirte — nur ein Nadelquirl.

Die Schirmtanne ist eine schattenertragende Holzart wie eine Tanne; sie wächst außerordentlich langsam, selbst bei völligem Freistande; auch im Hauptwuchsalter sieht man in Japan keine Jahrestriebe von mehr als 30 cm; sie verlangt guten, frischen Boden, wie er der Tanne oder Buche zusagt; sie muß, nachdem sie den Winter von Boston und von Graf-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

A. Die Nadelhölzer, Koniferen.

Die Nadelhölzer, Koniferen, tragen (— 28° C.) ohne alle Deckung erträgt, als völlig frosthart bezeichnet werden; die Nadelbräune ist bei abnormer Winterkälte zu befürchten. In Wilhelmshöhe und im Parke des Fürsten zu Inn- und Knyphausen stehen bereits stattliche Bäumchen. Der hervorragenden Zierde des dicht pyramidal aufwachsenden Baumes zollt jeder Beifall; im höchsten Alter läuft die Krone in eine schlanke Spitze aus, wie aus beiläufiger Zeichnung ersichtlich ist. Solche Stämme besitzen ein hohes Alter; in Kissos, in ihrem Optimum, das klimatisch als Castanetum zu bezeichnen ist, wird der Baum mit 50 Jahren nur 10 m hoch bei 18 cm Durchmesser; erst mit 250 Jahren erreicht er 60 cm Durchmesser

![Abb. 138. Zwei alte japanische Schirmtannen (Sciadopitys verticillata) von 35 m Höhe und 1,15 m Durchmesser in Agematsu (Japan).](image)

Abb. 138. Zwei alte japanische Schirmtannen (Sciadopitys verticillata) von 35 m Höhe und 1,15 m Durchmesser in Agematsu (Japan).

und 34 m Höhe. Ein sehr starkes Exemplar wird allen Besuchern der Tempelstadt Nikko gezeigt; es ist mit einem Holzgitter versehen, das zu übersteigen mir nicht erlaubt wurde: aber ein Knabe durfte den heiligen Raum betreten; er maß 1,37 m Durchmesser bei 32 m Höhe. In Japan erreicht der Baum seine prächtigste forstliche Entfaltung mitten im Laubwald, dessen Kronendach er mit seiner schlanken Spitze überragt.

Auf den Wert des Holzes hat bereits J. J. Rein aufmerksam gemacht; es ist weiß, Splint nur 1 cm breit, in Farbe dem Kerne ganz gleich. Das Holz ist elastisch; weich, einem feinringigen Fichtenholz ähnlich und dient in erster Linie zum Bau von Flussschiffen. Bade-

Der Same keimt drei bis vier Monate nach der Aussaat; bei Maisaat kommen die Keimlinge in die ersten Frühfröste; jeder warmer, sonniger Tag im Oktober oder November lockt neue Keimlinge hervor, die dem folgenden Kälterückfall zum Opfer werden. Herbsaat gibt besseren Erfolg; am besten ist Aussaat in transportablen Kästen, welche während des Winters im Kalthause verbleiben. Vor zehn Jahren kam man an die Verbringung ins Freie nicht denken. Die Verpflanzung ist sehr leicht; 1903 brachte ich aus Japan 15 Pflanzen mit, sie haben alle Wechselfälle und Mißhandlungen mit Leichtigkeit überstanden. Wie das Wild sich zur Schirmtanne verhält, ist noch zweifelhaft; der Versuch ist zu kostspielig, da gegenwärtig noch zwei, einen Meter hohe Pflanzen den Wildbretwert eines Rehes besitzen.

Gattung Sequoia, die Sequoien, Wellingtonien.

Washingtonien, Big trees.

Immergrüne Bäume mit teils flachen, teils pfriemenförmigen Nadeln. Zapfen an den Zweigenden, schon im Jahre vor der Bestäubung vorgebildet, aber im Bestäubungsjahr reifend, daher einjährige Zapfenreife. Same klein, hellgelb, mit dünnem, flägelartigem Rande. Junge Pflanzen nach etwa fünf Jahren raschwüchsig, mit dicker Basis emporstrebend; das Dickenwachstum ist noch überraschender als der Höhenwuchs; die Pflanzen ertragen etwas Beschattung, verlangen guten frischen Boden, hohe Luftfeuchtigkeit; sie können aus Samen oder durch Stockausschläge oder durch Stecklinge vermehrt werden. Die Angehörigen dieser Gattung zählen zu den höchsten und ältesten Bäumen der Welt, sie erreichen über 100 m Höhe und ein nachweisbares Alter von mehr als 4000 Jahren; das innerste vor Jahrtausenden gebildete Kernholz ist so tadellos gesund, als wäre es erst vor wenigen Jahren entstanden; unter dem 10 cm breiten Spinte liegt ein hellrotbraunes Kernholz (Tafel VIII, Fig. 15); die im wärmeren Klima lebende Art (sempervirens) bildet naturgemäß breitringiges und auch härteres, die im kühlern Klima wachsende Art (gigantea) engeringiges und leichteres Holz. Das frisch gefällte, fast kirschrote, prächtige Holz ist sehr leicht (spez. Gewicht 38 bis 42, nach Sargent sogar 29), weich und doch genügend spröde, um sich leicht bearbeiten zu lassen; das Holz ist beim Säge- und Tischlergewerbe ebensosehr beliebt, wie Pinus Strobus in Ostamerika; das Kernholz besitzt eine hohe Dauer. Anatomie des Holzes nach Tafel II unter Sequoia.

Nadeln an allen Trieben gleich, pfriemenförmig, stechend, beim Zerreifen von unangenehmem Geruche, der auch freiwillig bei voller Besonnung frei wird; junge Pflanzen anfänglich ziemlich langsam wüchsig; allmählich steigern sich Höhen- und Dickenwachstum, letzteres in einem, bei europäischen Holzarten ganz unbekannten Grade.

An dem in umstehender Figur abgebildeten Exemplare des forstlichen Versuchsgartens zu Grafrath war der Zuwachs des unteren Stammteiles — mit zehn Jahren 20 cm Durchmesser in 1 m Höhe — so gewaltig, daß durch die Aufwulstung des Stammzuwachses rund um die Basis der Äste mehrere der letzteren durch Abschnürung zum Absterben kamen.

Es ist unmöglich von der Sequoie zu schreiben, ohne der gewaltigen Höhen und Massen des Baumes zu gedenken; zwar sind diese bereits unzählige Male in wissenschaftlichen wie in belletristischen Zeitschriften
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Zehnjährige Riesensequoie (Sequoia gigantea) im forstlichen Versuchsgarten zu Grafrath.
Höhe 5.8 m; Durchmesser in 1.3 m Höhe 20 cm; einige der unteren Äste durch Abschnürung rot.
H. Mayr photogr.
A. Die Nadelhölzer, Koniferen.

413

dem staunenden Leser als Weltwunder dargeboten worden und schmücken alljährlich das Feuilleton der Zeitungen; denn jeder, der die Bäume sieht, wird von ihren Größenverhältnissen so überwältigt, daß er davon seiner Heimat berichten will. Trotzdem gibt es immer noch viele, welche die Zahlenangaben für amerikanischen Humbug halten, obwohl sie durch völlig vorurteilslose Forscher längst mit Höhenmesser und Mefsbänd bestätigt sind.

Das höchste Exemplar, das ich in Fresno Cy gemessen, ohne gerade nach dem größten Riesen gesucht zu haben, hatte 102 m, die grünen Äste begannen bei 60 m, der Durchmesser 2 m über dem Boden war 7 m.

Ein am Boden liegender und zersägter Stamm hatte ohne Rinde über Boden bei

2 m, 2,60 m Durchm.
5 m, 2,40 m " 13,84 cbm Inhalt, Formzahl des Stückes 87
10,2 m, 2,10 m " 21,03 cbm " " " " " 93
20,6 m, 2,00 m " 34,64 cbm " " " " " 96

Gesamtinhalt des 18,6 m langen Bruchstückes 69,51 cbm.

Der Rest war so zersplittert, daß es sich nicht mehr lohnte, Nutzstücke auszuschneiden; er blieb unbenutzt liegen.

Andere Sequoien mit

10,2 m Durchmesser (4 m über Boden) hatten 99 m Höhe
7,0 m " (2 m ") " 96 m "
3,1 m " (2 m ") " 80 m "
1,2 m " (2 m ") " 52 m "

Schon früher erwähnte ich, daß man in engen, geschützten Tälern Stämme mit 120 m Höhe und 16,1 m Durchmesser gemessen hat, Angaben, die mir nicht im geringsten zweifelhaft erscheinen.

Dürre Äste an ausgewachsenen Exemplaren sind nicht vorhanden; die Kronenform ergibt sich aus der der Schilderung der Heimat beigegebenen Abbildung 16.

Die hellrotbraune Rinde löst sich in ganz feinen Blättchen ab, ist aber ganz außerordentlich stark; von unserer Tour schleppten wir ein Borkenstück von 46 cm Durchmesser nach Hause. Die Borke ist sehr weich und in lange, dünne Fäden zerlegbar; mein Stück trägt auch Splint und etwas Kernholz. Der Splint beträgt 10 cm und umfaßt 100 Jahrringe, ist dabei so außerordentlich gleichmäßig, daß fast genau auf 1 mm ein Jahresring trifft, was in dem hohen Alter noch eine fortwährende Steigerung des Zuwachses verrät. Es fällt überhaupt die große Gleichmäßigkeit im Wachstum des Baumes auf: bei der schwachen, seitlichen Beschirmung in der Jugend wird das Wachstum verzögert, so daß kein Jahresring mit über 3,5 mm Breite an Querschnitten sich findet, während im höchsten Alter die Ringbreite bis
Die für Europa anbaufähigen fremden Holzarten.

Auf 0,6 mm sinkt. Aus einem Dutzend Messungen der Jahresringe aus den unteren Scharfiteilen mehrerer Bäume ergab sich eine mittlere Jahresringbreite von 1,2 mm pro Jahr. Mit dieser Zahl in die Radien der erwähnten obigen Stämme dividiert, ergibt ein Alter von mehreren 1000 Jahren. Im forstlichen Museum zu Brüssel ist ein Sektor aufbewahrt, der vom Marke bis zur Rinde 1,8 m mißt, somit aus einem Baume von nur 3,6 m Durchmesser ohne Rinde entnommen wurde; während der ersten Jahrzehnte wuchs der Baum mit 8 mm breiten Jahresringen in die Dicke: vom 100. Lebensjahre an betrug die Dicke der Jahresringe 5 mm, vom 500. Jahre an 2,5 mm, vom 1000. Jahre an 1 mm: bei 1300 Jahren blieb die Breite noch auf 1 mm; das Gesamtalter des Stückes ist gezählt, nicht geschätzt auf 1350 Jahre. Dieser Wachstums gang, der wohl typisch für alle unter gleichen Bedingungen aufgewachsenen Sequoien ist, vorausgesetzt, würde das Alter des stärksten, von mir gemessenen Baumes auf 4250 Jahre be rechnen, eine Zahl, die ich für wahrscheinlich halte.

Als lästig hat sich an der Riesensequoie in Europa, besonders in recht luftfeuchten Lagen, ein Schimmelpilz (Botrytis cinerea) gezeigt; er befällt Seiten- oder Gipfeltriebe, so daß alles darüber Liegende abstirbt.

Sequoia sempervirens
Endl. Küstensequoie.
Rotholz. Redwood.
Kalifornien.

Junge Pflanze mit flachen Nadeln an den Seitentrieben: jede Nadel trägt zwei breite, weifsliche Streifen unterseits, zwei schmale Streifen oberseits: am Längstreibe sind die Nadeln auf halbe Länge dem Triebe angewachsen und ohne Streifen: an blühenden Zweigen werden die Nadeln jenen der Riesensequoie ähnlich, behalten aber die beiden weifslichen Streifen. Über die Heimat dieser Holzart sind die nötigen Andeutungen bereits im ersten Abschnitte gegeben.

Die Gattung Sequoia teilt mit der sehr nahe verwandten Gattung Cryptomeria die Eigentümlichkeit, daß Bäume, auch in hohem Alter abgeschnitten, zahlreiche Stockanschläge entwickeln können: aus den Stöcken des früher erwähnten Sequoienbestandes, die doch 700 Jahre alt waren, erfolgten noch zahlreiche Ausschläge, eine Eigenschaft, die auch der lebende Stamm an seinem Wurzelstocke zeigt.

Abb. 142. Sequoia sempervirens mit Ausschlägen am lebenden Wurzelstocke.

und zwar nahm ihre Größe und ihr Alter mit der Entfernung vom Hauptstamme ab: die jüngsten saßen da, wo der Wurzelhals eben aus der Erde hervortrat; bei der bezeichneten Linie a b, etwa 2,5 m Höhe, naß der Wurzelhals 21,8 m Umfang. Die in einem Kreise stehenden a, 80 m hohen Riesen, Three sisters and General Fremont, sind mit großer Wahrscheinlichkeit die Stockausschläge eines längst gefallenen und vermoderten Hauptstammes. Von den jetzt ausgebrannten und wohl bald zu Boden stürzenden Kolossen erheben sich keine Stockausschläge mehr.

So groß ist die Wiederausschlagsfähigkeit dieser Holzart, daß selbst uralte, dicke Äste sich bei Verstümmelung oder plötzlicher Freitstellung noch mit neuen Trieben bedecken.
Bei dem großen Bedarfe an diesem wertvollen Holze (Redwood) schmelzen die Vorräte rasch zusammen: schon heute ist der Mangel allerorts fühlbar, und das Holz der nördlich oder in der Sierra gewachsenen Nutzbäume, wie Douglasie, Gelbföhre, Zuckerföhre und anderer, dringen in das bisherige Monopolgebiet des Redwood ein.

Die Küstensequoie hat sich in England und Irland vorzüglich bewährt; sie wächst sehr rasch und wird von Frösten bis zu —12° C. nicht belästigt; ja sie erscheint dort sogar wertvoller als die Riesensequoia; im kontinentaleren Mitteleuropa versagt sie ganz; sie ist nur im Kalthause durch den Winter hindurchzubringen: dagegen dürfte sie für die frischen Standorte, insbesondere an der Meeresküste von Süd- europa, mit größtem Gewinne als anbaufähig und -würdig sich erweisen.

Gattung und Art: Taxodium distichum Rich. Sumpftaxodie, Bald Cyress. Südstaaten von Ostamerika.

Diese Gattung und Art führt zweierlei Triebformen, nämlich: Längs- trieb, welche das Höhenwachstum und die Verlängerung der Äste übernehmen, an ihnen sind die Nadeln zerstreutständig, und Kurztriebe mit beschränktem Wachstum; an ihnen sind die Nadeln in eine Ebene gedrückt (pectinat); die Kurztriebe fallen im Herbst als Ganzes nach vorheriger rotbrauner Färbung ab; der Baum ist winterkahl, verlangt zum Gedeihen volles Licht, einen guten, aber irischen bis sehr feuchten, in seinen wärmsten Klimalagen selbst nassen Boden (siehe Heimat des Baumes). Feuchte Böden in kühlerem Klima sind zu kalt; außerhalb des Castanetums muss man auf den forstlichen Anbau in feuchten Lagen verzichten; der Baum hält sich im Fagetum noch auf den frischen Normalböden, leidet aber auch hier von Früh- und Winterfrösten; in luftfeuchten Lagen, an größeren Flüssen, Seen und vor allem an den Meeresufern von Mitteleuropa erwächst der hell-grüne Baum zu einem hervorragenden Schmuck-, aber geringwerten Nutzbaum. Für die sumpfigen Gebiete Südeuropas dürfte die Sumpftaxodie noch zu hoher Bedeutung werden: es ist zu bedauern, dass man solche Sumpfe mühsam und mit großem Geldaufwand mit minderwertigen Holzarten bestockt hat. Das Holz zeigt einen 4 cm breiten Splint, ein schmutzigbraunes Kernholz, dessen mikroskopischen Bau Taf. II, Fig. 11,
dessen makroskopisches Bild Taf. IX, Fig. 17 wiedergibt. Nach dem spezifischen Gewichte von 34,3 (nach Sargent von 45) ist es als leicht und weich zu bezeichnen: es kommt ihm jedoch sehr große Dauer zu, so daß die Taxodie bei der fortschreitenden Erschöpfung von Strohenholz ein hochwichtiger Nutzbaum geworden ist.

Ein unberührter Hain von uralten Sumpftaxodien überwältigt durch seine Eigenart und Größe; die Bäume passen nicht zu der Umgebung, zu den gegenwärtigen Holzarten, am wenigsten zu den Laubhölzern, über die sie hoch emporragen; man empfängt denselben Eindruck, den man empfindet, wenn man plötzlich den 60 oder 70 m hohen Tannen und Kiefern, den 100 m hohen Kolossen der Sequoia gigantea in der Sierra Nevada gegenübersteht. Ihr ganzer Habitus harmoniert nicht mit der gegenwärtigen Flora, im Vergleich zu der sie in der Tat als Überreste einer in früheren Erdperioden vorherrschenden Nadelholzflora erscheinen.

Viele dieser Taxodiumsümpfe sind nur mit Kähnen zugänglich; andere können nach längerer Trockenheit mit Gefahr mehrmaligen Einsinkens in den morastigen Boden betreten werden. (Abbild. 3.) Die Eigenartigkeit des Urwaldbildes erhält ihr besonderes Gepräge durch die dicke, flaschenförmig angeschwollene Basis der jüngeren Stämme, umgeben von zahllosen, den Wurzeln entspringenden spitzen Auswüchsen (Wurzelknieen), durch die Geradschaftigkeit und Astreinheit der Stämme, ihre lange, seichtrissige, etwas rötlichbraune Borke, ihre flache, schirmförmige, im Herbste braunrote Krone, von der in vielen Gegenden die graue Tillasia herabhängt. (Abb. 4.)

Auf den erwähnten Standorten herrscht die Taxodie im Lauretum; sie umfaßt aber auch die ganze südliche Hälfte des winterkalten Laubholzes, des Castanetums; westlich vom Mississippi, wo bereits Prärie- partien zwischen die Laubholzwaldungen sich drängen, da taucht oft mitten in der Prärie eine prächtige Gruppe oder ein ganzer Wald von Sumpftaxodien auf, je nach der Ausdehnung der Sümpfe oder Flursänder. Erst bei Überschreitung des 95. Grades w. L. begegnet man ihr nicht mehr.

Gattung Taxus. Eibenarten, Yews, IIs.

Die Eiben sind immergrüne Bäume mit flachen, weichen Nadeln, welche unterseits zwar heller, aber nie weiße Streifen tragen; die Nadeln enden in scharfe Spitzen; sie sitzen am Seitentriebe in eine Ebene gedrückt. (Siehe Abb. 144.) Same von einem roten, fleischigen Mantel teilweise umgeben.

Alle Eiben sind langsamwüchsig, auch bei vollem Lichtgenusse, ertragen lange Zeit selbst starke Beschattung; ihre Heimat ist das Fagetum und das Abietum, wo sie langsam im lockeren Schlusse von Laub- oder Nadelholzern empordwandern; auf Kahlflächen leiden sie zu.
weilen durch Nadelbräume und Gipfelftod; je feuchter die Luft, desto besser ihr Wachstum; die Eiben in Großbritannien sind aus diesem Grunde hochberühmt. Selten kommt ein astreiner, einheitlicher Schaft zur Ausbildung: meist streben mehrere Schäfte vom Wurzelstock empor, der reichlich Ausschläge bildet, wenn man die Schäfte entfernt; der Stamm zeigt spanrückigen Querschnitt, nur 1 cm breiten Splint und schön rotbraun gefärbten Kern (Taf. VIII. Fig. 10): anatomisch ist das Holz durch spiralige Verdickungen der Tracheiden ausgezeichnet (Taf. II, Fig. 12); das sehr dauerhafte Kernholz wird als Schmuckholz für Drechsler- und Schmiedearbeiten sehr gesucht. Diesem Umstande sowie der schwierigen Verbreitung des Baumes (die Beeren werden von keinem Tiere gefressen und verschleppt) sowie der Langsamwüchsigkeit ist die fast gänzliche Ausrottung der Eibe in Europa zuzuschreiben. Professor Dr. Conwentz hat hierüber eine gediegene Studie veröffentlicht.

Trotz der Langsamwüchsigkeit sollte den Eiben von den Forstwirten mehr Aufmerksamkeit geschenkt werden; wegen des Zierwertes, der Brauchbarkeit zu lebenden Hecken, Verkleidungen usw. besitzen die meisten Pflanzenhandlungen Vorräte, welche den Forstwirten die mühsame Aufzucht der Eiben ersparen würden.

Taxus baccata L. Europäische Eibe. Asien, Europa.

Die Nadeln mit stumpfen oder sehr kurzen Spitzen. Nadelstiel grün; einjähriger Trieb grün.

Die Nadeln laufen in eine längere Spitze aus als bei der europäischen Art (siehe Abb. 144); der Nadelstiel hellgelb bis bräunlich; im übrigen Nadel etwas derber, Oberfläche matter als bei europäischer Art. Von dieser Art fand ich auf Eso im Laubwalde am Ufer des Ishikari Bäume von 22 m Höhe; erst vom zehnten Jahre beginnt ein etwas lebhafteres Höhenwachstum: eine fünfzehnjährige Kultur zwischen Eichen im forstlichen Versuchsanzigarten zu Grafthal ist erst 1,5 m hoch geworden. Das Holz ist in Japan Schmuckholz, wie die europäische Eibe in ihrem Heim; die Beeren werden in Japan gegessen.

Gattung Thuja, Thujen. Lebensbäume. Arbores Vitae.

An den Seitentrieben jüngerer Pflanzen sind die schuppenförmigen Blätter, wie bei den Scheinzypressen, in Kanten- und Flächenblätter
ausgebildet, so daß ein flacher Zweigquerschnitt entsteht; die Zweige selbst sind bilateral, d. h. mit deutlicher Ober- und Unterseite versehen. Der einjährige Leittrieb ist kräftiger als bei den Scheinzypressen und selbst bei lebhaftestem Höhenwuchs stets aufrechtstehend. Die Lebensbäume zeigen auf sehr frischem Boden des Castanetums und Fagetums ihre beste Entfaltung; im Gebiete der ursprünglichen Heimat der Tannen und Fichten erlahmt ihre Wuchskraft und ihr Nutzwert. Hohe Luftfeuchtigkeit ist stets günstig; sie sind völlig frosthart, das Verpflanzjahr ausgenommen: die ostamerikanische Art eignet sich sogar zur Aufstellung beziehungsweise als Vorwald in feuchten, anmooirigen Frostlagen: für Sandboden geringer als III. Bonität sind sie nicht verwendbar; im engen Verbande als Gruppen oder reine Bestände, als Unterbau unter Lichtholzarten mögen sie ihres vorzüglichen Holzes wegen mehr Beachtung als bisher verdienen.

Die Thujen haben viele Feinde, Rehe und Mäuse unter den Tieren, und unter den Pilzen insbesondere die von Böhm 1) als Parasit beschriebene Pestalozzia funerea, die an Thuja gigantea u. japonica unvergleichlich scheinbar nach einem heftigen Aprilfrösche so massenhaft auftrat, daß heute, nach achtjährigen Andauern der Tötung der Gipfel- und Seitentriebe, zwei in ganz verschiedenen Lagen ausgeführte Kulturen im Versuchsgarten zu Grafath als verloren zu betrachten sind; Thuja occidentalis hat dagegen nur unmerklich gelitten; ebenso wurden Chamaecyparis-Arten befallen; diese aber sind imstande, den Pilz leicht abzustoßen. Als Zierpflanzen, Zau- und Heckenpflanzen sind die Thujen, wenn von Pestalozzia verschont, hervorragend.

Thuja gigantea Nutt. (syn. plicata Don.). Riesenthuje, Riesenlebensbaum. Red Cedar. Pazifische Region.

Die flachen Schuppenzweige der Seitenzweige tragen keine deutlich sichtbare Harzdrüse an ihrer Rückseite (Taf. I, 6 b); Oberseite der Zweige glänzend-grün; Unterseite mit hellgrau-grünen Flächen an den Schuppen. Der Wohlgeruch, den dürre Zweigstücke beim Zerreifen oder Zerkratzen geben, erinnert lebhaft an Pergamottbirne und ist ein guter Anhalt zur Unterscheidung der Art von der japanischen, bei welcher der Geruch täuschend dem am Stämme eintrocknenden Fichtenharze gleicht. Diese Art ist die schnellwüchsigsste von allen Thujen, wenn sie von Pestalozzia verschont bleibt; dieser Pilz aber hat

sie im Freistande sowohl als in Frostlagen wie auch auf einer Südhänge gleichmäßig befallen. Etwas günstiger lauten die Angaben aus Preußen. Es heißt dort, daß die Pilzerkrankung nur auf „ungeeigneten Standorten“ verhängnisvoll geworden sei; welche Standorte die geeigneten sind, ist leider nicht angegeben; ich vermute, daß insulares oder diesem genähertes Klima (sehr frische Böden im Waldesinnern der Mittelgebirge von Mitteleuropa) die Pflanze noch am meisten sichert, denn je kräftiger das Wachstum, desto leichter stößten Thujen und Scheinzypressen diesen Schmarotzer ab; im luftfeuchten England fand ich zwar ebenfalls einzelne Zweige durch den Pilz getötet, doch war diese Beschädigung harmlos; für das kontinentalere Europa scheint meines Erachtens diese Holzart als anbaufähig geradezu aus, wenn die in Grafrath eingeleiteten Unterbauversuche unter Eichen ebensowenig befriedigten sollten.

Nach meinen Messungen erwachsen reine Bestände in luftfeuchten Lagen auf gutem Boden unweit des Puget Sound bis zu 50 m Durchschnittshöhe; Exemplare mit 54 m Höhe und 1,75 m Durchmesser sind häufig; man vergleiche auch I. Abschnitt, die Heimat dieser Holzart (Abbildgn. 9, 10, 13). Der Stamm baut sich auffallend spitz, kegelförmig auf; ja vielfach ist seine Form einem Neiroid näher, als einem Kegel; die Basis ist enorm breit; in 2 m Höhe sind Durchmesser von drei und mehr Metern häufig genug; dabei ist die Krone so schwach beestet und locker belaubt, daß der Stamm bis in die oberste Spitze erkennbar ist. Die anfangs aufrechtstehenden Äste senken sich bei alten Exemplaren; von ihnen hängen dann die feineren, dünnen Zweige mit der Benadelung senkrecht herab; das äußerste Ende des Triebes hebt sich in der Regel wieder etwas empor.

Junge Pflanzen wachsen auch in der Heimat, wenn sie freistehen, nicht kräftiger als bei uns; am Puget Sound erreichen einjährige Pflanzen 5,5 cm Länge, zweijährige 13 cm Höhe; südlicher in Oregon erwachsen einjährige Pflanzen zu einer Höhe von 9 cm, zweijährige bis zu 20 cm.

Das graubraune Kernholz bedeckt ein 3 cm breiter Splint (Taf. IX Fig. 18); das Holz, unschön von Farbe, von der Schwere des Weymouths-fohrenholzes, ist sehr dauerhaft bei Verwendung im Boden und wird
zu Brückenbauten, Eisenbahnschwellen, Dachschindeln, Zaumpfosten, zu Fässern aller Art benutzt.

Von der Riesenthuje dadurch unterscheidbar, daß die Nadeln am abgewendeten Spitze versehen sind (Taf. I, 6a), während die längeren Spitzen der Riesenthuje dem Triebe parallel liegen. Der Fichtenharz-geruch toter, verletzter Zweigstücke ist ein weiteres Merkmal, wie bei *Th. gigantea* erwähnt. In Vorzügen und Nachteilen ist die japanische der westamerikanischen Thuje gleich; sie entwickelt jedoch einen besser zylindrischen Schaft; daß sie nur 30 m statt 54 m erreicht, kann förstlich die Wertschätzung des Baumes nicht allzusehr beeinflussen; Kernholz sehr dauerhaft; Farbe nach Tafel IX, 19; spez. abs. tr. Gew. 30,2.

An der Unterseite der Zweige Schuppenmadeln nur wenig heller als an der Oberseite, matt hellgrün; an der Oberseite matt dunkelgrün; rundliche Harzdrüsen am Rücken der Schuppen deutlich (Tafel I, 7); beim Zerreiben vertrockneter Zweige ein unangenehmer Geruch.

Diese Thuje ist als Zier- und Heckenpflanze in zahlreichen Gartenformen längst in Europa eingebürgert, hat sich überall als frosthart bewährt und bis 20 m Höhe erreicht. Es verdient dieser Baum, auch wenn er nicht raschwüchsig ist, doch auch ein forstliches Interesse wegen des außerordentlich wertvollen, dauerhaften Holzes mit dunkelgelbem Kerne (Tafel IX, 29), spez. abs. tr. Gew. 19,5; in Amerika wird das Holz zu Dachschindeln, Zaumpfosten, Baumpfählen, Schwellen usw. sehr hoch geschätzt. Es empfiehlt sich diese Thuje ganz besonders in den bei der Gattung bereits angegebenen Örtlichkeiten.

Diese Thuje erreicht in höherem Alter (zweihundert und mehr Jahren) ganz gewaltige Dimensionen; die großen Lebensbäume bei Natural Bridge in den Alleghanies, die leider der Vandalismus der Touristen angebrannt und dem Untergange geweiht hat, sind hochberühmt; einer der Riesen lag 1885 bereits zu Boden; ein anderer mit 1,40 cm Durchmesser und 31,5 m Höhe hatte damals bereits einen dritten Gipfel; als historisches Dokument verdienen diese Zahlen hier festgehalten zu werden; in den Nordstaaten nimmt die Thuje mit den Lärchen die kalten, sumpfigen Standorte ein (siehe Bodenprofil Seite 384). Ein Thujesumpf ist kaum zu passieren; durch die wasserdurchdringten Polster der Sphagnum- und Mnium-Arten sinkt man fußtief ein; ein dichtes Geflecht abgestorbener, aber nicht abgestosener Äste der
Thuja versperrt den Weg; selbst die zu Boden gefallenen Äste und Stämme, mit nassem Moose bedeckt, verwesen nur äußerst langsam; so außerordentlich widerstandsfähig ist dieses Holz gegen Fäulnis. Die dichte Krone fängt im Winter leicht größere Schneemengen auf; die Pflanze wird dann umgedrückt oder abgebrochen. Hasen und Rehe beißen die Triebe ab und werfen sie wieder beiseite.

Gattung und Art Thujopsis dolabrata Sieb. et Zucc. Hiba.

Hiba, Asunaro. Japan.

Die kräftigen Kantenblätter an der Zweigunterseite mit großen weißen Flächen, die Flächenblätter mit zwei weißen, eine grüne Mittellinie lassenden Längsstreifen (Taf. I, Fig. 10). Leittrieb sehr kräftig, aufrechtsstehend, der erste Seitentrieb im rechten Winkel vom Leittrieb abstehend, überall sehr langsamwüchsig; mit 20 Jahren ist die Hiba in Grafrath erst 2,5 m hoch geworden: dennoch ist die Hiba nicht bloß eine der schönsten Schmuckpflanzen, sondern ist auch fürstlich unter allen japanischen Koniferen am meisten beachtenswert; sie dürfte als Unterbauholzart an Stelle der fast wertlosen Holz liefernden Rotbuche sich empfehlen unter Eichen, Föhren und Lärchen (I. bis III. Bonität); unter letzterer Holzart gedeiht sie im forstlichen Versuchsgarten zu Graf-rath tadellos. Die Hiba ist ganz frosthart; bei völligen Freistände dürfte Nadelbräune (Chlorophylltod) — nicht zu verwechseln mit der normalen, violetroten Winterfärbung, welche im Frühjahre wieder schwindet — zu befürchten sein. Die Hiba verlangt guten Boden, erträgt noch Sandboden III. Bonität mit reichlicher Befeuchtung; die Hiba duldet starke Beschattung. 3 m hohe, im Drucke stehende Pflanzen zählten 80 Jahre. Die Hiba läßt sich leicht durch Stecklinge und Absenker vermehren, verlangt engen Schlufs zur Abstofsung der dauerhaften Seitenäste.

Die Hiba bildet in Nordjapan reine, dicht geschlossene Bestände größerer Ausdehnung; das höchste Exemplar, das mir begegnete, habe

1) Die Bezeichnung „echte Hiba“ dürfte überflüssig sein, da es nur eine Hiba gibt, denn die „nicht echte“ Hiba ist eben keine Hiba: der Name Asu-naro (morgen sein wird) ist ein Zeichen der Beobachtung des japanischen Volkes, das sagt, die Hiba sei dem Hi (Cham. obtusa) so nahe, daß sie ein Hi „morgen sein wird“.
A. Die Nadelhölzer, Koniferen. 423

...ich oben gezeichnet; es maß mit seiner vollendet zuckerförmigen Krone 0,7 m Durchmesser und 30 m Höhe. Das Holz ist leicht (spez. abs. tr. Gew. 38 – 42), weich, mit sehr starkem, angenehmem Geruch und von sehr großer Dauer; wo Hiba wächst, stehen im Werte alle anderen Nadelhölzer nach; Dörfer, die aus HibaHolz aufgebaut sind, verraten ihre Nähe auf mehrere Kilometer durch den Wohlgeruch der aus HibaHolz gebauten Häuser; das hellgelbliche Kernholz (Taf. X, 21) deckt ein 3 cm breiter Splint. Der japanische Same der Hiba ist leider von sehr geringer Keimkraft, was den verdienten stärkeren Verbreitung des Baumes Abbruch tut; in ganz Mitteleuropa, im Gebiete mit Castanetum- und Fagetum-Klima könnte die Hiba als Nutz- und Schmuckbaum angebaut werden.

Die Hiba von Zentralhondo wird neuerdings von der nordhondönsischen Form als eigene Art abgetrennt; mir schien sie bei meinen beiden Reisen in genannten Standorten identisch; doch habe ich vielleicht zu wenig Aufmerksamkeit diesem Punkte, dafür aber mehr der Lebensgeschichte des Baumes geschenkt. Man unterscheidet in Japan zwei Formen, vielleicht Varietäten; vielleicht steckt die neue Art darin; nämlich: Th. dolobrata Kusu-atte, welche schnellwüchsig ist und minderes Holz erzeugt, und Th. dolobrata Ma-atte, eine langsammwüchsige Form mit gutem Holze.

Gattung Torreya (syn. Tunion), Nußseiben.

Bäume mit eibenartiger Benadelung, aber die Nadeln starrer, stehender, die beiden weißen Streifen an der Unterseite der Nadeln deutlicher als bei der Eibe; die Pflanze baut sich in regelmäßigen Quirlen auf, wie eine Abies oder Tanne; männliche und weibliche Individuen sind vorhanden; die Nußseiben sind langsamwüchsig, frostweich, schatten- und eibenertragende Holzarten des Castanetums; jüngere Pflanzen entwickeln, wenn abgeschnitten, Stockanschläge. Das Holz mit breitem Splinte und gelb gefärbtem Kerne (Taf. X, 23) und eigenartigem, an frische Rüben erinnerndem Geruch; Dauer groß. Die Nußseiben werden bis zu 25 m hoch; einen forstlichen Wert dürfte wohl keine Art erlangen; eher kämen die Nußseiben als Schmuckbäume in Betracht im Castanetum von Süd- und den wärmsten und luftfeuchten Lagen von Mitteleuropa.

Torreya grandis Fort. ist die chinesische Nußseibe.

Das Holz (mit einem spez. abs. tr. Gew. von 41,1) wird zu den Steinen des Go-Spieles wegen des klingenden Tones benutzt; aus den Früchten — die gegessen werden — wird ein Öl geprefst.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Torreya taxifolia Arn.

ist in Florida an Flussufern heimisch.

Die Nadeln sind flach, tannenartig, mit zwei hellen bis weißen Streifen an der Unterseite; die Nadel endet in ein feines Stielchen, mit welchem es auf einer schwachen Erhebung der Rinde, Kissen, aufsitzt; Nadeln an Seitenzweigen in eine Ebene gedrückt, am Leittriebe zerstreutstündig, schärfer zugespitzt, während an den Seitentrieben die Nadeln um so stumpfer sind, je weitgehender die Verzweigung; Leittrieb an kräftigen Pflanzen schwach überhängend, wodurch Tsugen leicht von Tannen unterschieden werden können. Der kleine Same, auf einer Seite mit dem breiten Flügel verwachsen, gleicht am meisten dem Lärchensamen.

Die Tsugen sind raschwüchsige Holzarten, welche in ihrem Schattenerträgnis der Fichte sich nähern; sie verlangen guten, frischen, tiefgründigen Boden wie Tannen; Sandboden geringer als III. Bonität ist für sie unbewohnbar. Als Angehörige des Castanetums und Fagetums genügt ihre Frosthärte: solange sie ganz niedrig sind, besteht Gefahr durch verspätete und verfrühte Frösste; eine Art geht bis zur Baumgrenze; die Tsugen neigen (westliche Tsuga am wenigsten) zur frühzeitigen Verteilung des Schaftes. Das Holz mit 5 cm breitem Splint zeigt im Kerne eine graubraune Färbung (Taf. X, Fig. 22), welche dem Holze eine sehr hohe Dauer verleiht; im allgemeinen ist es weich, leicht (spez. Gewicht 44—50), doch schwerer als Fichte und Tanne, von gleicher Verwendungsfähigkeit; in seiner Anatomie gleicht es der Fichte (Taf. II, Fig. 4), doch fehlen ihm die Harzgänge. In der Rinde der Tsugen findet sich mehr Gerbstoff als in anderen Nadelbäumen. Vom guten Holze ganz abgesehen, wären die Tsugen schon des Gerbstoffes wegen anbauwürdig, zumal da sie der europäischen Baumflora gänzlich fehlen. Da sie frosthärter als die mitteleuropäische Tanne sind, könnte ihr Anbau wie bei der Fichte geschehen: gruppenweise im Laubholze, reine Bestände auf kahler Fläche oder unter lockerem Schirme; Einzelnimmischung in Fichten ist unzulässig; sie eignen sich sodann zum Unterbau unter Lärche, Eichen, Föhren (bis III. Bonität). Ihre Neigung zur Schaftteilung, schon in der jugendlichen Pflanze, erhöht ihren Zierwert, mässigt aber nicht ihre forstliche Bedeutung, da bei engem Pflanzenverbande alle Seitengipfel rasch zurückbleiben. Als schlimme Schädlinge haben sich gezeigt: der große, braune Rüsselkäfer, der die zarten Längsstricke benagt, so das sie abbrechen; Mäuse benagen die Rinde und töten jüngere Pflanzen; Agarius mellus ist
gleichfalls schädlich; Hasen haben die Tsugen nicht belästigt; mit Rehen wird in Grafrath nicht experimentiert.

Ostamerika.

Nadeln ohne Kerbe endend; in ihrer Oberen Hälfte tragen sie am Rande feine, durchscheinende, mit der Lupe erkennbare Zähnchen, unterseits zwei hellgrüne bis weißliche Streifen: einjähriger Trieb kurz-flaumig behaart, hellgelbgrün; Nadelkissen rot; Rinde anfangs glatt, grau mit Harzbeulen, später kleinschuppig. In der Schaftform steht die kanadische Tsuga der westamerikanischen nach; die in Mitteleuropa vorhandenen Exemplare sind wegen des Freistandes fast alle kurz- und vielschichtig; enge Pflanzung erzielt sehr schlanke Stangen; die ziemlich schnellwüchsige Art verdient Beachtung; in ihrer Heimat wird sie 30 m hoch.

Ostamerika.

Eine ziemlich seltene Art, welche durch zahnlose, an der Spitze gekerbte, ziemlich große Nadeln gekennzeichnet ist (Fig. 149): junge Triebe schwach behaart; da sie nur 15 m hoch wird, ist sie forstlich nicht beachtenswert.

Nadeln in Länge sehr ungleich: kürzer als bei den anderen Tsugen; an der Trieboberseite Nadeln vielfach nur so lang als breit (siehe obige Figur); Nadelunterseite mit kreideweissen Streifen; Nadeln an der Spitze gekerbt, ohne Zähnchen am Rande; fertiger Trieb rotbraun, behaart; diese Art ist für Mitteleuropa im Fagetum wichtiger als Siebolds Tsuga: die Maximovics-Tsuga bildet reine Bestände großer Ausdehnung (Abb. 34). In Grafrath hat sich diese Art zwar langsammüchsig, aber frosthart gezeigt; als Zierpflanze übertrifft sie wohl die übrigen Arten.

Die langen, in Grösse wenig schwankenden Nadeln sind ihrer ganzen Länge nach am Rändern mit Zähnchen versehen; beide
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Streifen unterseits kreideweiss; fertiger Trieb hellbraun, kräftig behaart: Haare besonders in den Vertiefungen des Triebes. Die indische Tsuga

hat sich in Grafrath ebenso frosthart erwiesen wie die westamerikanische Art: die Angaben, daß sie für die wärmsten Lagen von Deutschland

Abb. 148. 50-jährige kanadische Tsuga (*Tsuga canadensis*), die Schönhaftigkeit bei engem Schlusse zeigend.

Bureau of Forestry photogr.

Abb. 149. Schwach vergrössert. H. Mayr gez.

Tsuga dumosae *Tsuga Pattagana* *Tsuga caroliniana*
zu „zärtlich“ ist, beruhen lediglich auf Vermutung, weil die Art aus Indien stammt; einen forstlichen Wert wird diese schnellwüchsige Art wohl kaum erlangen; prächtige Exemplare stehen in Dropmore (England).

Es hat sich herausgestellt, daß früher und auch von Carrière unter dem Namen Ts. Mertensiana Pattons Tsuga verstanden wurde; die Bezeichnung Mertensiana mußte daher kassiert werden; Sargent gab der in Rede stehenden Tsuga den Namen heterophylla.

Nadeln länger und etwas stumpfer als bei der kanadischen Art; junge Nadeln an den Zähnchen mit Haarspitzen; die fertige Nadel mit Zähnchen ohne lange Spitzchen; Unterseite der Nadel heller weifs und fertiger Trieb mit gegenüber der kanadischen Tsuga längeren, gelockten Haaren versehen; Nadelkissen hellrot. Nach den Versuchen in Grafrath ist diese Art die raschwüchsigste von allen; wegen ihrer auffallend schönen Schaftform empfahl ich die Holzart vor 15 Jahren für Mitteleuropa; nur in Preußen wurden daraufhin unter Schwappachs Führung Versuche unternommen. Die westamerikanische Tsuga leidet in der ersten Jugend, da sie lange in den Spät-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

...sommer hinein ihre Triebe streckt, durch verfrühte Fröste: zuweilen schaden auch verspätete; im Winter ist sie hart; die zarten, in de Raschwüchsichtigkeit sehr langen und zarten Längstriebe werden in Freilagen an ihren Enden vom Winde verpeitscht; in England wurden di entgegengesetzten Erfahrungen gemacht; der weite Pflanzenabstand der dort auch bei Forstkulturen üblich ist, dürfte dies erklären; an Kahlflächen entwickelt sich zuerst ein den Boden deckender und feuch...

Abb. 152. Alter Bestand der westamerikanischen Tsuga (Tsuga heterophylla), die vollendete Schaftform zeigend.

Bureau of Forestry photogr.

...erhaltender Busch, aus dem dann der Leittrieb hervorbricht. Die Angabe Schwappach's (l. c. 78), daß stärkere als dreijährige Pflanze schwer anwachsen, kann ich nicht bestätigen; wegen der anfängliche Frostgefahr verwende ich nur fünf- bis sechsjährige Pflanzen.

Diese Tsuga ist förstlich die wichtigste von allen für Mitteleuropa über ihre Anbauart ist bei der Gattung genügend angegeben. In de feuchtesten Lagen ihrer Heimat (dem wärmeren Fagetum entsprechend) erreicht sie 60 m und darüber; selbst im Picetum wird sie noch 30 m...
hoch; für forstliche Zwecke genügt auch diese Leistung; der Gerbstoffgehalt der Rinde beträgt 15\%.

Wohl kann ich mich entschließen, statt *Ts. Mertensicma* den neuen Namen *heterophylla* anzunehmen; aber es ist mir unmöglich, die bisherige Zusammenstellung *Ts. Mertensicma* einfach auf Pattons *Tsuga*, wie es Sargent tut, zu übertragen; die Mißverständnisse sind kaum aus der Wissenschaft, aus der Praxis überhaupt nicht mehr zu entfernen. Pattons *Tsuga* war von jeher eine Verlegenheit für die Systematiker; man darf nur das Herbariumkonvolut dieser Art im britisch-botanischen Museum zu Kew durchmustern; alle möglichen und unmöglichen Namen führten die dort enthaltenen, getrockneten Pflanzen, bis M. Masters Ordnung in das Chaos brachte. Nadeln (siehe Abb. 149) mehr vierkantig, fichtenartig, ohne Zähnchen am Rande; Nadelkissen von gleicher Farbe wie der Trieb, nur eine schmale, rötliche Linie bezeichnet die Insertionstellen; Nadeloberseite ohne Längsfurche oder nur gegen die Basis hin eine solche angedeutet, bläulich-grün; fertiger Trieb dicht hellbraun-filzig behaart. Auch diese Art erwächst zu einem 30 m hohen Baume; da dieser noch die kühlseste Waldregion, das Picetum, bewohnt, käme sein forstlicher, empfehlenswerter Anbau für das Picetum von Mittel- und Nordeuropa in Frage. In Graf-rath hat sich die Pflanze als völlig frosthart, aber etwas langsamwüchsig gezeigt; der Zierwert, insbesondere der in schönen Pyramiden aufwachsenden weifelschen Formen, ist ganz hervorragend: in Schottland hält man diese Formen für die schönsten Schmuckbäume unter den Nadelhölzern.

Nadel (siehe Abb. 147) hellgelbgrün in der Sonne, dunkelgrün im Halbschatten, unterseits nur wenig heller als oberseits; Nadeln am Ende gererbt, ohne Zähnchen am Rande; fertige Triebe hellgelbgrün, nackt. Siebolds *Tsuga* ist raschwüchsig und wäre für Castanetumlagen von Mittel- und Südeuropa in der bei der Gattung erwähnten Anbauform forstlich empfehlenswert; warme, bodenfeuchte Flusstäler entsprechen am besten dem heimatlichen Standorte. Im forstlichen Garten zu Grafrath hat sich die Frosthärte in verschiedenen Lagen bewährt.
B. Monokotyle Laubbaumarten.

Gattung *Bambusa*. Bambusse.

Nach Japan. Photogr.
B. Monokotyle Laubbaumarten.

Gattung *Bambusa*. Bambusse.

Nach Japan. Photogr.
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Bambusa sp. Mosobambus, Mosotake. Ostasien.

Dieser in China und dem wärmsten Teile von Japan kultivierte Bambus dürfte im Lauréctum von Südeuropa größere Anbauversuche verdienen; die stärksten Hahne in Kinshiu zeigen 32 cm Durchmesser und 25 m Höhe.

Bambusa sp. Mabambus. Matake. Ostasien.

Stehn zwar in den Größenverhältnissen der vorigen Art nach, zählt aber trotzdem zu den brauchbarsten Arten: *Bambusa nana* var. *gracillima* wäre der beste Bambus für Angelruten; die kleineren Bambusarten sind zwar auch Nutzhölzer oder Nutzstraucher; manchen davon kommt auch ein hoher Zierwert zu; es muß jedoch vor der Einführung der ganz frostharten, niederoh Bambusarten gewarnt werden, weil die Gefahr besteht, daß sie als ganz abscheuliche, forstliche Schädlinge sich entpuppen möchten: man beachte die Angaben hierüber unter dem Abschnitt I: Die japanischen Waldungen.

Vom Holze abgesehen, liefert diese Palme in ihren breiten, braunen, leicht zerteilbaren Vorblättern der Blätter und Blütenständen ein hoch-
Abb. 196. Künstlich angelegter Bestand der japanischen Shiro-Palme (*Trachycarpus excelsus*) zur Gewinnung der Palmfaser; Insel Kiushu.

H. Mayr photogr.

Die Pflanze braucht zehn Jahre, ehe sie im Boden erstarkt ist und mit dem Höhenwuchse beginnt; mit diesem Jahre beginnt die Entnahme der Vorblätter; alljährlich werden zwölf Blätter gewonnen. Da die Beseitigung dieser Blätter den Stamm einer wichtigen Schutzhülle beraubt, so stirbt der Stamm an der Sonnenseite ab; Insekten dringen ein, und schließlich bricht der Stamm bei heftigeren Stürmen ab; es kann deshalb die Nutzung meist nur zwölf Jahre lang geübt werden; die Wurzelrinde ist in der Medizin verwendet.
C. Dikotyle Laubbaumarten.

Unter der großen Schar der in dieser Schrift aufgenommenen anbaufähigen und aus dekorativen Gründen auch anbauwürdigen Laubhölzer ist doch nur eine kleine Anzahl, welche mir aus forstlichen Gründen anbauwürdig in größerem Umfange erscheint; es liegt im Zuge der Zeit, daß die Nadelhölzer gegenwärtig überhaupt forstlich finanziell und dekorativ höher bewertet werden als die Laubhölzer; nach meiner Auffassung, daß innerhalb des natürlichen Verbreitungsgebietes einer einheimischen Baumart eine fremdländische Art gleicher Gattung nicht mehr und nicht Besseres leisten könne als die einheimische Art, bleibt, da die einheimischen Laubbäume zu meist die ihnen passenden Standorte in ganz Europa bereits bevölkern, für die verwandten Fremdländer nur wenig Raum zu aussichtsvollen Versuchen und größeren Kulturen übrig; um so mehr aber verdient die Forderung Beachtung, das Augenmerk insbesondere und in weiterem Umfange als bisher allen Laubbaumgattungen zuzuwenden, welche in der europäischen Baumwelt noch nicht vertreten sind: dagegen werden Park und Garten an schön gefärbten, geformten und blütentragenden Bäumen nur gewinnen, je mehr fremdländische Arten den vorhandenen zugefügt werden. Aber auch nach dieser Richtung hin mußte hier in vorliegender Schrift eine Grenze gesteckt werden, indem insbesondere die hervorragendsten oder auch die seltensten, ja vielfach in Kultur noch unbekannten Baumarten Aufnahme fanden: auch bei den Laubhölzern wurde auf die Merkmale zum Zwecke der Erkennung junger Pflanzen das Hauptgewicht gelegt. In jüngster Zeit hat Camillo K. Schneider begonnen, ein Handbuch der Laubholzkunde zu veröffentlichen, welches neben Dippels großem Werke zum Besten gehören wird, was wir an systematisch-floristischen Büchern besitzen; leider sind bis heute erst wenige Hefte erschienen; von amerikanischen Florenwerken benutzte Schneider das Pracht-
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Gattung Acacia. Akazien.

Australische, Gerbstoff liefernde Arten dieser Gattung könnte man nur für das Lauretum von Südeuropa, wenn auch geringeren Bodens, mit Aussicht auf Erfolg empfehlen.

Blätter nach nebenstehender Figur: Lichtblätter tiefer gelappt als Schattenblätter: Oberseite glatt, Unterseite an den Rippen und deren
Dikotyle Laubbäume.

Winkel behaart. Knospen dick, kurz, mit breiter Basis aufsitzend, rotviolett, anfänglich von den Blattstielenden ganz verdeckt; Trieb glatt, grün mit violetten Stacheln dicht bewehrt. Wer im Innern der Insel Eso reist, findet den Stachelpanax nicht als Strauch oder Halbbaum, sondern als mächtigen Baum: 1886 maß ich 27 m Höhe und 0,80 m Durchmesser; der Baum ist raschwüchsig und fällt durch sein Schattenerträgnis auf. In Riedenburg im Altmühltafel ist er in sieben Jahren 3,8 m hoch geworden: Forstmeister Ki cking nennt ihn völlig frost-

* Abbildung zeigt Blätter des Stachelpanax. H. Mayr gez.*

hart: auch im Versuchsgarten zu Gräfrath hat sich dies bewährt, doch
ist die Pflanze empfindlich gegen Verpflanzen: sie stirbt öfters bis zum
Boden ab, worauf reichlich Ausschläge am Wurzelhalse entstehen: nur in
guter, frischer Boden mit Castanetum- und Fagetum-, selbst noch besseres
Picetum-Klima mag gewählt werden. Das Holz ist an ein in Europa
bekanntes Material kaum anzuleichen: es ist ziemlich weich und leicht
(spezifisches Lufttrockengewicht 61), riecht unangenehm; in Japan
zu Baunholz, Speergriffen: Mangel an Kernfarbe deutet auf Mangel an
Dauer: eine hervorragende Schattenpflanze; junge Triebe eisbar.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

In den ursprünglichen Laubwaldungen der nördlichen, gemäßigten Halbkugel waren die Ahornarten reichlich vertreten; in jenen Ländern, in welchen durch eine mehrhundertjährige forstliche Tätigkeit diese Holzarten noch nicht bis zur Seltenheit zurückgedrängt, ja stellenweise bereits ganz ausgerottet worden sind, verleihen sie dem Laubwalde noch heute, insbesondere zur Zeit seiner herbstlichen Färbung, ein besonderes Gepräge: Klima und Boden, wie sie der Rotbuche zusagen, trugen den mit Ahornen, Ulmen, Linden gemengten Wald; ja wie in Deutschland an Stelle der Rotbuche der Bergahorn selbst bestandsbildend trat, so sind heute noch in Nordamerika der Zuckerahorn, in Ostasien der dortige Spitzahorn (pictum) in großen Flächen gleich Buchen alleinherrschend, wichtige Glie- der der forstlichen und floristischen Zusammensetzung der Wälder. In Standorten mit Castanetum- und Fagetum-Klima werden in Europa wohl alle unten aufgeführten Ahornarten anbaufähig sein; für eine Anzahl derselben ist das bereits nachgewiesen: aber eine forstliche Bedeutung wird kein fremdländischer Ahorn erlangen, der etwa zur Erzeugung größerer Holzmengen oder besseren Holzes angebaut werden sollte; beide Forderungen schließen sich aus: das Holz der schnellwüchsigsten Arten, wie des Negundo, des dasyacarpum ist auch das schlechteste Material, das Ahornarten bilden; der forstlich wichtigste ist der Zuckerahorn — des Zuckers wegen. Die Aufzucht schließt sich jener der einheimischen Arten an: frisch geernteter und wieder ausgesäter Same keimt im nächsten Frühjahr; ausgetrockneter, z. B. überseischer Same im Früh- jahr gesät, liegt bis zum nächsten Frühjahr über; alle Ahorne ertragen mäßigen Lichtentzug (Halbschattholzarten), sind ziemlich schnellwüchsig, verlangen guten Boden, sind teils Bäume, teils Halbbäume und Sträucher: alle sind hervorragende, schattenspendende Zierpflanzen, insbesondere die amerikanischen Arten durch ihre prächtige Herbstfärbung, die japanischen durch diese und ihr zierliches Blattwerk; nur die be- kanntesten oder die bis heute noch am wenigsten bekannten Arten

Fig. 18. Typus der Ahornholzer, Gattung Acer.
H. Mayr n. d. X. gez.
sollen angesichts des geringen forstlichen Wertes nur flüchtig hier be- sprochen werden. Das Holz hat, solange nur geringe Mengen vorhanden sind, hohen Wert, besonders für Drechsler und Wagner; alle sind in ihren anatomischen Verhältnissen gleich, so daß nebenstehendes Bild als Typus aller Ahornhölzer gelten kann. Sehr zahlreiche Markstrahlen durchziehen das Holz; Gefäße (Poren) mit freiem Auge kaum sicht- bar; das Holz besitzt auf der Spiegelfläche, besonders in den Markstrahlen, Seidenglanz. Splint breit; Kern bräunlich, schwach gefärbt. Mit einem spezifischen, lufttrockenen Ge- wicht von durchschnittlich 70, zählen sie zumeist zu den Harthölzern. Von ganz besonders hohem Wert sind Maser- bildungen, welche am Ahornstamme in kropfförmi gen Anschwellungen sich finden. Über die Entstehungsursache ist nichts bekannt; ob durch fortgesetzte Stümmelung der Äste und der neu sich bil- denden Stammanassschläge (Schneitelung) diese Vogelaugenmaseration, welche alle Ahorne bilden, künstlich hervorgerufen werden kann, müssen Versuche ergeben.

Acer circinnatum Pursh. _Weinahorn._

Vine Maple. Pazifische Region.

Blätter 7—9lappig, unterseits, wenn jung, mit langen Haaren spärlich besetzt (Tafel XV, 1/3 natür. Größe); meist strauchartig, mit grünen Trieben in Halb- schatten und prächtig roter Herbstfärbung.

Gefiederte Blätter wie _Acer Negundo_, Blätter im Herbste orange bis braunrot; ganz frosthart.

Acer dasycarpum Ehrh. _Weißer oder Silberahorn._ _Soft Maple._

Ostamerika.

Blätter nach Tafel XII 1/4 natür. Größe; Samen nach Tafel XIII natür. Größe. Blätter unterseits weißlich; der Baum besitzt hohen Zier-, aber keinen forstlichen Wert, denn das Holz ist, wie die amerikanische Bezeichnung richtig wiedergibt, leicht, weich, brüchig; daher auch der erwachsene Baum vielfach mit Astbrüchen vom Winde entstellt wird.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Blätter vorwiegend dreilappig, grobgezähnt (Tafel XV 1/3 natürl. Größse).

Acer Negundo L. Eschenblätteriger Ahorn. _Box Elder._

Ostamerika.

Dieser in Europa wohlbekannte und überall kultivierte Baum hat vorwiegend Zierwert; Nutzen bringt er durch den Zuckergehalt des Saftes, der aber bis heute in Europa nicht gewonnen wird; um darauf aufmerksam zu machen, sei auf die Angaben bei Besprechung des Zuckerahorns hingewiesen. Blätter gefiedert und grob gesägt in der oberen Hälfte; Früchte nach Tafel XIII. Wegen der außerordentlichen Schnellwüchsigkeit hat man diesen Baum zum forstlichen Anbau empfohlen, allein das Holz ist ziemlich wertlos, nur billige Hausgeräte oder Papiermasse werden daraus hergestellt; für letzteren Zweck sind Pappel-, Linden- und Nadelhölzer besser; am schnellwüchsigsten ist eine Zuchtform mit blauweifs bereiften Trieben, die auch auf sandigen Böden besserer Bonität wächst. Diese Form geht in der Praxis bei Gärtnern und Forstwirten unter dem falschen Namen _Acer californicum._ Letztere Bezeichnung gebührt nur dem eschenblätterigen, wollig behaarten Ahorne aus Kalifornien; die richtige Bezeichnung der Kulturform des ostamerikanischen Ahorns ist nach Graf von Schwerin _Acer Negundo prunifolium_; Graf Schwerin erwähnt im Handbuche der Laubholzbenennung von Beisner-Schelle-Zabel nicht weniger als 44 Gartenformen des Negundo.

Acer nigrum Michx. Schwarzer Ahorn. _Black maple._

Ostamerika.

Vom Zuckerahorne durch das unterseits behaarte Blatt unterschieden: gibt ebenfalls Zucker und Maserholz. Der schwarze Ahorn scheint in Deutschland häufiger verbreitet zu sein als _saccharum_; er ist letzterem in allen Vorzügen gleich.

Acer palmatum Thunb. Momiji-Ahorn. _Kaede, Momiji._

Japan.

Blätter nach nachstehender Abbildung; ober- und unterseits matt, kahls; nur in den Rippenwinkeln weifsgefärbte Haare. Graf Schwerin erwähnt und beschreibt 42 Gartenformen; die auffallendste von allen ist nach meiner Ansicht _Acer palmatum_, japanisch Osaka-tsutsuji. Der Strauch entfaltet im Frühjahre seine leuchtend scharlachroten Blätter, so dafs man den „brennenden Dornbusch“ vor sich zu haben glaubt; im Sommer werden die Blätter grün, im Herbst abermals rot. Dieser herrliche Zierstrauch ist in Grafrath frosthart und Gegenstand allgemeiner Bewunderung.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Das Blatt mit fünf bis sieben Lappen, welche in eine feine Spitze ausgezogen sind; dieser am meisten im japanischen Laubwald verbreitete Ahorn ist dort zugleich der forstlich wichtigste; für uns in Europa nur Zierbaum.

Acer rubrum L.

Rotahorn, Red Maple.

Ostamerika.

Acer saccharum Marsh.

(syn. *saccharinum Wangh.*).

Zuckerahorn, Sugar Maple.

Ostamerika.

Blätter dem europäischen Spitzahorn ähnlich; die Buchten sind jedoch abgerundet (Tafel XII 1/3 der naturl. Größe); Früchte nach Tafel XIV naturl. Größe. Das beste Kennzeichen ist das Fehlen des Milchsaftes in den Blättern, Blattstieilen und Trieben; Milchsaft aber tritt bei Verwundungen an Blättern und Blattstieilen des Spitzahorns aus.

Am 25. März, nachmittags 5 Uhr, Temperatur 10° C.; es flossen 72 Tropfen in der Minute, abends und nachts nichts.

Am 26. März, vormittags 9 Uhr, Temperatur 12° C.; es flossen 80 Tropfen in der Minute, abends und nachts nichts.

Am 26. März, nachmittags 2 Uhr, Temperatur 13° C.; es flofs 1 Tropfen in der Minute, abends und nachts nichts.

Am 31. März kalt, aber etwas Sonnenschein, sehr reichlicher Ausfluß, in 5 Minuten floßen 105 Tropfen; im ganzen wurden 1,6 l Saft gewonnen, welche 26 ccm braunen Sirup lieferten; aus 1 hl Satt könnte somit in der Klimalage des kühleren Fagetums von Mittel- europa 1,625 l Sirup gewonnen werden.

Da der Saftguts nun so mächtiger ist, je vollkroniger der Baum, so hat sich ein eigener Betrieb für den Zuckerahorn herausgebildet: es werden reine Bestände angelegt, in welchen den im Stangenalter einzelnen Bäumen durch Beseitigung oder Köpfen anderer Vorsprünge und Kronenfreiheit gesichert wird. der oberholzreiche Mittelwald scheint somit die beste Wirtschaftsform für Zuckerahornwaldungen. Auch andere Ahornarten, wie *Acer nigrum* Michx., vorwiegend dreilappig, junge Blätter unterseits weichhaarig, sowie *Acer dasycarpum* und andere werden gelegentlich benützt.

Der Zuckerahorn ist nicht bloß Nutz-, sondern auch Zierbaum ersten Ranges: sein dekorativer Wert wird bei uns nicht genügend gewürdigt: wohl aber wird er in Amerika in Gärten und Parks, insbesondere zu Straßeneinfassungen außerordentlich bevorzugt: die ganz im Freistande erwachsenen Bäume entwickeln eine pyramidenförmige, tief schattige Krone; in den Städten gehört er zu den Bäumen, welche noch am besten den Gasen des Steinkohlenrauches widerstehen. Die Blätter färben sich im Herbst hellorange bis purpurrot; jeder Baum hat seine eigene, für ihn typische Färbung, die er alljährlich wiederholt und nur nach der Trockenheit des vorausgehenden Sommers etwas nuanciert.

Ein prächtiger Baum, mit riesigen, meist dreilappigen Blättern; obenstehende Figur zeigt diese in $\frac{1}{2}$–$\frac{1}{10}$ der natürlichen Größe; die Früchte sind in natürlicher Größe gezeichnet. Blätter und Früchte kahl: als Schmuckbaum empfehlenswert.

Blätter und Blattstiele kahl; aber junge Triebe kräftig, fast filzig seidenglänzend behaart; Früchte kahl. Das untere Blatt in der Ab-
bildung stammt von einem in Tokio kultivierten Baume; das obere Blatt sammelte ich von einem Baume in einem abgelegenen, spärlich bewaldeten Tale des Minflusses im südlichen China.

Gattung Aesculus. Rolfskastanien, Horsechesnuts, Châtaigniers de cheval.

Allbekannte, schattige, d. h. auch Schatten ertragende Schmuckbäume von geringem forstlichem Werte, obwohl alle Rolfskastanien im Walde zu mächtigen, schönachtigen Bäumen emporwachsen. Das Holz besitzt keine auffallenden Charaktere; kaum sind die Jahresgrenzen erkennbar; mittelhart, zäh, von geringem Gebrauchswerte.

Aesculus glabra Willd. Grüngelbblühende Rolfskastanie, Ohio Buckeye.

Diese drei wohlbekannten Zierbäume stammen aus Ostamerika.

Mit sehr großem, doppeltgesägtem Blatte; nur Zierbaum.

Junge Triebe mit locker anhängenden, hellrotbraunen Wollhaaren bedeckt; Blätter siebenteilig, mit gleichgroßen, feinen Zähnen besetzt; am erwachsenen Baume lösen sich meanderartig gewundene Borkenstücke wie bei uralten Kakiwürgen ab. Das Holz mit einem spezi- fischen, lufttrockenen Gewichte von 46 hat in Japan Verwendung zu Teebrettern, Schalen usw.; die Früchte werden, wie die Eicheln, bei Mißsernte zu Kuchen verarbeitet.

Fiederblättchen am Grunde mit ein oder zwei Zähnen versehen, beim Zerreiben übelriechend; fertiger Trieb rotbraun; im Fagetum friert der Trieb alle Winter zurück; dennoch kommt der Baum al-
mächtig in die Höhe; der strengen Winter 1879/80 mit \(-30^\circ\) C. und darunter hat fast alle Götterbäume in Mitteleuropa getötet. Versuche in den Donauauen haben Sicherheit gegen Wildverbiss ergeben. Das Holz hat Gefäße im Frühholze wie eine Esche und damit auch auf allen Schnitten den Charakter eines Eschenholzes, ohne aber seine technischen Qualitäten, z. B. Elastizität, zu besitzen; der gewundene Verlauf der hellen Parenchym- und feinen Gefäßlinien im Spätholze erinnert an Ulmenholz: geringwertig. Der Baum ist wohl durch seine großen Fiederblätter und seine großen rötlichen Fruchtbüsche1 nur ein Zierbaum; sobald die mit breitem Flügelrande versehenen Samen reifen, geht die schöne Farbe der Früchte verloren.

Ailantus Vilmoriniana.

Vilmorins Götterbaum aus China besitzt Dornen (*Los Barras*).

Gattung und Art Albizzia Julibrissin Bolv. Schlafbaum. Nemu.

China und Japan.

Blatt doppelt gefiedert, Fiederblättchen oval-gestreckt; nachts legen sich die gegenüberstehenden Blättchen nach oben zusammen, daher der japanische Name „Schlafbaum“. Blättchen an den Rippen der Oberseite behaart, unterseits etwas heller. Splintholz 1,5 cm breit, Kernholz violettrot, hart (spezifisches Lufttrocken-Gewicht 54), von großer Dauer.

Dieser Baum ist in Castanetum-Japans nirgends häufig, verdient aber für Standorte mit gleicher Klimalage und geringem Kies- und Sandboden, besonders für die Dünenauflösung Südeuropas. Empfehlung: der Schlafbaum wird in Japan zur Bindung der Dünen benützt; sind diese durch die Pflanze gefestigt, wird Thunbergs Föhre dazwischen gebracht. Hievon abgesehen, ist der Schlafbaum durch seine Blätter und seine, roten Huppen gleichen Blüten eine prächtige Zierde.

Die Erlen sind wohlbekannte Bäume mit kleinen, in zäpfchenförmigen Fruchtständen eingeschlossenen, platten Sämereien; um volle Schönheit in Schaft und Krone zu erlangen, verlangen sie einen sehr frischen, guten Boden; sie ertragen aber auch noch feuchten, selbst nassen, anmoorigen Boden, welcher anderen Holzarten vielfach die Möglichkeit des Mitbewerbes mit Erlen nimmt; anderseits findet man Erlen auch auf trockenem, kiesigem Boden, wenn die Luftfeuchtigkeit sehr hoch ist (Meeresnähe, höhere Gebirge).

Die Erlen sind Halbschattholzarten, raschwüchsig, frosthart; auf sumpfigen Kahlflächen leiden sie durch Sommerfröste (Juni, Juli) mehr als in anderen Jahreszeiten; in geringen Mengen auch von ziemlichem Wert in ihrem Holze.

Das Holz ist weich, leicht, meist durch einen rötlich gefärbten Kern ausgezeichnet (spezifisches Gewicht 40—50); in diesem Falle ist es ziemlich dauerhaft; das kernfarblose Holz der Weißerlen, wie *Alnus incana, tinctoria*, ist geringwertig. Das Holz ist an der Leichtigkeit und an dem unregelmäßigen Auftreten von großen, zusammengesetzten Markstrahlen leicht erkennlich (siehe vorstehende Abb. 166). Forstlich erfüllen die europäischen Erlen, was den spezifischen, sauren nassen Standorten von einem Laubbaum abgerungen werden kann; ob in Wuchskraft, in Frosthärte usw. eine fremde Art den einheimischen überlegen ist, muß erst durch Versuche erwiesen werden; der Zierwert mancher fremden Art ist sicher höher als der europäischer Erlen. Die Erlen haben in C. Schneiders Werke eine monographische Bearbeitung durch Callier erfahren; er nennt die *Alnus firma var. multinervis* Hainbuchenblätterige Erle, *Minebari* aus Japan mit Recht als eigene Art mit der Bezeichnung

Alnus multinervis Callier (in litteris); er benennt eine von mir auf Eso gefundene Art als

Alnus Mayrii Callier

und erkennt die von mir schon 1886 als nova species gesammelte, aber erst von Sargent 1894 beschriebene

Alnus tinctoria Sargent

als vollberechtigte Art an; nach meinen Messungen erreicht sie im mittleren Eso selbst 35 m Höhe.

Von anderen Erlen seien noch erwähnt:

Im Klima, wie es Edelkastanien und Rotbuchen paßt, wächst diese Erle in höheren Erhebungen zu einem mächtigen Baume heran; Blätter nach Tafel XV; doppelt gesägt; Holz mit gelbbraunem Kerne.
die beiden amerikanischen Birken. Das Blatt trägt am Rande eine
große Bezzahnung: einzelne Zähne in bestimmten Abständen besonders
hervortretend und gegen die Blattbasis hin gekrümmt. In der Heimat
ein 30 m hoher Baum mit walzenförmigem, aber nicht weiß, sondern
glanz und bündeltem Schaft; die Birke hat sich in Grafaruth völlig frost-
hart gezeigt; in vier Jahren ist sie 2,5 m, in sechs Jahren 4,5 m hoch
geworden; eine Abbildung eines heranwachsenden Bannes, der als
Schmuckbaum am besten freiständig erzogen wird, findet sich auf
Seite 251: einen erwachsenen Baum zeigt Abb. 24.
Die Blätter färben sich im Herbst dunkelgelb.

Betula occidentalis Hook. Westamerikanische Birke,
Black birch. Pazifische Region.
Blatt auf Tafel XII.

Ostamerika.
Blatt auf Tafel XII unter dem Namen papyracea.
Diese beiden haben forstlich sicher vor unserer Weißbirke nichts
voraus; ihre Schäfte aber bekleidet eine noch tadellose reinweiße
Papierborke: sie sind ein ganz hervorragender Schmuck in Wald und Park.

Betula wutaica n. sp. Wutaibirke.
Wutaishan 1). China.
In den Tälern des Wutaishan-Stockes
von Nordchina finden sich Halbbauumreste
der ursprünglichen Vegetation von Eichen,
Hainbuchen, Haseln u. a., darunter Birken
von 10 m Höhe, die zur Zeit der Besichti-
gung (März 1903) zwar kahl standen, an
ihren Zweigen aber noch die aufrechtstehenden Fruchtzähn-
chen trugen. Da auch die zugehörigen Blätter leicht zu fin-
den waren und überdies einzelne noch an den Zweigen
hafteten, konnte die Birke als eine der dahurica nahverwandte,
doch neue Art erkannt werden.
Blätter nach beistehender Abbildung kurzgestielt, fast herzförmig, aber mit gerade abgeschnittinem
Grunde, gezähnt: Rippen unterseits mit Borstenhaaren, ebenso Blattstiel

1) Wu-tai heift fünf Opferaltäre, Wutaishan das hiernach benannte Gebirge.
C. Dikotyle Laubbaumarten. 451

behaart. Rinde der jungen Triebe braun, kahl, warzig; am dreijährigen Triebe platz die Rinde in rotgelbe, düne Papierborke auf. Eracht-
zäpfchen aufrechtstehend, zylindrisch, Spindel kahl; Zapfenschuppen
dreiteilig, stark gebuckelt; im Winkel jeder Schuppe zwei bis drei
Samen: Same an den Narbenresten Borsten tragend. Am älteren
Baume erscheint frühzeitig eine grobtrübe, schwarze Borke.

Gattung Buxus. Buchsarten, Boxes, Buis.

Alle Buchsarten sind schattenertragende, langsamwüchsige, immer-
grüne, gegen tiefe Wintertemperaturen bei gleichzeitiger Besonnung
(Chlorophylltod, Blattbräune) empfindliche Holzarten; sie verlangen
warmes Klima (Lauretum und wärmeres Castanetum) und hohe Luft-
feuchtigkeit zur Erreichung nützbarer Baumgröße. Buchsholz ist ein
sehr schweres (spezifisches, lufttrocknes Gewicht 95) und hartes, außer-
dordentlich homogenes Material, da Früh- und Spätholz gleiche Härte
besitzen; aus diesem Grunde ist das gelbe Buchsbaumholz zu
Schnitzereien aller Art, insbesondere für xylographische Zwecke, sehr
gesucht; das beste Material wird nach dem Gewichte verkauft; bei
15 cm Baumstärke beginnt die Verwendbarkeit des Holzes, wozu ein
Alter von 35—40 Jahren nötig ist; im besten Klima hält der Buchs
mit 25 Jahren erst 10 cm Durchmesser nur auf gutem Boden leistet
er dieses: eine große forstliche Bedeutung könnten Buchsarten an den
Südwest- und Südöstküsten und den benachbarten südlichen Inseln von
Europa erringen; als Schmucksträucher lassen sie sich noch im ganzen
Castanetum, selbst dem wärmsten Fagetum verwenden.

Dr. Augustiné Henry, der bekannte Chinaforscher und -kenner
teilt mir mit, daß dieser Buchs nach seiner Ansicht eine deutliche
Art sei, welche in den Bergen von Hupeh sich findet; Blätter un-
gewöhnlich groß: 7 cm lang, 2,5 cm breit; einstweilen sei die Art zu
Ehren Henry's benannt und bis zur Feststellung ihrer übrigen Merk-
male unter diesem Namen festgehalten.

Himalaya.

In den „Waldungen des westlichen Himalaya“ habe ich über den
Standort dieses Baumes einiges mitgeteilt; sein Holz wurde früher bis
nach London exportiert, wo für einen Zentner 30 Mk. bezahlt wurden.
gibt pro Kubikmeter 570 Mk.

Japan.

Blätter am erwachsenen Baume kleiner als am heranwachsenden
(siehe nachstehende Abb. 171); Näheres über das Vorkommen des Buchses
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Gattung und Art Camellia japonica L. Kamellie, Tsubaki.

Japan, China.

Es mag überraschen, daß ich die allbekannte, immergrüne Kamellie mit ihren prächtigen Blüten zum Anbau empfehle für Klimalagen, in denen die Wintertemperatur nicht unter —10 °C herabgeht, das ist somit für das Lauretum und wärmste Castanetum von Südeuropa; die Kamellie könnte an warmen, steinigen, mit bessarem Boden zwischen den Steinen versehenen Hängen an der mittelständischen Küste recht wohl zu einem nutzbringenden Halbbaume erwachsen, dessen Holz für Dachsholzwaren und als Brennmaterial mit einem spezifischen, lufttrockenen Gewichte von 84,2 sehr gut brauchbar ist; ihr Schmuckwert in den luftfeuchtesten Gebieten von Südtirol und Norditalien ist allbekannt.

Gattung Carpinus. Hainbuchenarten.

Für sämtliche fremdländischen Hainbuchen liegt kein forstlicher Grund zum Anbau vor, nachdem die einheimische, europäische Art ein hoher Baum auf frischem, gutem Boden im wärmeren Klima des Fagetums werden kann. Allen Arten kommt ein merkliches Schattenerträgnis neben Raschwüchsigkeit und das gleiche, sehr harte und schwere Holz (spezifisches, lufttrockenes Gewicht 80) zu. Das Holz ist hieran sowie an dem unregelmäßigen Auftreten von großen zusammengesetzten
Markstrahlen (siehe beistehende Abb. 172) leicht erkenntlich. Der Stamm selbst ist spanrückig und der Verlauf der Jahresringe am Querschlitze wellig. Wenn Härt und hohe Brennkraft verlangt wird, ist das Carpinusholz vorzüglich; Dauer besitzt es nicht. Zur Bestockung kalkiger, sonniger, trockener Hänge mit Halbbäumen eignen sich die Hainbuchen gut.

Unter den fremden Arten dürfte den größten Zierwert besitzen:

Carpinus cordata Blum.
Herzblätterige Hainbuche.

Blatt groß, mit herzförmiger Basis; Früchte sehr zahlreich in einer kurzen, großen Traube zusammensitzend.

Gattung Carya (syn. *Hicoria*).
Hickory-Arten. Hickories.

Die Hickorys sind in der Jugend bis zum zehnten Jahre langeswüchsig, ertragen mäßige Beschattung, verlangen sie aber nicht, soweit die besten, die nordischen Arten in Frage kommen und sobald sie in der ihrer Heimat parallelen Klimazone angebaut werden, das ist das

Nachdem die weiße Hickory alle anderen an Frosthärte und Holzgüte übertrifft, erscheint sie für Mitteleuropa allein anbauwürdig; im Castanetum von Südeuropa mögen auch die übrigen Arten spezielle Vorteile bieten. Auf die Unterscheidung der Arten nach den Zahnformen am Blattrande habe ich bereits 1890 hingewiesen.
Carya alba Nutt. (syn. *Hicoria ovata* Britt.).

Weiße Hickory, Shellbark Hickory. Ostamerika.

Der amerikanische Name (blätterborkige Hickory) rührt von der Eigen tümlichkeit des Baumes her, schon im mittleren Alter eine dünne, in 5 cm breiten und langen Fetzen am Baume verbleibende Borke zu bilden. Das Blatt besteht aus fünf Fiederblättern: die drei obersten sind die größten, ober- und unterseits glatt, an den Rippen unterseits etwas Haare; Blattrand (Tafel XII; zweimal vergr.) stumpf gesagt, die Zähne behaart; größte Breite bei allen Blättern in der Mitte; Knospen groß; äußerste Schuppen am oberen Ende dunkelbraun; mit der Spitze etwas abstehend, innere braung länzungen behaart. Früchte nach Tafel XIII 1/2 natür. Größe. Diese Art ist am weitesten verbreitet und gilt in Amerika als die beste Art. Das Holz ist wohl das schwerste, das winterkahe Baumaten der nördlichen Erdfäite bilden: spezifisches Gewicht 84; eine bei Hamburg gewachsene weiße Hickory, die ich 1884 von John Booth zur Untersuchung erhielt, zeigte mit 40 Jahren bei 17,6 cm Durchmesser ein spezifisches absolutes Trockengewicht von 80. Die schwach braune Färbung des Kernes beginnt erst mit dem 50. Jahre; dadurch ergibt sich ein sehr breiter Splint, ein Umstand, der bei diesem Baume günstig ist, da für den genannten, speziellen Verwendungszweck Splintholz elastischer ist als Kernholz; die natürliche Dauer der Holzes ist gering.

Zur Vorbereitung der Keimung empfiehlt sich 10- bis 14tägiges Einlegen der Nüsse in Wasser zur Aufquellung der äußerst harten Samenschale: wenn 12-jährige Pflanzen 1,5 m hoch geworden sind, kann man noch zufrieden sein: von da ab steigt sich der Höhenwuchs alljährlich.

Carya amara Nutt. (syn. *Hicoria minima* Britt.).

Bitternuss, Bitter-nut-hickory. Ostamerika.

Carya olivaeformis Nutt. (syn. *Hicoria Pecan* Britt.).

Picannus, Pecan. Südstaaten von Ostamerika.

15 Fiederblättern setzen das Blatt zusammen: jedes Blätterchen sichelförmig gekrümmt, die seichte, haarlose Beizahnung fehlt in der Regel auf der Innenseite der Sichel. Der Baum ist von Anfang an raschwüchsig, ist aber wegen seiner schmackhaften Nüsse (Tafel XIII 1/2 natür. Größe), welche auch auf dem europäischen Fruchtmärkte in
großere Menge erscheinen, nur Obstbaum. Nur im Castanetum anbaufähig und -würdig.

Carya porcina Nutt. (syn. *Hicoria glabra* Britt.).

Carya sulcata Nutt. (syn. *Hicoria laciniosa* Sarg.).

Großfrüchtige Hickory, Big. *Shellbark hickory*. Ostamerika.

Carya tomentosa Nutt. (syn. *Hicoria alba* Britt.).

Sieben Blättchen bilden ein Blatt: Blattflächen, Blattstiel und Rippen unterseits weichwollig behaart, ebenso junge Triebe und Knospen schuppen (Tafel XII): Blattstiele den Winter über am Triebe verbießend; Holzvert geringer als bei der weißen Art.

Gattung Castanea. Edelkastanie, Chesnuts, Châtaigners.

Die Edelkastanien gehören der wärmeren Hälfte des winterkalten Laubholzes an und sind für diese geradezu typisch: in der kühleren Hälfte, im Fagetum, finden sie auf den wärmsten Standorten noch ein der Heimat nahestehendes Klima; doch unterbleibt vielfach bereits eine Fruchtreife, und die Gefahr des Erfrissens der Triebspitzen oder selbst der ganzen Pflanzen wird in Mitteleuropa um so größer, je weiter die Anbaufläche von der Meeresküste entfernt liegt; das wilde insulare Klima von England ist geradezu eine zweite Heimat für Edelkastanien geworden.

In ihrem heimatlichen Gebiete sind die Edelkastanien Halbschatt- und Schattenholzer (conif. Punkt 39 des folgenden VIII. Abschnittes): sie sind mittelraschwüchsig, verlangen frischen, tiefgründigen, lockerem Boden von vorwiegendem Gehalte an Kieselsäure: sie besitzen große Stockausschlagfähigkeit. Der Anbau hat am sichersten in größeren Gruppen oder reinen Beständen im weichen Gelände, sehr weitständig (6—8 m) zu geschehen, wenn es sich um Fruchtbäume, in gewöhnlichem, engem Verbande (1,0—1,5 m), wenn es sich um Hochwald, in 2 m Abstand, wenn es sich um Niederwald handelt. Die Aufzucht der Pflanzen, wenn
nicht Freilandsaat gewählt wird, ist leicht; schwieriger ist, wenn Herbstsaat unmöglich ist, die Überwinterung der Samen, welche in Gruben, Mieten, Kellern u. dergl. zu geschehen hat; ausgetrocknete Früchte haben die Keimkraft verloren.

Das Holz (Tafel XVI, 25) ist, wie Eichenholz, ohne große Markstrahlen: der Kern gefärbt, sehr dauerhaft, für ähnliche Bedürfnisse wie Eichenholz verbraucht; aus diesem Grunde sind die Edelkastanien überall, wo sie anbaufähig sind, auch anbauwürdig. Das große, dunkelgrüne Blatt gibt den Edelkastanien hohen Zierwert: die Samen sind genießbar.

Castanea crenata Sieb. et Zucc. (*syn. C. japonica* Bl.).

Blattstiele anfangs sternfilzig (nach Dr. Köhne). Blätter gemäß beistehender Figur, unterseits heller als oberseits.

![Blatt von Castanea crenata](image)

Das Holz, mit spezifischem Lufttrockengewichte von 55, mit nur 1.5 cm Splintbreite, wird besonders zu Eisenbahnschwellen verwendet.

Castanea dentata Borkh. (*syn. americana* Raltn.).

Amerikanische Edelkastanie, *Chesnut*. Ostamerika.

Blätter nach Sargent mit stärkeren Zähnen. Blattstiele stets kahl (nach Dr. Köhne); vor jedem Zahn eine tiefe Ausbuchtung; die Behaarung der Blätter und Triebe deutet darauf hin, daß in Europa auch *C. pumila* als *dentata* von den Pflanzenhandlungen geliefert wird.

Castanea vesca Gaertn. (*syn. C. castanea* Karst.).

Europäische Edelkastanie. Südeuropa.

Blätter weit sägezähnig, mit nach vorwärts gerichteter Stachelspitze (nach Dippel).

Für China werden noch eine Art (außer *crenata*) als *mollissima* Bl. sowie mehrere Varietäten beschrieben.

Gattung und Art Castanopsis chrysophylla A. DC.

Diesen herrlichen, immergrünen Baum zeichnet ein auffallend gerader Stamm mit dünnen Seitenästen aus: Blätter (nach Tafel XV 1/2 natür. Größe) oberseits dunkelgrün, unterseits goldgelb,haarig; Knospen kahl, mit bewimperten Schuppenrändern; das harte Holz findet
vielfach Verwendung. Vom Lauretum Südeuropas, wo der Baum auch aus forstlichen Gründen beachtenswert ist, abgesehen, käme auch das Castanetum und die luftfeuchte Küsten- und Inselregion des westlichen Mitteleuropa für den Anbau, wenn auch nur in Parkanlagen, in Betracht.

Gattung Catalpa. Trompetenbäume.

Alle Angehörigen dieser Gattung sind etwas Schatten ertragende, frischen, guten bis mittelguten Boden beanspruchende, raschwachsende Holzarten; da sie in ihren heimatlichen Standorten dem Castanetum angehören, so beschränkt sich ihr Anbau in Mitteleuropa auf die wärmsten Lagen, an Südhängen auf die untere, gegen das Tal sich ausbreitende, bodenfrischere Hälfte; als Unterbau unter locker stehenden Lichthölzern (Eichen, Föhren I. bis II. Bonität) sind sie zwar gegen Früh- und Winterfröste ziemlich geschützt, sie wachsen aber wegen Wasser- und Lichtmangel langsam; auf ebenen Freilagen, insbesondere in fettem Gartenboden, treiben sie bis in den Spätherbst und erfrieren über Winter, oft bis zum Wurzelstocke; da im folgenden Jahre infolgedessen die neuen Triebe zu spät erscheinen, wiederholt sich das Erfrieren aller Jahre. Alle Holzarten zeigen ähnliches (Punkt 28 des VIII. Abschnittes). Trotzdem erscheint der Anbau des bestwüchsigen Trompetenbaumes, wenn auch in bescheidenem Umfange, in Mitteleuropa forstlich beachtenswert wegen des dunkelgefärbten Kernholzes (Tafel XVI, 26), das wegen seiner hervorragenden Dauer zu Eisenbahnschwellen, Brunnenröhren und dergleichen Verwendungen im Boden stets gesucht ist; spezifisches Gewicht 42; dabei umfaßt der Splint nur den letzten Jahresring, alles übrige ist Kern. Der Anbau sollte in Gruppen oder selbst kleinen reinen Beständen mit stärkerem Pflanzzmaterialie geschehen. Durchgreifende Kennzeichen an jungen Pflanzen scheinen zu fehlen: *Catalpa ovata* scheint etwas weniger frostempfindlich als *C. speciosa*; auf die Einführung von *C. Bungei* aus China wäre besonderes Augenmerk zu richten.

Catalpa bignonioides Walt. (syn. *C. Catalpa* Karst.).

Trompetenbaum, Catalpa, Indian Bean. Ostamerika.

Blätter beim Zerreifen einen unangenehmen Geruch gebend; nur Halbbaum für Parkzwecke.

Näheres über Blattunterschiede, Verhalten gegen Frost fehlt; eine größere Frosthärte läßt sich vermuten, bis jetzt aber aus Mangel an Pflanzen noch nicht beweisen.
Catalpa ovata G. Don. Kämplers Trompetenbaum, Kisasage.
China.

Die Angaben der floristischen Werke, daß dieser Trompetenbaum in Japan heimisch sei, sind irrig; er ist nur als Parkbaum bekannt, der aus China via Korea nach Japan gebracht wurde: C. Bungei und ovata sind daher voraussichtlich identisch; nach Dr. Köhne be-

sitzt C. Bungei nur im untersten Nervenwinkel, C. ovata in vielen Nervenfeldern Drüsenflecke.

Catalpa speciosa Ward. (nach Sargent nicht Ward., sondern Engelm.), Westlicher Trompetenbaum, Western Catalpa,
Weststaaten von Ostamerika.

Blätter nach obenstehender Figur: beim Zerreiben fehlt der unangenehme Beigeruch¹); auf kräftigen, frischen Böden der Flusseu-

¹) Nach Dr. Köhne nur im untersten Nervenwinkel jederseits mit drüsentragendem Fleck.
wird der Baum bis 45 m hoch. In Amerika ist er sehr raschwüchsig; wegen des vorzüglichen Holzes wird er vielfach angebaut; solche Anlagen verlangen wegen der Neigung des Baumes zu krummem, astigem Wuchse einen engen Schlufs (1—1.5 m Abstand).

Gattung und Art Cedrela chinensis Tuss.

Chinesischer Surenbaum, Chanchin. China.

Das paarig gefiederte Blatt trägt 16 Fiederblättchen; diese kahl, nach nachstehender Abb. 179; junge Blättchen rötlich; sehr raschwüchsig.

C. Dikotyle Laubbaumarten.

Gattung Celtis. Zürgelbäume.

Celtis occidentalis L.
Amerikanischer Zürgelbaum,
Sugar Berry. Ostamerika.

Wird ein hoher Baum; Holz in Amerika wenig geschätzt.

Celtis sinensis Pers.
Chinesischer Zürgelbaum.

China.

Blatt nach nebenstehender Figur: Rippen stark hervortretend; hat sich selbst noch im forstlichen Versuchsgarten zu Grafrath als ziemlich hart erwiesen. Noch mehrere chinesische Arten sind beschrieben worden; die japanischen Arten dürften mit den chinesischen identisch sein, da es in Japan keine einheimische, d. h. wild wachsende Art gibt.

Gattung und Art Cercidiphyllum japonicum Sieb. et Zucc.

Blätter des einjährigen Triebes länglich; an zwei- und mehrjährigen Trieben bilden die Kurztriebe ebenfalls nur ein Blatt; je älter der Kurztrieb, um so mehr nähert sich das Blatt einem Kreise; siehe nachstehende Figur. Blatt gekerbt, Blattstiel rot; ebenso einjähriger Trieb rot mit weißen Lenticellen; Blätter zweizeilig gestellt. Im Castanetum-Klima der Insel Eso bildet der Kuchenbaum mit Eichen und Buchen auf frischen Böden sehr stattliche Schäfte von 30 m Länge und 0,94 m Durchmesser, mit einem astlosen Stücke von 13 m Länge; die Neigung des Baumes, mehrere Schäfte schon vom Boden an zu entwickeln,

Die bisherigen Ergebnisse ermuntern zur Fortsetzung: in Riedenburg (Altmühltal) ist die Pflanze in neun Jahren 3,4 m hoch geworden; Dr. Schwappach berichtet über Schnellwuchs und prächtige Färbung der Blätter im Frühjahr und Herbst hervor; die einzelnen Pflanzen sind in der Herbstfärbung nicht gleich: manche Pflanzen zeigen, wenn trockener Sommer vorausgeht, alle Farben vom hellsten Gelb durch Karmin- und Scharlachrot zum tiefsten Violett; aber auch im Sommer ist der hellgrüne, mit aufstrebenden Ästen versehene Baum eine der hervorragendsten Zierden jedes Gartens. Die abgefallenen Blätter entwickeln einen so starken Geruch nach frisch gebackenem Kuchen, daß die Besucher des Grafrather Gartens den Baum „Kuchenbaum“ getauft haben.

Gattung und Art Cinnamomum Camphora Nees.

Kampferbaum, Kusu, Kuss. Japan.

Selbstverständlich kann der Kampferbaum nur für die wärmsten Gebiete von Südeuropa in Frage kommen: nur in Örtlichkeiten, in denen während des Winters die Kälte nicht unter —10° C. herabsinkt, der erste Frost nicht vor November auftritt, wie an der Küste von
Portugal, Spanien, Südfrankreich, dann an den Küsten der Adria bis nach Kleinasien hin, auf den Inseln des Mittelmeerischen Meeres; überall dort ist der Baum anbautüchtig und in isolierten Stämmen wie in lockeren Hainen auch anbauwürdig. Der ganze Baum enthält in aus Parenchymzellen hervorgegangenen kurzen Schläuchen den Kampfer, der aber bis jetzt nur aus dem Kernholze gewonnen wird; je mehr Licht und Wärme einwirken, desto reicher ist der Gehalt an Kampfer: der Wurzelhals und die Wurzeln enthalten die größten Mengen (Speckkampfer). Das Holz wird zerkleinert in Retorten erwärmt: die Dämpfe kristallisieren in einer Kühlvorlage. Der Wert des Kampfers eines einzigen starken, alten Baumes geht bis zu 4000 Mk.; siehe Abbildung von Fig. 32 S. 121. Von sehr großem Wert ist sodann das Holz, dessen rötliches Kernholz hervorragenden Wert als Schiffsbammaterial besitzt: bei Verwendung im Boden ist es fast unverwüstlich: 30jährige Dauer zeigen Pfosten; über 100 Jahre erhalten sich die Stöcke, von denen die Stämme z. B. zu Tempelbauten abgeschnitten wurden: das rötliche Kernholz von dem Nussbaumholze ähnlicher Struktur (Tafel XVI. 28), ist zu Kisten, Kästen überaus gesucht: selbst wenn man vom Schmuckwerte absieht, müßte der Baum die Süd- und Mittel-Asianer zu systematischem Anbau anspornen: im Lauretum der außereuropäischen Kolonien müßte der Baum ebenfalls angebaut werden, so hoch ragt sein Nutzen über den anderer Bäume empor.

Gattung und Art Cladrastis amurensis Rup. (syn. Maackia amurensis Rup.). Amurische Maackie, Inu-enshu. China, Japan.

Blätter gefiedert (nach nebenehrender Figur), unpaarig, unterseits Blattrippen und Blattstiele behaart, untere Blattfläche nur spärlich behaart; die jungen Blätter brechen aus der Knospe mit silberweisser Behaarung hervor: junge Triebe behaart. Die Maackia wird ein hoher Baum mit sehr wertvollem braunem Kernholze (Tafel XVII. 31), als Möbelholz besonders geschätzt: der Splint ist höchstens 1 cm breit; spezifisches Trockengewicht 62. Der Anbau des Baumes käme für das Castanetum und das ganze Fagetum, somit für ganz Süd- und Mittel-

Abb. 182. Blatt des Kampferbaumes (Cinnamomum Camphora), Natürl. Größe. H. Mayer gez.

Abb. 183. Stück eines Fliederblattes der amurischen Maackie (Cladrastis amurensis), Natürl. Größe. H. Mayer gez.
Die für Europa anbaufähigen fremden Holzarten.

Europa in Frage. Denn bis heute hat sich der Baum selbst noch im kühlen Fagetum von Grafrath als frosthart gezeigt; mit sieben Jahren sind die Pflanzen allerdings erst 2 m hoch geworden, was anfänglich langsamten Wuchs vermuten läßt; auf guten und minder guten Böden (Föhrensandboden III und IV) wären Anbauversuche anzuraten.

Gattung Diospyros. Dattelpflaumen.

Diospyros Kaki L. Kakipllaume, Kaki. China, Japan.

Diospyros Lotus L. Schwarzer Kaki, Kurokaki. Japan.

Blätter symmetrisch, größer und länger gestreckt als bei der vorigen Art: oberseits Blattrippen behaart, unterseits alles behaart: Kernholz oft pechschwarz, oft mit schwarzen und grauen Jahrringzonen das Holz durchsetzend.

Blätter groß, drei-bis fünflappig, im letzteren Falle ahornartig; junge Blätter oberseits mehr als unterseits behaart. Haare vergänglich; in den Winkeln der Blattbuchtchen Drüsen; ebenso zwei gestielte, abwärts gebogene Drüsen an der Basis des Blattes zu beiden Seiten des Blattstieles: aus den Früchten wird ein wertvolles Öl gepreßt. Im Castanetum von Europa, vielleicht auch noch in den wärmsten Lagen von Mitteleuropa anbauwert.
C. Dikotyle Laubbäumarten.

Gattung *Eucalyptus*. *Eukalyptus*, *Gumtrees*.

Die Eukalyptusse, etwa 150 Arten, zählen zu den wichtigsten Bäumen ihrer subtropischen Heimat von Südaustralien; sie sind über die ganze Welt, wo immer der Winter mild genug ist, verbreitet worden; im

mittleren und südlichen Kalifornien, besonders an der feuchteren Meeresküste haben sie eine zweite Heimat, ein zweites Optimum gefunden.\(^1\) Außerordentliche Schnellwuchsfigkeit und vorzügliche Qualität des Holzes haben die Eukalyptusse als Waldbäume, als Windbrecher, als Schattenspender, als Nutz- und Brennholzerzeuger in der Fremde, in der neuen Heimat über die heimischen Holzarten hinweg unentbehrlich gemacht. Wegen des den Bäumen innewohnenden, stark riechenden, ätherischen Öles hat man ihnen auch die Eigenschaft zugeschrieben, malarialische Miasmen zu töten und damit eine verseuchte, versumpfte

\(^1\) Mayr, Fremdländische Wald- und Parkbäume.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Gegend zu sanieren. Versuche, die in den Sumpfen der Campagna südlich von Rom, bei Tre Fontane, gemacht wurden, scheinen diese Auffassung zu bestätigen; allein Professor T. Crudeli, Alf. Gaskill und andere haben gezeigt, daß die Assanierung auf eine einfache Entwässerung durch die Bäume zurückgeführt werden muß, eine Aufgabe, welche an der betreffenden Stelle ebensogut von anderen Holzarten, ja, wie Gaskill sagt, ebensogut von den viel wertvolleren Holzarten der europäischen Flora hätte gelöst werden können.

Eucalyptus amygdalina Lab. Pfefferminzbaum, _Peppermint-tree, Giant Eucalyptus._ Australien.

Dieser Baum erwächst in seiner Heimat zu den riesigsten Dimensionen; Baron von Müller nennt ihn die merkwürdigste und wichtigste Pflanze in der ganzen Schöpfung.

Eucalyptus Globulus Lab. Blauer Eukalyptus, _Blue gum._ Australien.

Jugendliche Blätter hellblaugrün, in Gestalt von den sichelförmig gekrümmten, dunkelgrünen Blättern der alten Pflanzen verschieden. Dieser Baum ist von allen der schnellwüchsigste, wird am meisten kultiviert und ist über die Subtropen der übrigen Weltteile verbreitet worden; er ist für feuchte und trockene Lagen brauchbar; sein Holz von bläsbranner Farbe steht im Werte der folgenden Art etwas nach.

Eucalyptus rostrata Schl. Roter Eukalyptus, _Red gum._ Australien.

Baron von Müller nennt ihn den wertvollsten aller Eukalyptusse. Blätter groß, langgestreckt, weidenblätterartig, nicht sichelförmig gekrümmt. Kernholz rotbraun (Tafel XVII, 30); es gilt als das dauerhafteste Holz, das Laubbäume bilden können.
C. Dikotyle Laubbaumarten.

Gattung und Art: Eucommia ulmoides Oliv.

Chinesischer Gutta-percha-Baum. China.

Dr. Augustine Henry hat mich auf diesen Baum aufmerksam gemacht unter dem Beifügen, daβ derselbe im wärmeren Europa, das wäre also das Castanetum, anbaufähig sein müssste; seine Anbauwürdigkeit ergebe sich daraus, daβ er in Blatt und Rinde Guttapercha liefere.

Abb. 187. Abbildung eines Haines des blauen Eukalyptus (Eucalyptus Globulus); im Vordergrunde Brennholz, für den Verkauf zugerichtet; bei Los Angeles, südl. Kalifornien. Bureau of Forestry photogr.

Gattung und Art: Euptelea polyandra Sieb. et Zucc.

Fusasakura. Japan.

Als eigenartiger Zierbaum und -Strauch beachtenswert.

Gattung Fagus. Rotbuchen, Buchen, Beeches, Hêtres.

Nur wenige Arten enthält die Gattung; die einzelnen Arten aber verdrängen durch ihr intensives Schattenertränks und dementsprechend auch Beschattungsvermögen andere Holzarten und bilden deshalb weit ausgedehnte reine Bestände in Amerika, Asien und Europa; nur von den chinesischen Buchen sind reine Bestände unbekannt; in allen drei Weltteilen kennzeichnen sie die kühlere Hälfte des winterkahlen Laubwaldes, welche deshalb das Fagetum heißt. Alle Buchen verlangen guten, frischen, tiefgründigen, kalkreichen Boden zur vollendeten Entfaltung; auf Kahlflächen, besonders in Mulden, sind sie von verspäteten
Fröstern sehr belästigt; unter Schirm fällt Frost weg, dafür sind die Pflanzen langsannwüchsig; freigestellt hebt sich ihr Wuchs sehr rasch, so daß sie in ihren besten Lagen allen beigemischten Holzarten gefährlich werden. Unter dem Kronendache der Buchen sterben alle anderen Holzarten und Pflanzen ab aus Mangel an Wasser und Licht; darin liegt eine für den Boden nützliche Eigenschaft.

Abb. 188. Blatt der *Eupheta polyandra*. Blatt $\frac{1}{2}$-1, Früchte natürl. Größe. H. Mayr gez.

Das Blatt zeigt in seiner oberen Hälfte eine ganz seichte Bezahlung: Früchte langgestielt: einjähriger Trieb rotbraun mit weißen Lentizellen: Knospe deutlich gestielt.

Blattrand weit gekerbt. lange Zeit im ersten Jahre die reichliche, seidenglänzende Behaarung festhaltend. besonders an den Rippen, auch
VH. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

unfertige Triebe mit Seidenhaaren, daher auch die japanische Bezeichnung San-mo-kio (Berghaar-Keaki): einjähriger, fertiger Trieb graugrün. Knospen ohne Einschnürung am Triebe sitzend (siehe vorige Abb.). Auffallend ist, daß in Japan der Teil des Holzes als der wertvollste gilt, welcher in Europa als der wertloseste angesehen wird, das ist der rote oder falsche Kern; er wird in Japan künstlich hervorgerufen, indem der Baum nach der Fällung mit der Rinde für ein ganzes Jahr in Wasser gebracht wird. Dadurch färbt sich das Holz um das Mark herum rot; dieser Rotkern wird sogar zum Schiffbau verwendet, und das Holz dient als Unterlage für Lackwaren, weil es die unangenehme Eigenschaft des Wurzels und Schwindens verloren hat. Die japanische Methode wäre auch in Europa prüfenswert, um dem Buchenholze eine weitergehende Verwendung zu sichern.

Gattung *Fraxinus*.

Eschenarten, *Ashes, Frênes.*

Alle Eschen stehen sich in ihrer Biologie sehr nahe; sie ertragen ziemlich kräftigen bezw. lang andauernden Lichtentzug (Halbschatthölzer im Sinne von Punkt 34, 39 des VIII. Abschnittes); ziemlich schnellwüchsig auf kräftigen, frischen bis feuchten, nicht durch Stagnation versäumten Böden, wie sie insbesondere entlang den Flüssen sich finden; ihr bestes Klima (Optimum) ist das Übergangsgebiet vom Castanetum zum Fagetum; in beiden Gewächszonen aber, ja selbst bis in das Picetum und Abietum dringen sie vor. Auf feuchten Standorten ohne offene Wasserflächen und deshalb mit extremen Temperaturen leiden die Eschen durch Junifröste; frisch verpflanzte auch durch verfrühte Fröste wegen ungenügenden Ausreitens der Triebspitzen. Spät austreibende Eschen sind etwas sicherer gegen verspätete Fröste als frühreibende. Das Holz, an den weißen Punkten (Gefäße mit Parenchymumgebung) im Spätholz leicht erkennbar, ist sehr elastisch und zähe, dem Hickoryholze nahekommend: Unterschied gegen Hickory auf Abb. 174. Splint sehr breit, Kern schwach gefärbt; Holz ohne Dauer. Splintholz für Radspeichen, Griffe, Deichseln usw. höher bewertet als
Kernholz; des Holzes wegen kann man nur die Schwarz- oder Korb-esche, der etwas größeren Frosthärte wegen auch noch die Weiβesche, der Zierde wegen alle Eschen empfehlen.

Fraxinus americana L. *Weiβse Esche, White Ash*. Ostamerika.

Sieben Fiederblättchen, schwach gekerbt, mit einem kurzen Stiel-
chen am gemeinsamen Blattstiele sitzend, unterseits heller; das unpaarige
Endblättchen ist das grösste unter den
sieber; Knospen rostfarbig; Trieb hell
ockerfarbig, ebenso Rinde der zehn- und
mehrjährigen Stangen. Früchte Tafel XIII,
natürl. Gröβe. In Spätfrostlagen hat man
diese Esche besonders in Bayern hier und
da der heimischen Art vorgezogen; in
ganz Bayern sind etwa 100000 weiβse
Eschen im Staatswalde: nur 31,6% er-
hielten Note I, 42% wegen Frostbeschädi-
gung Note III; als Zierbaum, Alleebaum
ist die weiβse Esche der europäischen
überlegen.

Fraxinus cinerea Bosc.
er scheint ständig in Samen-
und Pflanzen-
katalogen; die Art ist nicht anerkannt;
voraussichtlich ist stets *alba* damit gemeint.
nicht die minderwertigere *pubescens*.

Fraxinus excelsior L.
Europäische Esche. Europa.
Mit ihren schwarzen Knospen und hell
grau-grünen Trieben genügend bekannt.

Fraxinus caroliniana Mill.
(syn. *platycarpa* Michx.). *Wasser-
esche, Swamp Ash*. Östamerika.
Früchte nach Tafel XIII, natürl.
Gröβe. Holz geringwertig.

Fraxinus juglandifolia Lam. *Walnußblättrige Esche*. Ostamerika.

Sargent (l. c.) führt diese Art nicht an; nach Dr. Köhne (l. c. S. 312) ist das Blatt oberseits kaum glänzend, matt, unterseits grau-grün, während *americana* oberseits dunkelgrüne, glänzende, unterseits weiβ-graue Blättchen besitzt.

Blättchen nur unterseits parallel den Rippen behaart, sonst alles kahl; Knospen mattschwarz; letzte Spitze der Schuppen braun.

Blättchen entlang den Rippen unterseits kurz rostbraun behaart; gemeinsamer Blattstiel oberseits mit tiefer Furchen; Knospen matt violett- bis schwarzgrün; die an der Spitze auseinanderschlagenden Schuppen rostbraun behaart.

Alle Blättchen gleich groß, am Blattstiel sitzend, scharf gesägt; Knospen dunkelgraurot; Rinde frühzeitig kleinschuppig. Die Korbesche liebt noch frischem Boden als die Weissesche; sie wächst aber in der ersten Jugend beträchtlich langsamer. Das Holz ist durch eine vorzügliche, tangentielle Spaltbarkeit und Zähigkeit ausgezeichnet, welche Eigenschaften dasselbe zu Fafsreifen, Körben und anderen Flechtwaren geeignet erscheinen lassen. Früchte nach Tafel XIII natürl. Größe.

Fiederblättchen schwach gekerbt oder ganzrandig; junge Triebe und Blättchen beiderseits weißlich behaart; Knospen gelbrot, kurzfilzig; anfänglich sehr raschwüchsig; frosthart; forstlich wohl ohne Vorzug. Früchte nach Tafel XIII natürl. Größe.

Fiederblättchen gestielt; junge Triebe, fertige Blattstiele und Blattunterseite behaart, an unfertigen Blättern Behaarung wollig; Knospen hellbraun, kurz behaart; ein mässig hoher Baum ohne forstlichen Wert.

Fraxinus pubinervis mihi (syn. Frax. Bungeana var. pubinervis Blume).

Blättchen sitzend, unterseits parallel den Mittel- und Seitenrippen stark filzig behaart; Blattrand gesägt, mit etwas aufwärts gedrehter Endspitze: Blattstiel oberseits gefurcht; in Dippels Handbuch der Laubholzkunde nicht aufgeführt. Knospen hell-grau, fast weißlich; junge Triebe hell ockerfarbig.

Fraxinus quadrangulata Michx. Blauesche, Blue Ash.

Ostamerika.

Blättchen in eine lange Spitze ausgezogen, unterseits wollig; Triebe mit korkigen Längskanten: Knospen hell ockerfarbig, fast weißlich, kurz filzig.

Fraxinus Sieboldiana Bl.

Blättchen nach nebenstehender Figur; Basis der Fiederblättchen und Blattstiele behaart; Knospen dunkelbraun; Zweige fast vierkantig.

Fraxinus viridis Michx.

Grünesche, Green Ash. Ostamerika.

Blättchen beiderseits gleichgrün; Blättchen im oberen Drittel gezähnt; Knospen braun-grün, kurz filzig; wegen Frostempfindlichkeit im Winter wohl forstlich wertlos.

Gattung Gleditschia 1). Gleditschien oder Christusdornen.

Die zu den Leguminosen zählenden Gleditschien sind in Ostasien (China) in großer Zahl von Arten und Individuen vorhanden; ihr Nutzwert im Holze (hart, schwer [spezifisches Gewicht 63], mit rötlichem Kerne) ist in beiden Waldregionen gering; neuerdings wird Gleditschien-Holz zu Eisenbahnschwellen benutzt; es verdienen die Gleditschien jedenfalls eine forstliche Beachtung, und zwar innerhalb des Castanetums; je weiter im Fagetum vordringend man Gleditschien pflanzt, um so mehr friert der unfertige Trieb während des Herbstes.

Die für Europa anbaufähigen fremden Holzarten.

und Winters zurück; in den wärmsten Lagen von Mitteleuropa sind sie raschwüchsige Lichtholzarten, welche vermöge ihrer Zugehörigkeit zu den Leguminosen auch auf weniger gutem Boden (Föhrenboden III. Bonität) noch aufzawachsen vermögen. Das zierliche, doppelt gefiederte Blatt verleiht dem Baume Schmuckwert; die oft sehr starken Dorne geben dem Baume einen eigenartigen Anblick.

Gleditschia japonica Miqu.

Auch in Japan ist eine Form ohne Dornen bekannt: *Gleditschia japonica inermis.*

Gleditschia sinensis Lam. Chinesische Gleditschie. China.

Näheres über diese Art ist mir nicht bekannt; noch fünf weitere Arten wurden in China gefunden.

Gleditschia triacanthos L. Amerikanischer Christusdorn oder Gleditschie, Honey-Locust. Ostamerika.

Genügend bekannt: zu Anpflanzungen auf geringeren Böden neben Robinia heranzuziehen.

Gattung Gymnocladus. Schusserbäume.

Als Angehörige der Leguminosen müßten auch die Schusserbäume auf geringeren Böden noch wachsen; sie sind ziemlich raschwüchsige Lichtholzarten, welche ein bräunliches, hartes, dauerhaftes Holz mit schmalem Splinte bilden; im Castanetum und wärmeren Fagetum sind sie völlig hart; selbst im kühleren Fagetum von Grafrath ist bis jetzt kein Abfrieren der Triebe, mit Ausnahme der frisch verpflanzten Exemplare, eingetreten: der Schmuckwert ist groß.

Die mir nicht näher bekannte Art dürfte ebenso anbauwürdig sein wie die nachfolgende, von der die Anbaufähigkeit bereits nachgewiesen ist.

Nachstehende Abb. 197 gibt einen Teil eines doppelt und paarig gefiederten Blattes wieder; unterseits Blättchen an den Rippen weich-
haarig; Blattstiele rotbraun; Basis der Fiederblätter des ersten Grades angeschwollen; einjähriger fertiger Trieb weifs bereift, durch zahlreiche korkige Lenticellen rauh.

Gattung und Art: *Hovenia dulcis* Thunb. *Quaffbirne, Hovenie, Kenponashi.* Japan, China.

Blatt nach untenstehender Abb. 198, unterseits weichwollig behaart, oberseits glatt; die untersten Seitenrippen bilden auf eine kurze Strecke weit den Blattrand; Nebenblätter pfriemenförmig, sehr hinfällig. Die Beeren sitzen auf fleischig angeschwollenen Stielen, welche Stiele geniesbar sind. Da die, wenige Glieder umfassende Beere endolde dem Quaffe eines Raubvogels gleicht, so nennt der Japaner den Baum die Quaffbirne, was eine zutreffende Verdeutschung des Wortes Hovenie wäre. Der Baum wächst auf gutem Boden des Castanetums rasch; im Fagetum sind nur die wärmsten Lagen noch geeignet, die Pflanze ohne allzu starkes Abfrieren durch den Winter zu bringen; starke Stockausschlagfähigkeit. Für ganz Süd- und für Westeuropa ist der
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Baum, weniger seiner eisbaren Fruchtstiele halber, als wegen seines feinen, schön rotgelb bis rot gefärbten, sehr dauerhaften Kernholzes (Tafel XVII, 32), das als japanisches Mahagoniholz besonders zu japanischer Holzmosaik viel gesucht wird, anbauwürdig. Aufzucht während des ersten Winters schwierig wegen Zartheit der Keimlinge; es dürfte sich Herbstsaat empfehlen, damit die Saat so frühzeitig als möglich im folgenden Jahre erscheint. Rinde des erwachsenen Baumes eine Borke mit kleinen, schmalen, diagonalrissigen Schuppen.

Gattung und Art: *Idesia polycarpa* Maxim. *Idesia, Ji-giri*. Japan.

Gattung Juglans.

Die Walnusarten, Walnuts, Noyers.

Die Aufzucht ist nicht nur im Obstgarten, sondern auch außerhalb, im Walde, eine lohnende, wenn auch die Nussarten ein warmes Klima wünschen; das klimatische Optimum der Nüsse liegt im Castanetum, doch betreten sie auch noch die warmen Lagen des Fagetums, soweit Eichenmutzholzzucht möglich ist; damit kommt als Anbauregion Süd Europa und der größere Teil von Mitteleuropa in Betracht. Der Auflösung zum Anbau der Walnüsse im Walde von Seiten der forstlichen Versuchsanstalten ist nur wenig entsprochen worden: in Bayerns
Staatswaldungen sind nur 1750 schwarze Nüsarbäume mit mangelhaftem Wuchse (Note III) vorhanden. Die Nüsarten verlangen ebenso wie die Hickory guten bis besten Boden; ausgebauter Pflanzgärtten sind daher für Nüsarten eine arge Zumutung; Dr. Fankhauser betont das Bedürfnis der Bäume an Kalk: die Nüsarten sind ziemlich raschwüchsig; trotz ihrer Pfahlwurzel lassen sie sich leicht verpflanzen; aber auch Aussaat an Ort und Stelle, besonders mit angekeimten Nüssen, ist anwendbar.

Juglans cordiformis Maxim.

Herzförmige Walnuß, Hime-gurumi. Japan.

Blättchen fast kahl, nur Rippen behaart, Rand nach nächstseitiger Abb. 201. Früchte herzförmig, mit langer Spitze; nach Dr. Köhnes Beschreibung (l. c. S. 76) würde die Abbildung eher auf mandshurica passen.

Blätter sehr groß; es ist zweifelhaft, ob die Art in Europa bereits eingeführt ist; nähere Merkmale mir unbekannt. Holz mit rötlich-graumem Kerne.

Juglans nigra L. Schwarze Walnuß, Black Walnut. Ostamerika.

Fiederblätter unterseits schwach behaart, lebhaft grün; Blattrand nach umstehender Abb. 202; Blättchen in längere Spitzen ausgezogen.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Juglans regia L. Europäische Walnuß.
Südost-Europa bis China.

Diese Art ist an dem gefiederten Blatte, an dem das einzelnstehende Blättchen das größte ist, am Mangel der Behaarung unschwer erkennbar. Holz im Kerne unregelmäßig hellbraun-violett geflammt. Mehr Frucht- als Waldbaum; im Kaukasus in reinen Beständen von grösster Ausdehnung vorhanden.

Juglans Sieboldiana Maxim. Siebolds Walnuß, *Oni-gurumi.*
Japan.

Diese Art besitzt die längsten Blätter und grössten Blättchen von allen bekannten Walnüssen; sie übertrifft deshalb im Zierwerte alle anderen. Fiederblättchen eiförmig, mit kurzer Spitze, beiderseits weichwollig behaart; Blättchenrand nach obenstehender Abb. 203. Knospen groß, hellgrau. Je älter die Kulturen mit dieser Holzart werden, um so mehr zeigt sich, dass sie an Raschwuchsigkeit der schwarzen Nuß überlegen ist; sie scheint auch dem Abfrieren der Triebe im Winter weniger ausgesetzt, selbst in dem forstlichen Versuchsgarten zu Graf-rath. Mit sieben Jahren hat sie 2,3 m erreicht; sie ist sodann leichter zu verpflanzen und verdient jedenfalls eine forstliche Empfehlung. Das
Kernholz kommt in Farbe dem Holze der grauen Walnuß gleich (Tafel XVIII, 34). Rinde des Baumes ockerfarbig.

Gattung und Art: *Liquidambar styraciflua* L.
Storaxbaum, Liquidamber, Sweet gum. Ostamerika.

Der Zierwert des Baumes liegt in der prächtigen Herbstfärbung; tritt diese im Herbst nicht auf, dann sind die Gewebe noch nicht ausgereift, und die Pflanze erliegt verfrühten oder auch erst den stärkeren Winterfrösten.

Gattung und Art: *Liriodendron tulipiferum* L.
Tulpenbaum, Tuliptree, Yellow poplar. Ostamerika.

Das Blatt ist genügend durch die nebenstehende Abbildung gekennzeichnet; nur unterseits an den Rippen spärlich borstig behaart; die Endknospe von zwei großen Nebenblättern bedeckt; der Same, von geringer Keimkraft, liegt zum großen Teil ein Jahr im Boden, bis er keimt; junge Pflanzen ziemlich raschwüchsig, sind aber den Mäusen (Rindenfraß) und den Hasen (Zweigfraß) sehr ausgesetzt; Anstreichen mit verdünntem Teer hilft. Der Licht verlangende Baum wächst nur auf guten und frischen Böden, Flussufern, engen Tälern und frischeren Talsohlen; auf sonnigen, warmen Hängen, welche schon bei zweiwöchiger Trocknis an Dürre leiden, versagt er ganz; der Tulpenbaum muß für Mitteleuropa frosthart genannt werden, denn er wächst selbst im kühlen Fagetum von Grafrath ohne Zurückfrösten empor; sehr üppige Pflanzen verlieren wohl die Spitzen; am besten paßt er für das Castanetum. Der Baum erwächst auch im Freistande mit geradem...
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Schafte: prächtige Stämme weist der Urwald auf (siehe Abbildung 6, Seite 23).

Der Osagebaum ist sehr raschwüchsig, lichtverlangend, auch auf weniger gutem Boden noch wachsend, mit stacheligen Trieben und großen orangenartigen Früchten; als lebende Hecke beliebt. Das braunrote Kernholz ist sehr hart und schwer, von großer Dauer, eines der besten Hölzer für Strassenpflasterung, Eisenbahnschwellen, Radnaben. Der Baum ist daher forstlich beachtenswert, kann aber wegen Abfrierens der Triebe nur für Südeuropa und die unter dem Einflusse des Atlantischen Ozeans gemilderten Gebiete Mittteleuropas in Frage kommen.

Gattung Magnolia. Magnolien.

Wegen des Zierwertes, der in Blatt und Blüte der Magnolien liegt, sind diese seit langer Zeit weit verbreitet und in Park- und Gartenanlagen beliebt; soweit sie zu Bäumen erwachsen, kommt ihnen auch eine forstliche Bedeutung zu. Die Magnolien beanspruchen freies Licht, guten bis besten, unter allen Umständen frischen Boden, wie der Tulpenbaum; die meisten sind nur im Castanetum, die beiden unten erwähnten japanischen Arten auch im Fagetum, d. h. auch in Mittel europa kultivierbar. Der forstliche Wert der Magnolien liegt in ihrem mittelharten, gleichmäßigen gebauten Holze, das wenig unter dem Einflusse

1) Dr. C. A. Schenck, Forest Utilization, Biltmore 1904.

Magnolia acuminata Linn. Gurkenmagnolie, Cucumber-tree.
Ostamerika.
Blatt in eine Spitze ausgezogen: wird in Amerika ein hoher Baum, ist aber in Mitteleuropa viel empfindlicher als die japanischen Magnolien.

Magnolia glauca Linn. Süßse Magnolie, Sweet Bay.
Ostamerika.
Blätter unterseits weißlich: ebenfalls in Mitteleuropa empfindlich wie acuminata.

Diese immergrüne Magnolie ist mit ihren steifen, dunkelgrünen, unterseits rostfarbigen Blättern und ihren großen, weißen Blüten ein Zierbaum ersten Ranges für Südeuropa und das insulare, westliche Mitteleuropa geworden; von der Blüte abgesehen, ist schon die eigenartige kräftige Belaubung eine Zierde, welche an Ficus elastica-Bäume erinnert; die Magnolie wird 30 m hoch, mit hellgrauer Rinde, glatt, wie die einer Buche.

China und Japan.
Das große Blatt mißt bis zu einem halben Meter Länge ohne Blattstiel, ist unterseits heller als oberseits; Knospen groß, schwach gekrümmt, mit graurotlicher Färbung. Diese Magnolie ist förstlich nicht blofs die wichtigste der ganzen Gattung, sondern bis jetzt auch die wertvollste neuere Einführung unter den Laubhölzern Ostasiens im mittleren Europa. Schon J. J. Rein hat sie für Deutschland empfohlen und um ihre Einführung sich bemüht. 1888 und 1889 ließ ich
von Japan aus größere Sendungen nach Europa abgeben. Der Mißerfolg zwang mich, vor 15 Jahren 1) folgende Anregung zu geben: „Es wäre vielleicht gut, die fleischige, rote Hülle um den Samen zu belassen oder den Samen, noch im Fruchtzapfen sitzend, über Amerika — zur Vermeidung der Tropen — nach Europa zu transportieren.“ Auf Anraten des Gärtners Uchiyama zu Komaba bei Tokio sandte ich sodann 1890 Magnoliensamen gereinigt, aber in Kohlenpulver verpackt, nach Deutschland; eine Anzahl Körner haben gekimmt: mit günstigerem Erfolge wiederholte nach meinem Abgange Dr. Grassmann die Sendungen der Sämereien in Kohlenpulver; aus einer solchen Sendung an die botanische Abteilung der forstlichen Versuchsanstalt zu München entstanden die ältesten Pflanzen des forstlichen Versuchsgartens zu Grafrath. Das schönste Exemplar habe ich in nebenstehender Photographie wiedergegeben. Inzwischen habe ich alljährlich durch die Professoren Dr. Shirasawa und Dr. Honda, insbesondere durch Dr. Hefele Sämereien, in Zapfen erhalten: am besten haben die für die Deutsche Dendrologische Gesellschaft von Graf Fr. von Schwerin bestellten Samen in Zapfen, und diese wiederum in Kohlenpulver verpackt, sich gezeigt: ohne überzuliegen, haben sie alle wie eine Bucheckernsaat gekimmt; schon der Umstand, daß sich die Sämereien wie bei einer in Japan ausgeführten Herbstsaat verhielten, stempelt die Graf von Schwerinsche Methode zur billigsten, weil besten.

Der Wert des Baumes liegt in den bei der Gattung angegebenen Vorzügen; das prächtige, feingefügte Holz ist auf Tafel XVIII, 36 naturgetreu wiedergegeben; das absolute Trockengewicht des Holzes ist 52, bei über 50 cm haltenden Bäumen 48, Lufttrockengewicht 51; das Schwindeprozent vom Frisch- zum Lufttrockenvolumen beträgt nur 4 \% ; aus dem Holze wird die beste und feinste Zeichenkohle gewonnen; bei Verwendung im Boden zeigt es große Dauer; im Schlusse bildet der Baum einen astreinen, walzigen, leicht geschwungenen Schaft mit hellgrauer, glatter, buchenartiger Rinde. Die Homagnolie ist im Herbste das erste Laubholz unter 50 Arten, welches im Versuchsgarten die Blätter bräunt und abwirft; auch im japanischen Laubwalde zeigt sie die gleiche Eigenschaft; frisch verpflanzte Exemplare sind durch den Gewalteingriff in ihr Leben im ersten Jahre noch aus ihrer Natur-

1) Dr. H. Mayr, Aus den Waldungen Japans, 1891, S. 35.
Abb. 203. Homagnolie (*Magnolia hypoleuca*) im forstlichen Versuchsgarten zu Grafrath:
10 Jahre alt, 6 m hoch, 5 cm Durchmesser in Brusthöhe.
H. Mayr photogr.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

gewohnheit gebracht; sie sind in Gefahr, durch Frühfröste zu leiden. Der Zierwert der prächtigen Pflanze wird noch durch die große, weiße, nach dem Laubausbruch erscheinende Blüte erhöht, welche etwa vom 15.—20. Lebensjahre an auftritt.

Blatt nach untenstehender Abbildung, unterseits an den Rippen etwas behaart: Blüte erscheint vor dem Laubausbruche: schon an fünfjährigen Pflanzen kommen die weißen, wohlriechenden Blüten: Kobuschi teilt die Lebensgeschichte der Homagnolie, ist aber forstlich minderwertig wegen der geringeren Dimension des nur hellgelbgrau gefärbten Kernes. Von dieser Art stammen die meisten schönblütigen Magnolien ab, an denen die Blüten vor dem Laubausbruche erscheinen: mir scheint *Magnolia kobusata* und *Kobushi* identisch zu sein, und die Gartenformen sollten *Magnolia Kobushi Yulan, Soulangiana, gracilis, excelsa, nigricans* u. a. m. heißen.

Gattung Melia L. Azedarachbäume.

Osteuropa bis China.

Doppelt gefiederte Blätter, im Winter abfallend: Holz mit schmalem Splinte und hellbraunem Kerne (nach dem Typus von Tafel XIX, Fig. 37), sehr dauerhaft: spezifisches Lufttrockengewicht 58. Die Arten kommen nur für das Castanetum, somit für Südeuropa und die mildesten Lagen von Westmitteleuropa in Frage; sie sind schnellwüchsig.

Melia Azedarach L. Azedarach. Osteuropa bis China.

Gattung Morus. Maulbeerbäume.

Die Maulbeerbäume sind nicht bloß dadurch wertvoll, daß ihr Laub als Futter für die Seidenraupe dient; auch ihr rotbraunenes, schweres (spezifisches, lufttrockenes Gewicht 72), sehr dauerhaftes Kernholz steht

¹) Das Wort Kobus ist nur eine Entstellung des japanischen Wortes Kobushi, muß also korrigiert werden.
C. Dikotyle Laubbaumarten. 485

im Werte sehr hoch; es ist eines der besten Laubhölzer, weshalb die Arten für wärmere Standorte des Fagetums sowie das ganze Castanetum forstlich durchaus empfehlenswert sind; Früh- und Winterfröste sind zu fürchten. Die nicht gestümmelte, forstlich erzogene Pflanze ist beträchtlich härter als die für die Raupenzucht bestimmte Pflanze, an der die verspätet erscheinenden Triebe bezw. die durch die Stümmelung hervorgerufene Vegetationsverlängerung etwa verbleibender Triebe eine Empfindlichkeit gegen Frühfröste bedingt. Die Maulbeerbäume verlangen guten Boden und sind dann sehr raschwüchsig.

China und Japan.

Der von China aus über ganz Asien und Südeuropa verbreitete Baum ist auch auf japanischem Boden heimisch unter dem Namen "Kuwa," nicht "Tōgawa", was fremder Maulbeer heisst. Ich fand den Baum in völlig unberührten Urwaldungen des mittleren Eso in mächtigen Stämmen; gerade dieses Vorkommen weist darauf hin, das die forstliche Kultur des Baumes auch in Mitteleuropa, soweit Eiche wächst, möglich sein müsste. Die stärksten, über 1 m Durchmesser und 30 m Höhe haltenden Bäume finden sich hart an den Subtropen auf den Munininseln (Ogasawara-jima), welche bei den Europäern Bonin-Inseln heißen; das dort gewachsene Holz (spezifisches, lufttrockenes Gewicht 80) ist sehr hart und wird als Strafsenpflaster, bei Hafenbauten bevorzugt.

Diese beiden Arten stehen der ersten Art augenscheinlich in jeder Hinsicht nach.

Blatt nach Tafel XII natürl. Größe. Das zähe, schwer spaltige, zu Drechslerwaren sehr gesuchte Holz gleicht dem der Sorbus-Arten

Note: The text is in German and discusses various aspects of dicotyledonous deciduous tree species, emphasizing their utility and characteristics, particularly in relation to forstlich (forestry) practices. It also provides insights into the specific species mentioned, such as *Morus alba* (White Mulberry) and *Morus nigra* (Black Mulberry), detailing their origins, preferences, and notable characteristics. The text integrates observations from various regions, including Japan, China, and Europe.

Gattung Pasania.
Immergrüne Kastanieneichen. Pasanien.

Von der Gattung Quercus, mit der die immergrüne Gattung Pasania noch vielfach vereinigt wird, verschieden in folgendem: männliche und weibliche Blüten an aufrechtstehenden Ähren, so daß die weiblichen den unteren, die männlichen Blüten den oberen Teil der Ähre einnehmen; oft sind die Ähren selbst in männliche und weibliche geschieden; Samenreife im zweiten Jahre; das Holz ist anatomisch vom Eichenhölzer grundverschieden, daher schon aus diesem Grunde Pasania eine eigene Gattung ist. Das Holz nähert sich am meisten dem der Edelkastanie, in dem größere Gefäße (aber etwas kleiner als bei Eiche und Kastanie) den Beginn des Frühholzes im Jahresringe kennzeichnen; feine Gefäße laufen in radialem Bande, von hellem Parenchym umgeben, durch das Spätholz: große Gefäße im Frühholze etwas zu Gruppen angeordnet; Markstrahlen weder mit freiem Auge noch mit der Lupe sichtbar. Schmaler Splint, bräunlicher Kern; Holz elastisch, dauerhaft, von hohem Werte, als Brennholz (spezifisches, lufttrockenes
C. Dikotyle Laubbaumarten.

(487)

Blätter unterseits heller, fast weißlich, schwach glänzend, oberseits glänzend. In Japan besteht eine Art Niederwald mit dieser Art, um Prügelholz zu gewinnen, welches mit Einschnitten versehen wird zum Anliegen der Sporen eines geniesbaren Hutpilzes, des Agaricus _Shiitake._ Der Pilz erhält bei Aufzucht an diesem Holze das feinste Aroma.

Blätter breit-elliptisch, durchweg gesägt, unterseits und, wenn jung, auch oberseits und Triebe wollig behaart: Fruchtbecher mit langen, gerade abstehenden oder nach unten gekrümmbten Borsten (Tafel XIV 2/3 natür. Grösse). In den _Sequoia sempervirens_-Waldungen der kalifornischen Berge nahe der Küste wird dieser Baum bis 25 m hoch. Sein Hauptwert besteht im Gerbstoffgehalte der Rinde (17% o), worin keine pazifische Weiß- oder Schwarzeiche ihm gleichkommt; aus diesem Grunde in gleichen Ortschaften wie die vorige Art zu empfehlen.

Blätter elliptisch, ganzrandig. Das Holz dieser Art gilt ob seiner Härte und Elastizität als das beste Material für Werkzeuggriffe aller Art: es soll darin dem europäischen Eschen- und dem amerikanischen Hickoryholze überlegen sein; Anbau behufs Prüfung wie bei der vorigen Art.

Bei meinen Reisen in Kalifornien 1885 und 1887 begegnete mir in großer Menge ein immergrüner Strauch, den ich wegen seiner Früchte als Varietät der _Quercus densiflora_ mit dem Namen _montana_ in meinen
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Gattung und Art:

China und Japan.

Das große Blatt nach nebenstehender Zeichnung, beiderseits weich, dicht behaart; als Zierbaum und Zierstauden je nach Klima in ganz Mittel- und Süd-europa bekannt; aber nur in wärmeren Lagen erhalten sich die bereits im Herbst vorgebildeten Blütenrispen und entfalten blaue, wohlriechende, glockenförmige Blumen. Der Lichtverlangende Baum wächst auf gutem Boden sehr rasch zu einem brauchbaren Nutzholzstamme auf, wenn er alle zehn Jahre auf den Stock gesetzt wird: es erfolgt ein Stockausschlag, von dem nur ein Trieb belassen wird; dieser aber wächst in Japan im wärmsten Castanetum in einem Jahre bis zu 4 m Länge und 5,5 cm Durchmesser in Brusthöhe! Mit sieben Jahren hat der Durchmesser bereits 30 cm. Ich besitze eine Scheibe, von der die durchschnittliche Jahrringbreite 20 mm beträgt. Das Holz ist außerordentlich leicht: spezifisches, absolutes Trockengewicht 21, lufttrocken 25; es schwindet bis zum lufttrockenen Zustande um 8,5 %, verändert sich aber dann nicht mehr, — eine bei Kästen, Schachteln, Schubfächen willkommene Eigenschaft; der anfängliche widerliche Geruch hält auch Insekten fern. Holz nach Tafel XIX, 38. Des Holzes wegen verdient der Baum forstliche Beachtung im wärmsten Fagetum und im ganzen Castanetum. Anlage in reinem Bestände mit
3 m und mehr Pflanzenabstand; Niederwaldbetrieb. Die Saat verlangt wegen der winzig kleinen Sämereien eine eigene Behandlung; an einem schattigen Orte wird der Same auf festgedrückten Boden aufgestreut, festgewalzt und mit Nadeln überstreut; bei Trocknis wird mit der Brause gegossen. Noch im ersten Jahre werden die Pflanzen in Tokio 1,5 m hoch. Am häufigsten ist die Vermehrung durch Wurzelstecklinge; sie werden im Frühjahr ausgesetzt; alle Ausschläge bis auf einen werden beseitigt; nach ein paar Jahren wird auch dieser abgeschnitten, worauf starke Ausschläge hervorbrechen.

Paulownia Fargesii Franch. Weißse Paulownie. China.

Ein Baum mit weißen Blüten und glatten Blättern ohne Behaarung, nach Beschreibung des Autors.

Paulownia Fortunei Hemsl. Fortunes Paulownie. China.

Mit verlängerten, filzigen Blättern, sehr langen Blüten, nach Beschreibung des Autors.

Gattung und Art: Phellodendron japonicum Maxim. Japanischer Korkbaum, Kiwada. Ostasien.

Da ich den Unterschied zwischen *Ph. amurense* und *japonicum* nicht kenne, schließe ich mich den japanischen Botanikern an. Das unpaarig gefiederte Blatt oberseits schwach glänzend, unterseits matt. Blättchen mit weißen Öldrüsen von unangenehm riechendem Inhalte; Drüsen in den feinen Kerben sitzend; Blattrand und unterer Teil des

Dazu kommt noch als weiterer Vorteil des Baumes das Holz, das nach annähernd ulmenartigem Typus gebaut und nach Tafel XIX, Fig. 39 gefärbt ist. Der Splint ist schmal, der Kern ist dauerhaft, das Holz ist zu allen Zwecken, denen Ulme und Esche dienen, tauglich; endlich enthält der lebende Bast einen gelben Farbstoff. Anlage wie bei der einheimischen Eiche im Hochwaldbetrieb: dafs der Mittelwald rascher Kork erzeugt, ist zu vermuten und durch Versuche noch festzustellen: stets ist guter Boden zu wählen. Forstmeister Böden in Freyenwalde hat beobachtet, dafs die Pflanze sehr frühzeitig keimfähigen Samen bringt. (Schwappach, l. c. Seite 46.) Von Wild und Mäusen wird die Pflanze gemieden.

1) Nach Dr. Köhne ist Phellodendron amurense Rupp. durch unterseits kahle Blättchen gekennzeichnet; demnach dürften alle aus Japan kommenden Pflanzen auch Ph. japonicum sein: in Korkbildung sind beide gleich.
C. Dikotyle Laubbaumarten.

beschossenen Stämme dieses Baumes gehörten zu einer damals noch nicht bekannten Art. Sargent hat 1894 dann den Baum als *Pirus Myabei* Sarg. beschrieben; wer aber die Gattung *Sorbus* von *Pirus* abtrennt, muß den Baum mit mir *Sorbus Myabei* nennen. Der schwach gelbliche Kern zeigt ein Holz, in dem alle ausgesprochenen Charaktere, wie Gefäße, Markstrahlen, Ringgrenzen, kaum sichtbar sind.

Gattung Platanus. Platanen.

Neuere Untersuchungen scheinen das überraschende Ergebnis zu zeitigen, daß es in ganz Europa nur ein einziges Exemplar dieser Art gibt, daß sämtliche von den Pflanzenhandlungen und Gärtnern in den
Handel gebrachten amerikanischen „Platanen“ diese gar nicht sind, sondern der orientalischen Art angehören: in der Jugend ist die Unterscheidung wohl unmöglich, insbesondere der vielen Gartenformen wegen (Jaenecke hat die Platanen monographisch bearbeitet), allein die erwachsenen Bäume differieren in Frucht- und Borkebildung deutlich genug; die Verwechslung ist, wie es scheint, ohne Belang, da biologisch alle Arten sich gleich verhalten.

Platanus orientalis L. Orientalische Platane. Europäischer Orient.

Diese Art ist in ganz Südeuropa und einem großen Teil Mitteluropas als Zierbaum mit prächtigem Stamme und Laubwerke bekannt und beliebt.

Platanus racemosa Nutt. Kalifornische Platane, Sycamore. Kalifornien.

Blatt nach Tafel XII ¼ natür. Größe; unterseits behaart, insbesondere Blattstiele; halbkreisförmige Nebenblätter mit ein oder zwei Zähnen. Durch seinen ästigen, knickigen Wuchs verdient der Baum den Namen *racemosa*; forstlich ist er daher weniger günstig.

Platanus Wrightii Wats. Mexikanische Platane, Sycamore. Südliches Felsengebirge.

Blätter nach Tafel XII ¼ natür. Größe; junge Triebe filzig behaart, später graugrün; an Schönheit, vor allem an Schattengabe, den beiden ersten Platanen nachstehend.

Blätter mit neun scharf gesägten Fiederblättchen; Blattunterseite, Stiele und Triebe kräftig behaart.

Gattung Populus. Pappelarten.

Als frostharte Lichtholzarten von schnellstem Wuchse finden und verdienen die Pappeln eine vielseitige Beachtung: als Windbrecher, als Alleebäume, als Schmuckbäume ob ihrer großen, prächtigen Belaubung und als Erzeuger der größten Holzmasse in kürzester Zeit. Der Markt für die Aufnahme des sehr leichten, für die Papier- und Zündholzindustrie wie für die Möbelschreinerei (schlechtes Blindholz) verwendbaren Holzes ist noch in Vergrößerung begriffen, so dass auch die forstliche Bedeutung der Pappeln sich gehoben hat; es erscheint
aber bedenklich, angesichts der gewaltigen Pappelbestände von Rußland, für deren Ausbeute sich noch kein Unternehmen bemüht, allzu große Flächen den raschwüchsigen, fremden Pappeln und ihren noch rascher wüchsigen Bastarden zuzuwiesen. Sollen die Pappeln ihre wichtigste Eigenschaft, die Schnellwüchsigkeit, beibehalten, muß ihnen auch guter, insbesondere frischer Boden gegeben werden; die Pappeln, besonders die Balsampappeln, haben einen schlimmen Feind in der Larve des Cossus ligniperda, welche die Stämme so durchlöchern kann, daß sie absterben.

Populus alba L. Silberpappel. Europa.

Durch ihre Blätter mit weißlicher Unterseite ist diese Pappel eine der schönsten.

Blätter ganzrandig, Blattstiel grün: soll nach E. Touin in Plantières nur in weiblichen Pflanzen in Europa sich finden:

Populus monilifera Ait.

dagegen soll nur in männlichen Pflanzen in Europa bekannt sein: beide eignen sich zur Holzmassenerzeugung gleich gut. Dr. Hartig, Dr. Haurath, Zircher u. a. berichten hierüber: mit 31 Jahren 54,3 cm Durchmesser und 2,93 fm Holzmasse!

Populus suaveolens L. Japanische Balsampappel, *Dero, Doro*, Ostsibirien, Japan.

Die Balsampappel fand ich 1888 in starken Stämmen am Kuschirolfluß von Eso; da Japan als Heimat des Baumes nicht bekannt zu sein scheint, habe ich die prächtige Pappel mit oberseits dunkelgrünen, unterseits hellen, fast weißlichen, glatten Blättern die japanische Balsampappel genannt. Ob sie gegenüber den anderen Pappeln Vorzüge hat, müßten erst Versuche zeigen.

Diese Balsampappel ist ein außerordentlich rasch wachsender Baum, der in seinem Optimalgebiete auf frischen Flusssauen im warmen Laubwaldgebiete bis 80 m Höhe erreicht; bis 40 m ist der Schaft astrein; Blätter sehr schwach gekerbt, unterseits weißlich; Blattform nach Tafel XV 1/2 natür. Größe; was von Pflanzenhandlungen als *trichocarpa* geliefert wird, stimmt mit der nach der Natur von mir gefertigten Abbildung nicht überein.
Populus wutaica n. sp. Wutaipappel, Wutaishan. China.

Diese zur Gruppe der Zitterpappeln gehörige Art bewohnt das im Nordwesten von Peking gelegene Wutaigebirge und die westlichen Berge, wo ich sie an den Südhängen unter den Resten der ehemaligen Laubwaldvegetation fand. Blatt des erwachsenen Baumes fast kreisrund, nur unterster Rand grob wellig-gekerbt, oben in eine Spitze endend; Ausschlagblätter sehr grofs, derb, mit großen, stumpfen Zähnen; alles kahl, wenn erwachsen; wenn jung, weifsfilzig behaart; Blattstiel plattgedrückt. Knospen am Triebe anliegend, Schuppen mit dunkelbraunem Rande, ebenfalls glatt; Deckschuppe der Blüte hell-ockerfarbig, nach nebenstehender Figur, am Rande mit weifs en Seidenhaaren; Frucht knoten kahl; Kätzchenspindel kahl; Rinde an jungen Stämmen hellgrau-grün mit rhombischen Lenticellen.

Texas und Neumexiko.

Unter den Kirschbäumen sind die für Europa wünschenswerten Bäume der Untergattung Padus, den Traubenkirschen, angehörig. Sie
ertragen noch mittelguten bis guten Boden (Föhrenboden III. Bonität), sind selbst im Fagetum noch frosthart, also für ganz Mitteleuropa anbaufähig; ihre Würdigkeit liegt begründet in dem rot- bis gelbbraunen Kernholz, das schwer, hart und von großer Dauer ist und als Möbelholz hohen Wert besitzt (Tafel XIX, Fig. 40). Der Zierwert der hier aufgeführten Arten ist hervorragend.

Blätter wie untenstehende Abbildung; oberseits glänzend grün, unterseits matt, hart, lorbeerartig; Blattstielrüsen oft bis zum Blattrande vornrückend, alles kahl. In ihrer Heimat erwächst die späte Traubenkirsche auf gutem Boden im warmen Castanetum bis zu 30 m Höhe, mit einem sehr wertvollen, von kleinschuppiger Borke umgebenen Schafte. Auch in Mitteleuropa hat sich die Art als sehr raschwüchsig auch noch auf minder guten, sandreichen Böden gezeigt, wofür sie schon vor mehr als hundert Jahren empfohlen wurde; nach Schwappach (l. e. S. 64) ist sie in Preußen mit gutem Erfolge zur Ausfüllung von Pilzlöchern in Kiefernstanzenorten verwendet worden. Die Spätkirsche muß enge in Gruppen oder reinen Beständen gepflanzt werden, um sie zur Abstösung der Äste und zur Geradständigkeit zu zwingen; dadurch wird freilich Licht- und Wärmegenügs beeinträchtigt, und es steht zu befürchten, daß sie nur in Mitteldeutschlands allerdichtesten Lagen und auf gutem Boden ein brauchbarer Baum wird; es ist beachtenswert, daß aus dem freiständigen Anbauverbande seit alten Zeiten nur ganz geringwertige, niedrige, verzweigte Buschbäume sich erhalten haben.

Vor 15 Jahren empfahl ich diesen Baum zum forstlichen Anbau neben und an Stelle der Spärkirsche wegen der auffallenden Raschwüchsigkeit, der vollendeten Geradständigkeit, die sich schon an jungen Stämmchen (im Gegensatze zur buschigen Spätkirsche) zeigt. Blatt groß, nach nachstehender Abbildung; Zähne in pfriemenartige Spitzen ausgezogen; Blattstiel, zuweilen unterer Blattrand mit zwei Drüsen; die Kirschen an einer aufrechtstehenden, lockeren Ähre (in der Figur 1:2 natürl. Größe); Rinde anfangs glatt, mit weissen Lentit-
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

cellen, in keinem Alter an eine Kirsche erinnernd; als Baum mit kleinschuppiger, den Fichten ähnlicher Borke. In ihrem Holze ist die japanische Spätkirsche gleich der ostamerikanischen (Tafel XIX, Fig. 40).

Mir scheint die Schiurikirsche der amerikanischen Spätkirsche in jeder anderen Hinsicht (selbst als Zierbaum) überlegen zu sein, so daß künftig hier diese Art zu Anbauversuchen heranzuziehen wäre. Da sie in ihrer Heimat auf Eso mitten unter lockerstehenden Fichten und Tannen noch 25 m Höhe mit tannenähnlichem Schafte erreicht, so paßt sie für ganz Mitteleuropa.

Mir scheint die Schiurikirsche der amerikanischen Spätkirsche in jeder anderen Hinsicht (selbst als Zierbaum) überlegen zu sein, so daß künftig hier diese Art zu Anbauversuchen heranzuziehen wäre. Da sie in ihrer Heimat auf Eso mitten unter lockerstehenden Fichten und Tannen noch 25 m Höhe mit tannenähnlichem Schafte erreicht, so paßt sie für ganz Mitteleuropa.

Gattung Pterocarya.

Flügelnüsse.

Pterocarya fraxinifolia Spach. (syn. caucasica C. A. Mey).
Kaukasische Flügelnüsse. Kaukasus.

Knospen offen, d. h. ein klein gebliebenes Fiederblatt bildet die Knospenumhüllung; der weitläufige Habitus des Baumes hat vor einem forstlichen Anbau bisher abgeschreckt; durch engen Pflanzenverband dürfte dieser Erscheinung begegnet werden können.

Fiederblättchen nach beistehender Figur, oberseits spärlich, unterseits reichlich behaart; Knospen von zwei Deckschuppen eingehüllt (nach A. Rheeder). Diese Art wächst mit geradem Schaft empor; Rinde hellgrau, mit violetter Tone. Diese Art wäre in erster Linie auf rezenten Flussesauen zu verwenden; bis jetzt hat sie sich frosthart gezeigt; ob unter den chinesischen Flügelnüssen wie P. Delavayi Franch., hupehensis Skan. macroptera Bat., Palustrus Bat., stenoptera DC. sich bessere Arten für Mitteleuropa finden, muß abgewartet werden, bis die Arten in Europa eingeführt sind.

Gattung Quercus.
Eichen, Oaks, Chênes.

Die Eichen zählen forstlich und floristisch in Amerika wie in Europa und Asien zu den wichtigsten Gliedern des Laubwaldes; überall mengen sie sich dem Laubwalde bei, wenn sie auch seltener reine Bestände größerer Ausdehnung im unbe- rührten ursprünglichen Walde bilden: nur jene Arten, die auch auf minder gutem Boden aufwachsen, wie Quercus rubra, obtusiloba, Catesbœi in Amerika, Q. dentata in Japan und vor allem die immergrünen Eichen mit ihrer intensiven Beschattung treten, andere Baumarten vom Mitbewerbe ausschließend, in reinen Beständen auf.

Überblickt man die große, vielgestaltige Schar, die unter dem Gattungsnamen Quercus zusammengefaßt wird, in ihrer Lebensgeschichte nicht bloß in äußeren Eigentümlichkeiten, so erkennt man, daß diese große Gattung so verschiedene Arten enthält wie die Gattung Pinus

Mayr, Fremdländische Wald- und Parkbäume.
Die für Europa anbaufähigen fremden Holzarten.
unter den Nadelhölzern; vereinigt man doch winterkahlle und immergrüne Arten in eine Gattung! Schon Michaux, der Ältere, teilte die Eichen in zwei Sektionen. Die in neueren Florenwerken und Namenlisten angegebenen zahlreichen Sektionen mit ihren noch zahlreicheren Gruppen haben mit der inneren Anatomie des Holzes und mit der Lebensgeschichte der Arten nichts zu tun; sie gründen sich lediglich auf Äußerlichkeiten. Für die in vorliegender Schrift verfolgten, vorwiegend biologisch-waldbaulichen Studien und Zwecke genügen drei Sektionen mit einer Untersektion.

I. Sektion umfasst die **Weißseichen (Albae)**.

II. Sektion umfasst die **Schwarzeichen (Nigrae)**,

 Untersektion der **Roteichen (Rubrae)**.

III. Sektion umfasst die **immergrünen Eichen (Sempervirentes)**.

Die I. Sektion, **Weißseichen (Albae)**, umfasst die forstlich wichtigsten Baumeichen; Blatt nur gelappt oder gekerbt; winterkahlle Bäume; die Früchte reifen im Blütenjahre. Das klimatische Optimum der wichtigsten Weißseichen liegt im kühleren Castanetum und dem wärmeren Fagetum; von da an streichen sie, im wirtschaftlichen Werte immer mehr abnehmend, bis zum Picetum einerseits und zum Lauretum anderseits; auf den alten Eichen unnatürlichen Kahlfächen, besonders mit flacher, ebener Ausformung sowohl im Tieflande wie im Hügellande (Plateaux), leiden die Eichen durch verspätete Früste; verfrühte Früste sowie tiefe Wintergrade schaden den langtreibenden einheimischen wie fremden Eichen (Abschnitt VIII, Punkt 26); während des Winters sind Frostrisse nicht selten.

Alle Weißseichen verlangen guten bis besten, tiefgründigen und frischen Boden, auch Sandböden I. und II. Föhrenbonität; sie verlangen Licht und verlichten in ihrer Krone schon frühzeitig, so daß zu ihren Füßen Gras- und Unkrautwuchs sich einstellt, was durch Unterbau von Halbschatt- und Schattholzarten verhindert werden kann. Der Anbau der Eichen geschieht in Gruppen auf kahlen Löcherschlägen oder in reinen Beständen mit oder ohne Schirmstellung, durch Saat oder Pflanzung; der Same erhält nur bei Aufbewahrung in feuchten Räumen, Mieten, Gruben, Kellern die Keimkraft bis zum Frühjahre; daher ist der Import überseeischer Eicheln sehr schwierig; nur Einpacken in feuchtem Moose und Lagerung in den Kühlräumen der Schiffe könnte die Einführung der schönen, fremden Eichen in Samenform ermöglichen und die Benutzung von, zumeist minderwertige Pflanzen liefernden Veredlungen entbehrlieh machen. Allen Eichen ist gute Stockausschlagfähigkeit eigen; sie enthalten in der Rinde reichlich
Gerbstoff und erzeugen ein Holz, das durch seine Härte, Schwere, Kernfarbe und Dauer als Nutzholz in Mitteleuropa an erster Stelle steht; keine der fremdländischen Eichen kann ein besseres Holz erzeugen als die einheimischen Arten; in jedem Falle ist es dem Holze der einheimischen Arten gleich, und zwar unter denselben günstigen Verhältnissen in Boden oder Klima oder Erziehung, gleich gut oder unter denselben ungünstigen Faktoren gleich minderwertig; daß man nur Hölzer, die in gleichen Verhältnissen gewachsen sind, miteinander vergleichen darf, ist selbstverständlich. Alle fremden Eichen scheinen in Mitteleuropa den gleichen Feinden unter den Tieren wie die einheimischen Arten ausgesetzt zu sein. Viele Weißeichen übertreffen die mitteleuropäischen Eichen in Schönheit des Blattes, insbesondere in der herbstlichen Färbung.

Eine Anzahl der auffällenderen Eichen sind hier besprochen; von ihrem Holze gibt Tafel XX, Fig. 41 ein typisches Bild; daß der Typus sich nicht auf die Jahrringbreite bezieht, die in jedem Individuum nach Jahreswitterung, Boden, Klima, Erziehung, Alter usw. schwanken muß, brauche ich wohl kaum hinzuzufügen.

Quercus alba L. Amerikanische Weißseiche, White oak. Ostamerika.

Blatt nach Tafel XI 1/4 natürl. Größes; Früchte nach Tafel XIV 1/2 natürl. Größes. Der Traubeneiche am nächsten stehend; Blätter an ein und demselben Baume in Größe und Ausbau schwankend, indem die tiefer in der Krone sitzenden weniger tief gelappt und größer sind als die Blätter der hellbeleuchteten Kronenperipherie; im Herbst dunkelpurpurrot; eine prächtige, noch im Versuchs­garten zu Grafrath ganz harte Schmuckeiche; in Ostamerika die wichtigste aller Eichen.

Quercus bicolor Willd. (syn. *platanoides* Sudw.). Weißse Sumpleiche, Swamp white oak. Ostamerika.

Blatt nach Tafel XI unterseits weislich. 1/4 natürl. Größes; Frucht nach Tafel XIV 1/2 natürl. Größes; der Stieleiche botanisch und biologisch nahestehend; nicht in Sumpfen, sondern nur in bodenfrischeren Niederungen; Herbstfärbung weniger auffallend.

Für Mitteleuropa eine prächtige Ziereiche; Blatt gleichmäßiger und tiefer gelappt und größer als jenes der Traubeneiche; Blattunter­seite und Triebe kräftig behaart.

Blätter nach untenstehender Figur, beiderseits kahl: Blattstiel und einjähriger Trieb rot; in hohem Alter eine fast weisse, in dünnen Schichten sich abblätternde Borke; die japanische Traubeneiche nach jeder Richtung hin. In Grafrath bei München noch völlig hart.

Diese Eiche bildet die grössten Blätter unter allen Eichen: Ober- und Unterseite sowie Triebe stark filzig behaart; Herbstfärbung prächtig dunkel- bis scharlachrot. Sie zählt zu den schönsten Eichen der nördlichen Halbkugel; sie fällt auf durch ihr Vorkommen auf vulkanischen Sanden; sie wächst anfänglich ziemlich langsam; gegen Herbst- und Winterfröste ist sie anfänglich im kühlten Fagetum zu Grafrath empfindlich gewesen. Zu ihrem Verhalten auf Sandboden kommt noch, daß sie die wertvollste Gerbstoffeiche Japans ist; der Gerbstoffgehalt der Rinde ist so groß, daß in der Provinz Tajima diese von den Bäumen herabgerissen wird, um in ihrem Dekokte die harten Fischnetze zu beizen und braun zu färben.

Vom dekorativen Standpunkte verdient der Baum die weitestgehende Beachtung; forstlich ist er nach zwei Richtungen hin zu prüfen; dies habe ich zwar vor 15 Jahren bereits vorgeschlagen, allein der Mangel an Sämereien hat wohl eine Prüfung verhindert. Sie wäre auf Sandboden III. Bonität, selbst auf IV. Bonität, wo sie natürlich ein Strauch bleiben wird, der aber zur Festigung und Verschönerung der Dünen beitragen dürfte, noch anbaugebiet; in Lagen, in denen die einheimischen Eichen als Schälwaldungen Nutzen bringen, wäre auch die Kaisereiche zu gleichem Ende zu prüfen.

Pazifische Region.

Blatt unterseits heller als oberseits, behaart: diese Eiche wird in einem Niederwaldbetrieb zur Gewinnung der Holzkohle bewirtschaftet.

Quercus lobata Née. Kalifornische Weißseiche.

Pazifische Region.

Blatt in 1/3 natürl. Größe auf Tafel XV; Frucht auf Tafel XIV 1/2 natürl. Größe. Ob diese Art noch in Mitteleuropa winterhart ist, erscheint zweifelhaft; sicher ist sie nur Zierbaum, höchstens ein Futterbaum in Wildparks wegen der großen Früchte.

Quercus lyrata Walt. Leiereiche, Overcup oak.

Ostamerika.

Kaukasus.

Blätter gleichmäßig gelappt, ohne Nerven nach den Buchten (Dr. Köhne); unterseits sowie Blattstiele und Triebe dicht filzig behaart; Nebenblätter pfriemenförmig, lange bleibend, daher auch an den Winterknospen. Eine in Grafrath bei München noch frosthartige, sehr raschwüchsige Ziereiche.

Quercus macrocarpa Michx. Großfrucht-Eiche, Bur oak.

Ostamerika.

Quercus Michauxii Nutt. Korbeiche. Basket oak. Ostamerika.

Blätter zwischen *Prinos* und *prinoides* stehend, unterseits filzig behaart; Früchte sehr groß, nach Tafel XIV $^{1/2}$ natürl. Größe. Das Holz ist durch seine Spaltbarkeit forstlich beachtenswert; die zählen Späne dienen zur Korbflächerei.

Blätter nach Tafel XI $^{1/4}$ natürl. Größe; Früchte nach Tafel XIV $^{1/2}$ natürl. Größe; Blatt rauhhaarig. Diese Eiche findet sich auf kiesig-sandigem oder härterem Lehmboden, wäre somit in diesen Standorten zu prüfen.

Quercus prinoides Willd. (syn. acuminata Sarg.). Amerikanische Kastanieneiche, *Chesnut oak.* Ostamerika.

Blätter nach Tafel XI $^{1/4}$ natürl. Größe; Früchte nach Tafel XIV $^{1/2}$ natürl. Größe; Blätter unterseits durch kurze Behaarung heller als oberseits; junge Triebe und Blätter gelb behaart: der japanischen *glandulifera* sehr nahestehend; Zierbaum.

Der Name Kastanieneiche ist unpassend, da das Blatt dieser Eiche der Kastanie nicht ähnlich ist: die japanische *serata* verdient diesen Namen; *Prinos* ist besser nach seinem wichtigsten Produkte, dem Gerbstoffe, als „Gerbereiche“ zu bezeichnen; unter den ostamerikanischen Eichen ist sie die beste Gerbstoffeiche; Tausende von Kubikmetern dieses Baumes verfaulen im Walde, nachdem ihnen die Rinde für Gerbzwecke abgezogen wurde, sagt ein Zirkular der forstlichen Abteilung des Ministeriums für Landwirtschaft: Blätter nach Tafel XI $^{1/4}$ natürl. Größe; Früchte nach Tafel XIV $^{1/2}$ natürl. Größe. Mit Rücksicht auf den Gerbstoff wäre die Art im Niederwalde zu prüfen.

VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Diese Eiche mit prächtig grünem, großem Blatte ist eine wesentliche Bereicherung des Schmuckes der Park- und Gartenanlagen; genügend frosthart für Mitteleuropa.

Blätter und Triebe flaumhaarig: eine der wertvollsten Eichen Südeuropas.

Quercus wutaishanica n. sp. Wutaischan-Eiche. Wutaiberge, China.

Unweit der Tempelstadt Wutaishan fand ich in einem von Laub- und Nadelholz erfüllten Tale, dem einzigen Waldreste auf vielen Meilen im Umkreise, eine Eiche, welche der europäischen Traubeneiche in den Früchten am meisten sich näherte: da es unmöglich ist, sie an eine der bereits, wenn auch höchst unvollkommen bekannten chinesischen Eichen anzugliedern, so gebe ich hier Abbildung und Beschreibung der neuen Art. Blatt gelappt; größte Blattbreite im oberen Drittel; Rippen, Blattstiele und junge Triebe borstig behaart, von den Trieben bald
Die II. Sektion, Schwarzeichen (Nigrae), enthält winterkahlene Eichen, deren Blätterlappen in feine Spitzen auslaufen, oder deren Blätter gezähnt sind; der Same reift im zweiten Jahre; ihre Schäfte sind im allgemeinen in Rinde und Borke dunkler als die der Weißseichen; ihre Rinden sind arm an Gerbstoff; sie erheben geringere Ansprüche an den Boden, sind etwas schneller wüchsig, etwas mehr Schatten ertragend, stehen aber in ihrem Hauptprodukte, dem Holze, entschieden nach; wo immer in Amerika Weiß- und Schwarz-(oder Rot-)Eichen zusammenstehen, liefern die Weißseichen das Nutzholz, die Schwarz-bezw. Roteichen das Brennholz; wo Weißseichen fehlen, liefern die Roteichen Nutz- und Brennholz. H. Semler (Tropische und nordamerikanische Waldwirtschaft und Holzkunde. 1888. Berlin. P. Parey) nennt die Schwarz-bezw. Roteichen überhaupt nicht als des Holzes wegen in Amerika anbauwürdig; nur *Q. tinctoria* macht wegen des Farbstoffes in der Rinde eine Ausnahme; von den Weißseichen empfiehlt er *alba*, *Michauxii* und *obtusiloba*. Die Untersektion der Roteichen, Rubrae, umfaßt *Quercus cocinea*, *palustris*, *rubra*, *tinctoria* und andere; mit Rücksicht auf die ebengenannten, unter welchen wiederum *palustris* und *rubra* eine forstliche Rolle auch in Europa erhalten sollen und stellenweise bereits spielen, gelten die nachstehenden, die Unterschiede im Holze gegenüber den Weißseichen darlegenden Untersuchungsergebnisse. Es ist eine allgemeine Klage in Europa, daß von Amerika aus große Mengen an Eichenfahsholz nach Europa gebracht werden, welches vom einheimischen Eichenholz nicht unterschieden werden könne, diesem in seinen technischen Eigenschaften aber bedeutend nachstehe. Es läßt dies den Schluß zu, den auch genauere Untersuchung bestätigt, daß das eingeführte Material zumeist Roteichenholz ist. Dr. Abromeit glaubt einen Unterschied zwischen Weiß- und Rotenichen in der Maximalbreite der Markstrahlen gefunden zu haben. Dr. Eichhorn (Untersuchungen über das Roteichenholz in der forstlichen naturw. Zeitschrift 1885) hat sich nicht mit der Untersuchung von Erkennungsmitteln zwischen Weiß- und Roteichenhölzern befaßt; er

Weißeichen.

Am Querschnitte Gefäße oder Poren des Frühholzes größer als jene

![Diagramm von Weißeichenholz](image)

Abb. 225. H = Quer- oder Hirnschnittfläche eines Weißeichenholzes; a = Kernholz; b = Frühholz; c = Spätholz; d = Splintholz; M = Markstrahlen.
Naturlü. Grösse.
H. Mayer n. d. N. gez.

Roteichen.

An Querschnitten sind die Gefäße des Frühholzes etwas kleiner als bei Weißeichen; zwei bis sechs radiäre Gefäße bilden die Frühholzzone. Bei breiten Jahressringen nimmt bei den Roteichen die poröse Frühholzscheicht in stärkerem Verhältnisse zur Gesamtringbreite zu als bei den Weißeichen.

Bei einer Ringbreite von 2,5 bis 6 mm umfaßte das poröse Frühholz folgende Prozente des Gesamtringes:

![Diagramm von Roteichenholz](image)

Abb. 226. Querschnitt durch Roteichenholz. a = Porenzone des Frühholzes; b = Porenzone des Spätholzes; c = Markstrahlen.
Naturlü. Grösse.
H. Mayer n. d. N. gez.
des Spätholzes; ein oder zwei in der Richtung der Markstrahlen größere Gefäße liegen in der Frühholzzone; mit dem feuchteren und besseren Standorte steigt die Zahl der Gefäße in der Frühholzzone um einen geringeren Betrag als bei den Roteichen, bei trockeneren und geringeren Standorten nimmt die Gefässzahl ab; auf typischem Eichenboden sind im Radius an Querschnitten ein bis drei große Gefäße vorhanden.

Bei einer Ringbreite von 2,5 bis 6 mm zeigte sich, daß in mehreren Stücken das poröse Frühholz vom Gesamtringe umfaßte; bei

Quercus alba	...	12 %
Quercus bicolor	...	15 %
Quercus lobata	...	12,5 %
Quercus Michauxii	...	13 %
Quercus pedunculata	...	12 %
Quercus sessiliflora	...	13 %

Kernfarbe braun.
Siehe Tafel XX, Fig. 41.
Splint schmal.

Faßt man vorstehende Ausführungen zusammen, so ist das Roteichenholz ein poröseres, splintbreiteres Material als das Weißseichenholz; die rötliche Kernfarbe deutet auf geringeren Gerbstoffgehalt und geringere Dauer des Holzes; die größere Splintbreite birgt stets die Gefahr in sich, daß größere Mengen Splintes bei der Verarbeitung des Holzes am Kerne verbleiben.

An diesen Feststellungen ändert die Erscheinung nichts, daß hier, wo Weißseichen fehlen, das Holz der Roteichen über die Maßen gerühmt, daß dort, wo Weißseichen genügend vorhanden sind, das Holz der Roteichen über die Gebühr getadelt wird. Das Roteichenholz bleibt ein hartes, sehr vielseitig brauchbares, gutes Holz, das nur für den vornehmsten Verwendungszweck des Weißseichenholzes, das ist zu Fässern mit alkoholischem Flüssigkeitsinhalt, ungeeignet ist.

Quercus Aegilops L. Valoneaeiche. Südosteuropa und Kleinasien.

Durch den Gerbstoffgehalt der Fruchtbecher (35 %) eine für Süd- europa wichtige Art.
Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Blätter nach Tafel XV 1/2 natürl. Grösse; Früchte nach Tafel XIV 1/2 natürl. Grösse.

Die Eiche vertritt die Roteiche des Ostens (*rubra*) in der pazifischen Waldregion: in der Sierra steigt sie bis 2700 m empor; sie bewohnt innerhalb der locker stehenden Gelbföhren die besseren Böden, zugleich damit beweisend, das die Gelbföhre selbst im Klimagebiete der Eichen am besten gedeiht. Die kalifornische Roteiche ist in kühlen Lagen von Mitteleuropa noch hart, wie zwei von Kalifornien von mir mitgebrachte Pflanzen zu Grafrath beweisen.

Blätter nach Tafel XV 1/4 natürl. Grösse; Früchte nach Tafel XIV 1/2 natürl. Grösse. Färbt sich im Herbst prächtig rot.

Quercus Cerris L. Zerreiche. Südosteuropa und Orient.

Blätter der *alba* ähnlich gelappt, aber Knospen mit langen, schmalen, vertrockneten Pfriemenblättern.

Blätter nach Tafel XI 1/4 natürl. Grösse, nicht so groß, aber tiefer eingeschnitten als *rubra*: junge Innenrinde weiss; forstlich keine Bedeutung, im Herbst am grellsten sich rötend; Früchte nach Tafel XIV 1/2 natürl. Grösse.

Blätter nach Tafel XI 1/4 natürl. Grösse; Früchte nach Tafel XIV 1/2 natürl. Grösse. An jungen Bäumen oder an Schattenblättern sieht man oft nur drei lappige Blattformen: oft sind die Lappen so kurz, das das Blatt der nigra nahekommst; Lappen in eine sichelförmig gekrümmte Spitze auslaufend; Blatt unterseits kurz behaart und etwas heller als Oberseite; nur Zierbaum, soweit dies ohne Versuche auf minderen steinigen Standorten gesagt werden darf.

Quercus laurifolia Michx. Lorbeereiche, Laurel oak. Ostamerika.

Blätter nach voriger Art, aber kleiner, unterseits ohne Behaarung; Früchte nach Tafel XIV natür. Größe.

Quercus nigra L. (hierher auch aquatica Walt.). Schwarzzeiche, Black oak. Ostamerika.

Blätter vorwiegend dreilappig, nach Tafel XI, wo als nigra und aquatica in 1/4 natür. Größe gezeichnet; das sogenannte aquatica-Blatt an Längstrieben; eine in den Südstaaten der Union (wärmeres Castanetum) sehr raschwüchsige Art; im Fagetum den Winter über abfrierend; schöne Herbstfärbung.

Die tief eingeschnittenen Blätter sind die kleinsten der Roteichengruppe; Lappen vielfach auf ungleicher Höhe, Tafel XI 1/4 natür. Größe; Früchte auf Tafel XIV 1/2 natür. Größe. Von allen Roteichen ist dieser Baum durch einen vollendet geraden Schaft ausgezeichnet, wie bei einem Nadelbaum bis in die Spitze verfolgbar; Krone durchsichtig; Seitenäste sehr dünn, herabhängend, als tote Spieße sich am Schafte lange erhaltend, daher der Name des Baumes; er wächst nicht im Sumpfe, sondern im frischen Boden der Flusstäuben; schnellwüchsiger als die Roteiche, verdient der Baum auf gefestigten Flusstäuben Beachtung; ganz frosthart.

Quercus Phellos L. Weideneiche, Willow oak. Ostamerika.

Blätter nach Tafel XI 1/2—1/4 natür. Größe; Früchte nach Tafel XIV 1/1 und 1/2 natür. Größe. Originelle Eiche ohne forstlichen Wert; auch im Fagetum Mitteleuropas ganz frosthart.

Quercus rubra L. Roteiche, Red oak. Ostamerika.

Am Blatte reichen die Buchten bis 1/2 der Blattbreite (Tafel XI, 1/4 natür. Größe). Die großen Früchte in seichtem Becher, nach Tafel XIV 1/2 natür. Größe. Diese Eiche ist schnellwüchsig (bei
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Quercus tinctoria Michx. (syn. velutina Lam.).

Färberiche, Blak oak. Ostamerika.

Quercus serrata Thunb. Japanische Kohleiche, Kunugi. Japan und China.

Quercus variabilis Bl. Asiatische Korkeiche, Natakunugi, Abemaki. Japan, Korea, China.

Blätter nach nachstehender Figur; Unterseite hell, fast weifs, kurzwollig behaart; ebenso die borstige Cupula behaart; Knospen mit weifsberandeten Schuppen, ebenfalls behaart. Von allen Eichen scheint mir diese winterkahle Korkeiche für Europa die wichtigste fremdländische Art zu sein; sie bildet ganz wie die immergrüne Korkeiche...
von Südeuropa und Nordafrika zuerst einen unreinen, rauen, sogenannten männlichen Kork, nach dessen Beseitigung neue, feine Korklagen, der weibliche Kork, erscheint. Wegen dieser Eigenschaft empfahl ich den Anbau der Eiche für das Castanetum von Südeuropa und die wärmsten Lagen von Mitteleuropa, allein es ist nichts ge-

Abb. 228. Blatt der asiatischen Korkiche (Quercus variabilis).
\(\frac{1}{2} \) natür. Größe. H. Mayr gez.

schehen; es scheint, daß die Art in Europa überhaupt nicht vertreten ist; in diesem Falle wäre das Exemplar, das ich 1903 aus dem kaiserlichen Parke zu Söul in Korea ausgrub und lebend glücklich bis Graf Rath brachte, wohl das einzige in Europa; es hat zwar die folgenden Winter ohne Deckung ausgehalten, ist aber in dem kühlen Klima schwach. Die Japaner haben den Gedanken der Korkgewinnung mit großem Eifer aufgegriffen und ihre bisherigen günstigen Erzeugnisse auf der großen Landesausstellung zu Osaka 1903 gezeigt. Anlage von reinen, lockeren Beständen im Gebiete, in dem die Edelkastanie wild wächst oder mit Vorteil kultiviert werden kann; Oberholz im Mittelwalde.

III. Sektion, **Immergrüne Eichen (Sempervirentes).**

Die immergrünen Eichen mit ein- oder zweijähriger Samenreife sind schattenertragende Holzarten, welche wegen dieser Eigenschaft zur Bildung reiner Bestände neigen; sie verlangen guten Boden und wärmste Lagen in Südeuropa, im Lauretum; in Mitteleuropa kommen sie für die insulare Westhälfte noch in Betracht; ostwärts von der Meeresküstenähe ist ihre Kultur unmöglich. In ihrem Holze sind sie von den beiden vorigen Sektionen durch das Fehlen großer Poren im Frühholz unterschieden; es fehlt der Porenkreis, mit dem der Jahresring der winterkahlen Eichen beginnt. Das Holz ist sehr schwer, meist über 85 spezifisches, absolutes Trockengewicht; schwach gefärbter Kern, sehr

Abb. 229. Rinde mit Kork: a Kork 24 Jahre alt; b lebende Rinde (Bast); c Holz.
Natür. Größe.

Blatt nach Tafel XII 1/3 natürl. Größe; Früchte nach Tafel XIV 1/2 natürl. Größe. Ein weit ausgreifender, tiefenschattiger Baum: das Vorkommen auf ziemlich magerem Sande ist bemerkenswert.

Blätter lanzettlich, unterseits fast rein weiß; aus dem Holze werden die langen, meist aus einem Stück bestehenden japanischen Ruder hergestellt; Osumi und Satzuma liefern jährlich an 30,000 Stück Steuer- und andere Ruder. Danach muß das Holz sehr elastisch sein, und es wäre zu versuchen, diese Eiche in Südeuropa an Stelle der Ilex teilweise wenigstens anzubauen.

Quercus grisea Liebm. Mexikanische Lebenseiche.

Arizona und Mexiko.

Blätter nach Tafel XII 1/2 natürl. Größen; Früchte nach Tafel XIV natürl. Größen.

Das Blatt der östlichen Phellodähnlich, doch hart, unterseits weiß-wollig, Rippen kahl, nach Tafel XII 2/3 natürl. Größen; Früchte nach Tafel XIV 2/3 natürl. Größen.

Quercus ilex L. Europäische Lebenseiche. Südeuropa.

Ist genügend bekannt.

Blatt nach Abb. 232 auf nächster Seite. Die Eiche ist am besten bekannt und wird nach Gamble vielfach als Unterholz in Föhren- und Deodarzedernwäldern verwendet; geschneitelt wird die Eiche, um die Blätter zur Einstreu oder als Futterlaub für Rinder zu benutzen; das Holz ist dagegen nur Brenn- und Kohlholz. Immerhin wäre auf diese Eiche im Süden von Südeuropa zu achten, da sie von allen immergrünen Eichen den größten Gerbstoffgehalt in der Rinde (nach Professor Trimble 22°o) aufweist.

Das Holz dieses kleinblättrigen Baumes, der auf Shikoku besonders verbreitet ist, dürfte das schwerste und härteste aller immergrünen Mayr, Fremdländische Wald- und Parkbäume.
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Eichen (spezifisches, lufttrockenes Gewicht 105) sein; es wird zum Räuchern besonders gesucht und geschätzt.

Quercus Suber L. Korkeiche. Südeuropa und Nordafrika.

Als Korkproduzent genügend bekannt.

Quercus thalassica Hce. Schwarze Lebensbiehe, Kurogashi. Japan.

Junge Blätter unterseits und Triebe weischlich behaart, fertiges Blatt unterseits heller; Blattrand eingerollt; nur Zierbaum, der Meeres-nähe liegt.

Abb. 232. Blatt der indischen Lebensbiehe (*Quercus incana*); im Winkel des Blattes die unreifen Früchte des ersten Jahres.

Abb. 231. Blätter der schwarzen Lebensbiehe (*Quercus thalassica*).

Quercus virens Ait. Florida-Lebensbiehe, Live oak. Ostamerika.

Blätter ganzrandig, unterseits weißlich behaart, gewölbt, Blattrand eingerollt; das schwere Holz wurde früher zu Schiffsbauzwecken benutzt. Früchte nach Tafel XIV 1/2 natürlich. Größe.

Quercus Wisliceni A. DC. Wislicenuseiche. Kalifornien.

Blatt nach Tafel XII 1/2 natürlich. Größe; Früchte nach Tafel XIV natürlich. Größe.

Gattung und Art: Rhus succedanea L. Kerzenbaum, Hase

China, in Japan eingeführt.
C. Dikotyle Laubbaumarten.

Rhus vernicifera DC. Lackbaum. *Urushi.* Japan.

Fiederblätterige, winterkahl Bäume des Castanetums.

Succedanea: Blättchen ganzrandig, oberseits an den Rippen, unterseits spärlich behaart; 11 Fiederblättchen, gestielt.

Vernicifera: Blättchen zuweilen am Grunde, regelmäßig an der Spitze mit Zähnen, fast sitzend; 13 Fiederblättchen, spärlich unterseits behaart.

Die Vermehrung der Bäume kann durch Wurzelstecklinge erfolgen; in diesem Falle können Lackbäume schon mit fünf Jahren genutzt werden. Es gibt zwei Methoden: die eine fertigt zahlreiche Rindeneinschnitte rings um den Baum herum, sie führt zum Tode des Baumes; die zweite schneidet nur horizontal die Rinde auf einem alljährlich wechselnden Platze des Stammes durch; dadurch bleibt der Stamm am Leben; auch jene Methode, welche eine starke Wurzel durchschneidet, führt zum Tode des Baumes, obwohl sie den besten Lack liefert.

Gattung und Art: Robinia *Pseudoacacia* L. Robinie, Schotendorn, *Locust.* Ostamerika.

Die Robinie ist eines der glänzendsten Beispiele für die Berechtigung der Anbauversuche mit fremdländischen Holzarten; ja der erfolgreiche Anbau beweist sogar, daß im eigenen Heimatlande, im Urwalde, seltene und unscheinbare Holzarten für die Kulturzwecke des Menschen von hervorragendem Werte sein können. Aus ihrer engen
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Heimat in den südlichen Alleghanies wurde die Robinie über Ostamerika, ganz Mittel- und Südeuropa, Westamerika bis Japan verbracht. Die Heimat liegt im Castanetum; der Anbau im kühleren Fagetum begegnet wachsenden Schwierigkeiten, indem durch Früh- und Winterfröste die ungenügend fertigen Triebspitzen zurückgesetzt, durch verfrühte Schneefälle Äste und Gipfel des sprödholzigen Baumes gebrochen werden; soweit Eichen gedeihen, kann noch von einem forstlichen Anbau der Robinie die Rede sein.

Als schmetterlingsblütigem Baume kommt ihm die Fähigkeit zu, auch noch auf geringen, kiesigen oder sandigen Böden (III. bis zu IV. Föhrenbonität) zu wachsen und wenn auch kein hervorragender, so doch ein brauchbarer Nutzbaum mit hochwertigem Holze zu werden; auf solchen Böden ist die Robinie lichtfordern; auf guten Böden wird sie eine Halbschattholzart; ihr sehr rasches Wachstum, ihre Stockausschlagfähigkeit, ihre Wurzelbrutbildung sind forstlich, nicht immer auch gärtnerisch willkommene Eigenschaften.

Das Holz (Tafel XX, Fig. 43), mit schmalem Splinte und grünlich-gelben Kerne, ist hochwertig und technisch der Eiche gleich, bis auf die geringere Zähigkeit; der wenig angenehme Geruch des Holzes aber macht es zu Fälsdauben ungeeignet. Als Niederwald längst im forstlichen Betriebe, verdient die Robinie auch als Oberholz des Mittelwaldes sowie als Hochwald in reinen Beständen mit späterem Unterbau von schattenertragenden Laub- und fremdländischen Nadelhölzern, als Unter- und Zwischenbau unter Föhre I.—IV. Bonität, zur Ausfüllung von Pilzlöchern volle Beachtung. Für die Aufforstung der europäischen Steppen von Ungarn und Rufsland hat sich die Robinie so sehr bewährt, daß sie bereits Waldungen größerer Flächeninhaltes (siehe E. Wadas' Monographie über die Robinie in Ungarn) bildet. Sehr lästig sind Nagetiere, Hasen und Kaninchen, welche die Rinde der Robinie wie Klee lieben; das Abschießen hat nur dann Wert, wenn das Abschießen gleichbedeutend ist mit zeitweisem Ausrotten.

Gattung Salix. Weidenarten.

Die hervorragendsten Nutzweiden sind europäischen Ursprungs: ob unter den zahlreichen amerikanischen und asiatischen Weiden ebenfalls wertvolle Kulturformen sich finden, können nur Versuche feststellen. Zahlreiche Weiden, die ich 1885 bis 1891 in Amerika und Nordostasien sammelte, erwiesen sich mit europäischen identisch; es gilt dies für die Weiden von Eso und den Kurileninseln zumeist; Salix purpurea und viminalis gehen von der atlantischen bis zur pazifischen Küste der Alten Welt. Das große Bündel, das meine sämtlichen Weiden enthielt, sandte ich in die Schweiz an einen Weidenkenner, der die Bestimmung versprach: inzwischen sind zehn Jahre vergangen; die Sammlung ist somit verloren. Die beste systematische Behandlung der

Die Zugehörigkeit zur japanischen Flora ist zweifelhaft!

Acht kahle Fiederblättchen bilden ein Blatt; zwei Knospen stehen im Blattwinkel übereinander. Das sehr harte Holz und der Schmuck-

![Image](image_url)

werten mögen die Aufmerksamkeit im Castanetum auf diesen Baum lenken; vielleicht ist auch die knorpelige Samenhülle brauchbar.

Gattung und Art: *Sassafras officinale* Nées. Sassafras.

Sassafras. Ostamerika.

Dieser zu den Lorbeergewächsen gehörige Baum fällt auf durch sein veränderliches Blatt, das bald ganzrandig, bald zwei-, bald drei-lappig ist. Das Holz, in seinem Charakter dem Edelkastanienholze nahestehend, gilt als sehr dauerhaft; die wohlriechende Rinde wird zu medizinischen Zwecken verwendet.

Vom Zierwerte abgesehen, scheint dem winterkalben Baum auch forstliches Interesse zuzukommen; der raschwüchsige Baum ist sicher im Castanetum, vielleicht sogar auf den wärmsten Orten des Fagetums anbaufähig.

Gattung Sophora, Sophoren.

Schmetterlingsblütige Bäume, welche auf geringeren Böden des Castanetums anzubauen und zu prüfen wären in denselben Verhältnissen
VII. Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

(z. B. Steppe) wie die Robinie; ob sie so weit im Fagetum wie diese den Winterfrösten zu trotzen vermögen, müssen Versuche ergeben. Jedenfalls ist das braune, harte, sehr dauerhafte und wertvolle Holz solcher Versuche wert.

Sophora japonica L. Sophore, Enshu. China und Japan.

Diese in Europa allbekannte Art, mit grünen, einjährigen Trieben, bildet ein braunes Kernholz von spezifischem, lufttrockenem Gewichte von 69, bei 6—7 mm Splintbreite.

Sophora platycarpa Maxim. Fuji-Sophore, Fujiki. Japan.

*Abb. 237. Blättchen der plattfrüchtigen Sophora (Sophora platycarpa).

*Abb. 238. Blatt der platanenblättrigen Sterkule (Sterculia platanifolia).
1/4 bis 1/10 natürl. Größe. H. Mayr gez.*

Gattung und Art: *Sterculia platanifolia* L. Platanenblättrige Sterkulie, Aogiri. Japan und China.

Blatt platanienartig oder, wie der genauer beobachtende Japaner sagt, dem Kiri-(Paulownia-)Blatte ähnlich: Knospen schokoladenbraun behaart; Triebe grüngrau. Das Holz scheint geringwertig zu sein; die Rinde dagegen enthält eine sehr zähe Bastfaser, welche zu Stricken verarbeitet wird. Es besteht ein aus Stecklingen hervorgegangener Hegebetrieb, bei dem alle zwei bis drei Jahre die Triebe im Frühjahr abgeschnitten werden. Die Rinde wird abgeschält.
und drei Wochen in Wasser gelegt, bis sie aufweicht; dann wird sie in Kalilauge verbracht und nach dem Auswaschen auf Steinen geklopft; nach weiterem Auswaschen wird der zersfaser Bast zu Fäden zusammengedreht, welche zum Nähen der japanischen Strohmatten dienen. Die Gewinnung dieses Materials mag den versuchsweisen Anbau der Holzart im Castanetum und wärmsten Fagetum rechtfertigen.

Gattung und Art:

Stuartia Pseudocamellia
Maxim. Sommerkamellie, Natzutzubaki. Japan.

Blatt nach nebenstehender Abbildung, feingesägt; an der Unterseite die Mittelrippe, sodann Blattstiel, Triebe, Knospenschuppen mit langen, leicht abfallenden Haaren versehen; Blumenblätter der weißen Blüte unterseits dicht mit gelben, seidenglänzenden, langen Haaren versehen; Knospen mit zwei abstehenden Schuppen, plattgedrückt. Die Rinde platanartig sich ablösend, doch Schuppen kleiner. Das harte, dem Birnbaum ähnliche Holz dient zu Drechsler-

![Blätter und Knospen der Sommerkamellie](image)

Abb. 239. Blätter und Knospen der Sommerkamellie (*Stuartia Pseudocamellia*).

Abb. 240. Trieb des japanischen Storaxbaumes (*Styrax japonicus*).

arbeiten; der wichtigste Grund zum Anbau ist der hervorragende Zierwert dieses Blumenbaumes, der noch im wärmeren Fagetum (Vorkommen oder Gedeihen der Eiche) seinem Auftreten in der Heimat nach ge-}

deihen müßte.

Gattung Tilia. Linden.

Blätter größer und grober gesägt als bei den europäischen Arten.

Tilia grandifolia Ehrh. Sommerlinde. Europa.

Blätter unterseits grün, glänzend.

Der japanische Baum zeigt, zusammen mit der cordata bezw. parvifolia oder ulmifolia kultiviert, so deutliche, bleibende Unterschiede,

Japan.

Blätter kahl, grob- bis doppeltgesägt, in eine sehr lange Spitze ausgezogen: Triebe nackt.

Tilia mandshurica Rup. et Max. Mandschurische Linde.

China und Sibirien.

Was ich unter diesem Namen auf Eso sammelte, hat H. Shirasawa1) neuerdings getrennt, indem er die auf japanischem Boden wachsende Art als

Tilia Maximovicsiana Shirasawa beschreibt: japanisch Obabodaiju.

Maximovics Linde hat sehr große, gesägte Blätter: Blattunterseite, Blattstiel und alle Triebe feinfilzig behaart; Früchte groß, behaart, mit Rippen versehen.

Tilia Miqueliana Maxim. Miquels-Linde, Bodaiju. China, Japan(?).

Blätter ziemlich groß, grobgesägt, kahl: Früchte mit deutlichem, kurzem Spitzchen.

Tilia parvifolia Ehrh. Winterlinde. Europa.

Blätter unterseits bläulich, heller als Oberseite.

Abschnitt. Die für Europa anbaufähigen fremden Holzarten.

Die ungarische Silberlinde, vielleicht die schönste von allen, verdient eine kurze Erwähnung. Die silberweiße, behaarte Unterseite des großen Blattes macht diese Linde zu einem überaus beliebten Park- und Alleebaum.

Aus China sind zehn Lindenarten bekannt geworden; eine von diesen ist als *Tilia cordata* Mill. von der europäischen *purpurea* abgetrennt worden.

Dieser Baum wächst auf steinigem Kalk- oder Granitboden, nicht aber auf guten, vulkanischen Böden im mittleren Japan; aus der Rinde wird ein ganz vorzüglicher Vogelleim gewonnen. Im Klima der Edelkastanie wäre dieser Baum vereinzelt anzubauen. Nach S. Kawai (l. c.) besitzt das Holz dieses Baumes keine Gefäße.

Gattung Ulmus. Ulmen.

Schnellwüchsige Halbschattholzarten, welche im allgemeinen überall gedeihen können, wo auch Ahorn- oder auch Eschenarten ihr Fortkommen finden. Das Holz ist vor allem durch den peripherisch-welligen Verlauf der hellen Parenchymstreifen im dunkleren Spätholze, den zahlreichen Gefäßen (Poren) im Frühholze ausgezeichnet; das Holz, mit deutlich gefärbtem Kerne von ziemlicher Dauer, schwer spaltbar. In der Rinde sind Bastbündel, welche als Bindematerial oder zu Fäden gesponnen, als Säcke, Kleiderstoffe u. dergl. bei einigen Arten Verwendung finden; der Zierwert der Ulmen ist groß.

Es wird behauptet, daß die amerikanische Ulme in Europa noch gar nicht eingeführt sei; wenigstens sei alles, was die Pflanzenhand-
C. Dikotyle Laubbaumarten. 523

Ulmus fulva Michx. Rote Ulme. **Red Elm.** Ostamerika.

Blätter dick, in eine lange Spitze ausgezogen, mit symmetrischer Basis, fast sitzend: junge Triebe und Knospen braunfilzig behaart.

Ulmus laciniata Mayr 1) (syn. *montana* oder *scabra* var. *laciniata*).

Gewebeulme, Ohio. Japan und Sachalin.

1) Auch Sargent glaubt, daß bei besserer Kenntnis der Ulme dieselbe als gute Art sich herausstellen wird.

Die für Europa anbaufähigen fremden Holzarten.

Unten nach oben heruntergerissen wird. Den Bast zerfasern die Aino-Frauen zu Fäden, welche sie aneinanderknüpfen, um daraus auf einem primitiven Webstühle Gewandstoff für Aino-Männer und -Frauen zu fertigen. Durch Reinhold Gärtner ist der Baum in Mitteleuropa bereits eingeführt; trotz des Bastes ist der Baum, der dasselbe Holz wie alle Ulmen bildet, wohl nur ein Schmuckbaum für das ganze europäische Laubwaldgebiet.

Ulmus parvifolia Jacq. (syn. _chinensis_ Pers.). Chinesische Ulme.

Ulmus racemosa Thom. Felsenulme, _Rock Elm_.

Ostamerika.

Dieser immergrüne Baum, als Lorbeer mit aromatisch wohlriechendem Öl in Blatt, Rinde und Holz ausgestattet, wird in den wärmern

1) Dippel. Handbuch der Laubholzkunde. II. Teil, S. 35.
Tälern der Bergflüsse Kaliforniens ein Baum bis 30 m; das Blatt nach untenstehender Fig. 245: die Borke kleinschuppig. Das vorzügliche, harte Holz ersetzt an der pazifischen Küste das Walnußholz und vielfach auch das Eichenholz; der hellbraune Kern wird von 4 cm breitem Splinte bedeckt. Im Gebiete der immergrünen Eiche (Quercus Illex) von Europa (Lauretum und in anstoßenden, wärmsten Lagen) wäre der Baum des Anbaus fähig und würdig, aus nützlichen wie aus dekorativen Gründen.

Gattung Zelkowa. Keakibäume.

Die Keakibäume gehören zur Familie der Ulmen: Morphologie des Blattes, der Zweige und Anatomie der Rinde weisen sie dort hin, wenn auch die Sämereien flügellose Nüsse darstellen. Auch in der Naturgeschichte teilen sie die Eigentümlichkeiten der Ulmen; sie erwachsen mit schiefstehendem Leittriebe, der sich erst später gerade richtet; sie lieben frischen, tiefgründigen, guten Boden, wie Rotbuche oder Ulme; sie wachsen sehr rasch, ertragen ziemlich Schatten (Halbschattholzarten) und spenden deshalb reichlich Schatten, ebenso gleich ihr Holz dem der Ulmen, übertrifft dieses aber in technischer Hinsicht bedeutend. Im Freistande erachsen sie zu kurzstämmigen, breitkronigen Bäumen; im Bestandesanschluss bilden sie prächtig astreine Schäfte.

Zelkowa crenata Spach. (syn. Planera Richardi Mich.).

Kaukasische Keaki. Kaukasus.

Zelkowa Keaki Sieb. (syn. acuminata Planch.). Keaki. Keaki.

Japan, Korea.

Wenn die Bezeichnung Zelkowa Keaki nicht von Siebold gebräucht wurde, wie die japanischen Botaniker schreiben, und die Zu-

Blatt nach beistehender Abbildung, beiderseits rauh behaart, im Herbst prächtig rot bis rotbraun gefärbt; der dünne Leittrieb schief gestellt; Rinde lange Zeit glatt, hellgrau, wie bei der Rotbuche, später in unregelmäßigen, rundlichen, kräftigen Borkenplatten sich ablösend.

Schon J. J. Rein hat angelehentlich diesen Baum zum Anbau in Mitteleuropa empfohlen, und von den deutschen forstlichen Versuchsanstalten wurde der probeweise Anbau auch 1888 bereits begonnen. Die Keaki ist in ihrem Holze in Japan dem der Eichen entschieden überlegen. Die Kernfarbe des frisch gefällten Stammes ist hellbraun; bei Luftzutritt färbt sich der Kern dunkelbraun; Holzstruktur und Farbe nach Tafel XX, Fig. 44. Die Grenze des 4 cm breiten Splintes und des Kernes bezeichnet eine schöne rosarote Zone. In Japan wird das Keakiholz dem Eichenholze vorgezogen; man darf aber nicht vergessen, daß das Keakiholz in Japan nicht mit den Weißeichen, sondern mit den Schwarzeichen oder den immergrünen Eichen in Mitbewerb tritt; die Weißeichen liegen in einer etwas kühleren Zone, wie auch in Europa *Q. Cerris* einem wärmeren Klima als *Q. sessilis* und *pedunculata* angehören. Das spezifische Gewicht aus mehreren von mir untersuchten Bäumen ist folgendes. Junge Bäume von 20—25 cm Durchmesser: frisch gefällt 107, lufttrocken 80, absolumentrocken 75; alte, etwa 50 cm starken Bäumen 80, 50 und 45. Schwindenprozent vom Frisch- zum Lufttrocken-Volumen 5%: dieses geringe Schwinden zeigen auch große Keakistücke, Scheiben und Bretter, die ich nach Deutschland verbrachte; sie schwinden nur unmerklich und reißen gar nicht; zu Möbeln verarbeitet. „steht“ das Holz so gut und ist in

1) Beifsner, Schnelle, Zabel, Handbuch der Laubholzbenennung, 1903.

H. Mayr photogr.
Politur und Textur so schön wie Eichenholz. In der Heimat erreicht der Baum eine gewaltige Größe; ein Exemplar, das im kühleren Castanetum gewachsen war, hatte noch 37 m Höhe, 17 m astreine Schaftlänge und 0,83 m Durchmesser. Aus diesem Grunde muß die Keaki auch forstlich geprüft werden. Dafs sie in der ganzen Castanetum-Region von Europa gedeihen, kann schon aus dem Klima der Heimat gefolgert werden: das Auftreten der Keaki im Fagetum Japans in niederer, ästigen Stämmen legt den Gedanken nahe, dafs sie nur in den wärmsten Lagen von Mitteleuropa noch erzogen werden kann; sie hat im Versuchsgarten zu

Abb. 249. Alte Keaki, freiständig, von der Schlingpflanze Wistaria überwuchert.
H. Mayr n. d. N. geo.

Grafarth Temperaturen von —25° C. ohne Beschädigung ertragen; junge Pflanzen frieren die ersten Jahre leicht zurück; vom fünften Jahre an verliert sich dies, nicht durch Anpassung, sondern wegen fortschreitender Erhebung über den Boden.

In Japan wird die Keaki stets gepflanzt; die Aufzucht in Saat- und Pflanzgärten ist einfach; die Wiederverpflanzung gelingt sehr leicht. In Japan verwendet man Halb- und Vollheister bis 3 m Höhe; sie werden an Pfählen angebunden. Da die Keaki sehr starke Neigung zur Entwicklung von Seitenästen besitzt (siehe Abb. 248, einer Keaki bei Tokio, und ebenso Abb. 249, einer alten, freiständigen, von Wistaria überwucherten Keaki), so werden andere Holzarten da-zwischengepflanzt, welche später allmählich herausgenommen werden:
im Freistande wird sie zur Erzielung der Astreinheit aufgeästet. All
das kann auch bei uns in Europa Anwendung finden und noch folgendes
außerdem. Nach Schwappach (l. c. S. 80) können schon einjährige
Pflanzen ins Freie gebracht werden; es besteht dann wohl die große
Gefahr, daß die Keaki von einheimischen Gewächsen überwachsen
und erdrückt wird; außerdem wird sie von Mäusen und Hasen be-
sonders bevorzugt. Einpflanzung von Halbheistern, in engem Verbande
zwischen anderen, älteren Holzarten als Ausfüllung, welche aber ständig
in der Krone oder besser in der Wurzel mißhandelt werden müßten,
damit sie zurückbleiben, scheint mir ein sichereres Verfahren; auch
als Unterbau unter Licht gestellte Eichen hat sich die Keaki bisher
bewährt; nach dieser Richtung hin müssen die Versuche erweitert
werden, denn eine Holzart, welche der Rotbuche in den Boden ver-
bessernden Eigenschaften gleichkäme, in ihrem Holze diese aber be-
trächtlich übertrfe, wäre ein größer forstlicher Gewinn.
Achter Abschnitt.

Allgemeine Regeln für den Anbau fremder Holzarten.

In der forstlichen wie in der gärtnerischen Behandlung der fremden Holzarten wiederholt sich bei den einzelnen Baumarten, ja bei ganzen Baumgattungen ein Komplex von Naturgesetzen und Anbauregeln, die alle bei jeder Holzart zu wiederholen, um für jede Holzart eine umfassende Vorschrift bezüglich ihrer Behandlung zu geben, einfach unmöglich wäre: diese Gesetze und Regeln wurden daher zusammengefaßt als allgemeine Naturgesetze und allgemeine Anbauregeln; dem gebildeten Forstmann und Pflanzenzüchter wird es nicht entrinnen, daß diese Anbauregeln als auf naturgesetzlicher Grundlage ruhend, für die einheimischen Holzarten ebenso Geltung haben wie für die fremdländischen, daß sie die forstwirtschaftlichen, insbesondere waldbaulichen Maßnahmen in Amerika ebenso wie in Asien und in Europa beherrschen, da sie in nuce die Grundlage für einen naturgesetzlichen, allgemein gültigen Waldbau wiedergeben. Diese Gesetze und Regeln wurden in möglichst kurzer Fassung gegeben und mit Nummern versehen, um bei der speziellen Betrachtung der einzelnen Holzarten den mit der Zeit knappen Leser hier und da auf besonders wichtige Momente bei dem Anbau hinweisen zu können.

1. Der natürlichen Ausbreitung jeder Holzart nördlich vom Wendekreise des Krebses ist eine obere oder nördliche Grenze (durch klimatische Einflüsse und durch das biologische Verhalten der Holzart insbesondere Unfähigkeit in Wettbewerb zu treten), sowie eine untere oder südliche Grenze (durch klimatische Einflüsse und durch biologisches Verhalten) gesteckt: man kann nach dem Hauptfaktor Klima die obere oder nörd-
VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten. 531

liche Grenze eine Kältegrenze, die untere oder südliche eine Wärme-
grenze nennen; zwischen beiden liegt das natürliche Verbreitungsgebiet. Es muß in diesem eine mittlere Zone geben, in welcher die Holzart die günstigsten Bedingungen für ihr Gedeihen findet; diese mittlere Zone wird zweckmäßig das Optimum der Holzart genannt. Dadurch ergeben sich für das natürliche Verbreitungsgebiet einer Holzart drei Zonen, nämlich das Optimum, eine Zone kühler und eine Zone wärmer als das Optimum.

Künstliches Verbreitungsgebiet kühler als das natürliche, ursprüngliche Verbreitungsgebiet.

Natürliches, ursprüngliches Verbreitungsgebiet

| kühler als das Optimum. | Optimum. | wärmer als das Optimum. |

Künstliches Verbreitungsgebiet wärmer als das natürliche, ursprüngliche Verbreitungsgebiet.

2. Jede Holzart kann auch außerhalb ihres natürlichen Verbreitungsgebietes durch Unterstützung des Menschen (Beseitigung der Mitbewerber, Auswahl besonders günstiger Bodenverhältnisse, Schutzmaßregeln) noch kultiviert werden, so daß noch zwei weitere Verbreitungszenonen für jede Holzart sich ergeben, nämlich eine künstliche, welche wärmer ist als das natürliche Verbreitungsgebiet (z. B. Lärchen und Fichten in Nordwestdeutschland), und eine solche, welche kühler ist als das natürliche Verbreitungsgebiet, z. B. Edelkastanien nördlich der Schweiz. Bei schroffem Klimawechsel (Gebirge) ist das künstliche Verbreitungsgebiet ein sehr schmales, bei gleichmäßigen, klimatischen Verhältnissen auf größere Flächen hin (Ebenen) ist die künstliche Anbauzone breit, zumal wenn Unterschiede in den Elevationen noch die natürliche Abnahme oder Zunahme der Temperatur nach Norden oder Süden hin ausgeglichen (nach Norden hin Senkung, nach Süden hin Erhebung des Landes).

3. Für jede Holzart, welche im Süden erst bei hoher Elevation (Gebirge) ihr Verbreitungsgebiet und Optimum besitzt, kann es auch ein Verbreitungsgebiet (Wuchsgebiet) und ein Optimum im Norden geben; die Zahl der Verbreitungsgebiete (Wuchsgebiete) und Optima kann so groß sein als die Zahl der Gebirge und ihrer Erhebungen: ist der Norden ein ebenses Gelände, so liegt ihr Verbreitungsgebiet und Optimum in der Ebene (Fichte in den Alpen und in Nordwestrufland). Ragen die zwischenliegenden Gebirge in die Klimazone der betreffenden Holzart hinein, so können diese ebenfalls diese Holzart und ein Optimum tragen (Fichte in den Schweizeralpen, Schwarzwald, Harz, Schweden). Ist die betreffende Holzart nicht im Norden heimisch, wegen der Un-
fähigkeit der Holzart, das zwischenliegende Gelände auf natürlichen Wege zu überbrücken, so kann sie dorthin künstlich gebracht werden, so daß auch im künstlichen Anbaugebiete ein Optimum für eine Holzart möglich ist (z. B. Tanne an der friesischen Küste: die Lärche ist noch kaum auf dem klimatischen Parallelengebiet nördlich der Alpen, d. i. Dänemark, Schweden, Norwegen, Finnland, angebaut worden; immer hat man sie in jene Gebiete gebracht, welche sie auf natürlichem Wege nicht zu besiedeln und zu überschreiten vermochte).

4. Daraus ergibt sich naturgemäß, daß jede fremde Holzart zunächst in der Zone anzubauen ist, welche als die klimatische Parallele des Heimatgebietes der Holzart erscheint; mißlingt die Holzart dort, so wird sie sicher überall anderswo ebenfalls mißraten; gelingt sie dort, mögen auch Versuche außerhalb dieser klimatischen Parallele vorgenommen werden.

6. Wo klimatische Daten fehlen, gibt den besten Maßstab für die Beurteilung des Klimas eines Standortes das Studium der an der betreffenden Stelle ursprünglich vorhandenen oder noch vorhandenen Holzarten; da jede Baumart in einer bestimmten Klimazone auftreten muß, kann umgekehrt aus dem Vorkommen der Holzart selbst ein Schluß auf das Klima des betreffenden Standortes gezogen werden: sind an dem Standorte reichlich Buchen vorhanden, so liegt die Vegetationszone des Fagetums vor, für welche im zweiten Abschnitte die klimatischen Daten und Parallelen in anderen Weltteilen gegeben sind.

7. Nähert sich der zu bebauende Standort klimatisch dem Grenzgebiete der gewählten Holzart, um so wichtiger werden waldbäuerliche bzw. gärtnerische Maßnahmen, um das Aufwachsen der Holzart zu sichern.

8. Wird aber eine Holzart außerhalb der mit der Heimat parallelen Klimazone angebaut, z. B. Holzarten des amerikanischen Castanetums im europäischen Fagetum, so nehmen die Schwierigkeiten und Vorsichtsmaßregeln für den Anbau zu, bis endlich die Grenze der Anbauwürdigkeit und noch weiter hinweg auch die Grenze der Anbaufähigkeit erreicht ist. Wie weit außerhalb der parallelen Zone eine Holzart angebaut werden kann, kann nur durch Versuche festgestellt werden.

Ende wurden den Vegetationszonen des zweiten Abschnittes auch die für die betreffende Zone typischen, landwirtschaftlichen Nutzgewächse beigefügt.

11. Je ungünstiger, d. h. kühler für fremde Holzarten die Temperaturverhältnisse des neuen Standortes sind (Annäherung an die Kältegrenze), um so mehr muß ihnen Ersatz durch besseren Boden, wärmere Exposition, reichlicheren Lichtgenufs geboten werden; je ungünstiger, d. h. wärmischer, für eine fremde Holzart die Temperaturverhältnisse des neuen Standortes sind (Annäherung an die Wärmegrenze der Holzart), um so frischeren und deshalb kühleren Boden verlangt die Pflanze einerseits zur Korrektur des Klimas bis auf den Standort des Optimum, andererseits zum Ersatz der größeren Verdunstung; desto mehr müssen östliche oder nördliche Expositionen gewählt werden.

Bestandsschlüsse mässigen den Wärmeigenufs, mässigen die Ausstrahlung und Abkühlung, mindern den Lichtgenus, erhöhen aber die Luftfeuchtigkeit des betreffenden Standortes; erhöhte Luftfeuchtigkeit aber mässigt die Frost- und Austrocknungsgefähr. Von diesen reichlichen und einschneidenden Hilfsmitteln ist beim Anbau der fremden Holzarten so gut wie beim Anbau der einheimischen Art möglichst Gebrauch zu machen: dem Pflanzer im Parkwalde stehen derlei wichtige Maßregeln nur in beschränktem Maße, dem Dekorationsgärtnern auf kahler Fläche meist gar nicht zur Verfügung.

16. Tritt der letzte Spätfrost Ende März auf, so sind in dem betreffenden Jahre alle Holzgewächse spät frosthart; ist der letzte Frost Mitte Mai, so werden mehr oder weniger alle Holzarten geschädigt, welche bis dahin bereits ihre Vegetation begonnen haben; die früher treibenden sind frostweich, die später treibenden frosthart. Kommt ein verspäteter Frost anfangs oder gar Mitte Juni, so leiden alle Holzarten, am meisten aber jene, welche zur Frostzeit gerade ihre Vegetation beginnen, das sind die spät treibenden Holzarten; solchen Spätfrösten widerstehen jene Holzarten noch am besten, deren neue Triebe bereits mit weit verholzten Gefässsträngen ausgebildet sind; sie, die sonst als die spät frosthart empfindlichsten bezeichnet werden müssen, sind unter diesen Umständen härter als die für gewöhnlich als besonders spät frosthart bezeichneten spät treibenden Arten und Individuen.

17. Jede Baumplanze bereitet sich auf die Winterruhe vor durch Verholzung der Zellenwände, Entleerung der nicht parenchymatischen Holzzellen, Wanderung der wichtigsten Nährsalze, Umwandlung von flüssigen in feste Substanzen, in Reservestoffe. Wird eine Pflanze während dieser Prozedur vom Frost überrascht (Spätsommer), so er-
VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten. 535

friert sie, und zwar um so empfindlicher, je weiter eine Pflanze von ihrem definitiven Ruhe stadium noch entfernt ist. Daraus erklärt sich, daß bei sehr frühen Herbstfrösten schon geringe Minusgrade, bei sehr spät auftretenden aber nur tiefe Minusgrade schädlich werden können; ja auch Beschädigungen durch Winterfröste durften mit diesem Vorgange der Herstellung eines Winterruheszustandes in Zusammenhang stehen.

Die Holzarten, einheimische wie fremde, leiden in ihrer Gewächszone durch tiefe Wintertemperatur nur dann, wenn aus irgendeinem Grunde (Punkt 26) ihre Vegetation künstlich hinausgezogen wird; Holzarten aber, welche aus einer wärmeren Gewächszone stammen, erreichen nicht rechtzeitig den Grad ihres Winterruheszustandes, der für die tiefe Temperatur der kälteren Zone notwendig ist.

19. Auf direktes Erfrüren, nicht auf Ver trocknung, ist die Erscheinung zurückzuführen, daß junge, immergrüne und winterkalhe Pflanzen, welche über die Schneedecke mit ihren Gipfeln emporragen, vielfach gebräunt oder getöter werden, worauf ein Ver trocknen eintritt; primär ist das Erfrüren, sekundär das Ver trocknen. Unmittelbar über der Schneedecke sinkt in einer klaren Winter nacht bei Windstille die Temperatur auf eine unglaubliche Tiefe herab. So mafs ich 1894 im Versuchsgarten zu Graf rath in einer Mulde unmittelbar über dem Schnee — 40° C., während 10 m davon entfernt auf einer schwach geneigten Schnee fläche nur — 28° C. beobachtet werden konnten; den Winter morgen registrierten die meteorologischen Beobachtungen einer benachbarten Station mit — 25° C. Unmittelbar über dem Schnee lagern die Luftschichten mit verschiedenen Temperaturen dicht übereinander, so daß vom Schnee hinweg auf die erst 10 cm Luftschichthöhe in dem
festgestellt, jüngsten und sie neu nur schädigung im zu bleiben und würden, dort sinkt selbst während des Hochsommers in den kühleren Lagen von Mitteleuropa in klaren Nächten die Temperatur auf 0° und darunter.

20. Ähnlich wie eine Schneefläche wirkt auch die Begrassung des Bodens: sie vermindert die Ausstrahlung der Wärme und dadurch die Erwärmung der Luft. Die tiefste Temperatur der verspäteten oder verfrühten Fröste liegt immer in der Graspitzenhöhe; dort sinkt selbst während des Hochsommers in den kühlernen Lagen von Mitteleuropa in klaren Nächten die Temperatur auf 0° und darunter.

21. Für alle Holzarten und Standorte nimmt die Gefahr durch verspätete und verfrühte Fröste mit dem fortschreitenden Höhenwuchs der Pflanze ab, da die am meisten gefährdeten, jüngsten Triebe der Pflanze immer höher über die kalte Luftsschicht sich erheben. Mit dem Alter der Pflanze hat daher nicht eine Anpassung, eine Akklimatisation stattgefunden, die Pflanze blieb in der Biologie unverändert; mit dem Höhenwuchs verändert sich vielmehr stets die Umgebung der Pflanze, indem einerseits die höheren Luftschichten nicht so tief sich abkühlen wie die tiefer am Boden liegenden, indem anderseits die Pflanze durch ihre wachsende Beastung selbst die Ausstrahlung und Abkühlung der Bodenoberfläche immer mehr zurückhält.

22. Mit dem Alter nimmt die Gesamtmasse der Holzpflanze zu: je größer die Masse, um so langsamer folgt sie den erwärmen und abkühlenden Einflüssen der Umgebung und der eigenen Ausstrahlung; aus diesem Grunde werden mit dem Alter — ohne Akklimatisation — alle Holzarten durch bloße Massenvermehrung „frosthärter“.

24. Holzarten, welche aus einer kühlernen Klimazone in eine wärmere versetzt werden, sind der Gefahr, durch Spätfröste beschädigt zu werden, stets ausgesetzt, weil die im Frühjahr zur Verfügung stehende größere Wärmemenge die Pflanze zu frühzeitigem Vegetationsbeginne zwingt; sie sind aber gegen Früh- und Winterfröste unempfindlich; nur eine schwere Beschädigung im Frühjahr kann eine abermalige Beschädigung durch Fröste im Spätsommer nach sich ziehen, weil die neu entfalteten Ersatztriebe nicht rechtzeitig abschließen. Offenbar ist
es das im wärmeren Klima länger dauernde Frühjahr mit seinem Wechsel in Wärme- und Kälteperioden, welches den Pflanzen aus Klima mit raschem Übergange von Winter zu Sommer (Hochgebirge und hoher Norden) so überaus lästig ist.

25. Holzarten, welche aus dem wärmeren Klima in eine kühlere Zone versetzt werden, leiden nicht oder kaum durch verspätete Fröste, weil sie spät ihre Vegetation beginnen; dagegen genügt ihnen oft die dargebotene Wärme nicht zum rechtzeitigen Abschluß ihrer Vegetation; sie sind in der Gefahr, durch Früh- und Winterfröste beschädigt zu werden; es ergibt sich hieraus wie aus Punkt 24 von neuem die Wichtigkeit der Kenntnis der Klimaparallelzone und des Satzes, die Holzart zunächst nur in der parallelen Klimazone anzubauen.

27. Überschirmung bedingt für die überschirmten Pflanze eine Beschleunigung des Vegetationsabschlusses infolge der geringeren Feuchtigkeit des Bodens während der Vegetationszeit, somit eine Verbesserung gegenüber der Frühfrösteleigung. Überschirmung bringt dieselbe Erscheinung an den überschirmten Pflanzen hervor wie eine ausnehmende Trockenperiode während des Sommers an nicht überschirmten Pflanzen.

28. Ist durch verspätete Fröste die erste Bildung oder durch verfrühte oder Winterfröste die neue Bildung der vorhergehenden Vegetationszeit verloren gegangen, so bedarf die Pflanze längerer Zeit, bis sie neue Knospen und Blätterorganen entwickelt; es besteht die Gefahr, daß sie nicht rechtzeitig im Spätsummer fertig wird und erfrühten könnte. Nur besonders milde Winter oder künstliche Deckung bringt die Pflanze wiederum in ihr normales Geleise.

30. Spät- oder frühfrostfreie, kahle Flächen gibt es in ganz Mittel- und Nordeuropa überhaupt nicht; unter den kahlen Flächen sind die einen mehr, die anderen weniger gefährdet. Die Gefahr aber, welche durch solche Fröste auf kahlen Flächen droht, wird in der Regel weit überschätzt. Auf kahlen Standorten, in welchen nur alle vier bis sechs Jahre ein verderblicher Frost Mitte Mai bis Mitte Juni auftritt, sind keine besonderen Maßnahmen zum Schutze der Fichten oder Eichen oder Eschen und anderer Holzarten nötig; wo dagegen alle zwei bis drei Jahre verderbliche Fröste zu erwarten sind, da hätte zunächst der
Kahlhieb vermieden werden müssen: dies aber nicht geschehen, so sind Schutzmaßregeln (Vorbau überschirmender Holzarten. Unterbau unter vorhandenem Altholzschirmen. Einbau in Bestandlöcher) nötig: bei allen diesen Maßnahmen ist stets ein Verlust an Zeit und Zuwachs für die Hauptholzart verbunden.

31. Halbschatt- und Schattholzarten sagt in der Jugend, auch wenn sie eines Fröste nicht bedürftig sind, der lockere Schirm früh ergrünender Lichtholzarten am besten zu; weniger gut wird der lockere Schirm eines Schattholzes ertragen; erwachsene Schattholzarten wirken auf eine Jugend am günstigsten, wenn sie für dieselben nur Seitenbeschirmung ausüben. Sollen aber gegen Spät- und Frühfröste recht empfindliche Baumarten aufgezogen werden, so wirkt am günstigsten der Schutz von Halbschatt-Nadelbäumen (Weymouthsföhren, Zärbeln): weniger günstig schützen Laub- und Nadelholz-Lichtholzarten: am kräftigsten geben Schutz überschirmende Schattholzarten, sie sind aber am ungünstigsten wegen ihrer steten Bedrückung.

32. Kahle Bestandslöcher werden, wenn sie eine gewisse Grenze, etwa 20—30 a, überschreiten, zu besonders lästigen Frostlöchern, da die Luftbewegung, die manche Spät- und Frühfröste auf frei gelegenen, kahlen Flächen abhält, im Bestandslöche gehemmt ist; unter diesen Größen erweisen sich die Bestandslöcher für die meisten Holzarten als vorteilhaft; unter 5 a ist zwar die Frostgefahr sehr gering oder ganz aufgehoben, es steigern sich aber die Nachteile der allzu starken seitlichen Bedrückung.

33. Angesichts der vielen Hilfsmittel, welche dem Forstmann zum Schutze seiner Pfleglinge gegen verderbliche Fröste zu Gebote stehen, ist der Schluss, daß eine Holzart, welche im Walde wächst, auch im Parke oder Garten aufwachsen muß, nicht richtig; richtig aber ist, dafs eine Holzart, welche den Unbilden in Park und Garten zu trotzen vermag, mit Sicherheit im klimabenchbarten Walden gediehen wird.

34. Jeder Holzart kommt auf ihr zusagendem Boden, im Zentrum ihrer Vegetationszone, sowohl der heimathlichen als der parallelen, fremdländischen Zone, eine gewisse Raschwüchsigkeit zu, die zwischen dem zweiten und fünften Lebensjahrzehnte am größten ist. Soll aber diese typische Raschwüchsigkeit sich voll einstellen, so muß der Krone der Pflanze völlige Belichtung zuteil werden; unter dieser Voraussetzung sind somit in diesem Alter sämtliche Baumarten Lichtholzarten; während des ersten und zweiten Lebensjahrzehnts vermögen einige Holzarten mehr oder weniger lange Zeit Schatten zu ertragen, ohne zugrunde zu gehen. Man nennt solche Holzarten Schatt- holzarten; das Schattenerträgnis geht aber stets auf Kosten der Raschwüchsigkeit. Jene Holzarten, welche am wenigsten den Schatten ertragen, nennt man Lichtholzarten; zwischen diesen
VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten. 539

steht eine Gruppe von Holzarten, welche zweckmässig als Halb-
schattholzarten bezeichnet wird.

35. Einheimische wie fremde Schattholzarten, in reinen oder unter
sich gemischten Beständen mit genügendem Engstande begründet, er-
halten ein bis ins höhere Alter geschlossenes Kronendach: Astreinigung
der Schäfte, Vollholzigkeit, Bodenreinheit sind die Folgen. Lichtholz-
arten lockern frühzeitig ihr Kronendach; Krummschaffigkeit, Ästigkeit.
Bodenverunkrautung sind die Folgen. Die Halbschattholzarten ver-
halten sich während der ersten Lebensjahrzehnte wie Schattholzarten,
während der letzteren Jahrzehnte wie Lichtholzarten; aus forst-
technischen Gründen erscheinen reine Bestände einer Schattholzart
günstig; weniger günstig sind die gemischten Bestände der Schattholz-
arten und die reinen Bestände der Halbschattholzarten; am un-
günstigsten jene der Lichtholzarten; in Mischbeständen aus Licht- und
Schattholzarten gewinnt forsttechnisch die Lichtholzart, während die
Schattholzart verliert.

36. Vergleicht man statt forsttechnischer Güte nur Holzmassen-
erträge, so stehen an der Spitze die reinen Schattholzbestände; daran
reihen sich Mischbestände von Schatt- und Lichtholzarten, während
die Lichtholzarten die geringsten Erträge abwerfen. Diese Erwägungen
(ebenso Punkt 34 und 35) verdienen bei den fremdländischen Holzarten
dieselbe Beachtung, wie sie bei den einheimischen Holzarten geübt
wird.

37. Seitenbeschattung wirkt günstiger für Halbschatth- und Schatt-
holzarten als Überschirmung; Lichtholzarten gedeihen am besten im
vollen Lichte.

38. Je weitständiger eine Pflanzung ausgeführt wird, um so mehr
nähern sich die Bäume dem Verhalten völliger Solitärs oder isoliert
stehender Pflanzungen; ihre Beastung erhält sich um so länger und
reicht um so tiefer zum Boden herab, je später die gegenseitige Be-
rührungen der Zweige eintritt. Je weitständiger die Pflanzung, um so
wertvoller werden die Bäume in dekorativer Hinsicht, um so wertloser
in forstlicher.

39. Das Verhalten der Holzarten gegen Licht und Schatten wird vom
Klima mächtig beeinflusst. Die im vorausgehenden Abschnitte nieder-
gelegten Angaben über Lichtbedürfnis und Schattenerträgnis der fremden
Holzarten beziehen sich auf Holzarten auf gutem Boden im klimatischen
Optimum: unter denselben Verhältnissen der neuen Heimat wird die
fremde Holzart dasselbe Verhalten wie in ihrer alten Heimat zeigen;
wird aber ein Standort gewählt, der vom klimatischen Optimum der
Holzart nach der kühlen Seite hin sich entfernt, so steigert sich das
Lichtbedürfnis der Pflanze; nach der wärmern Seite hin erhöht sich
das Schattenerträgnis. So kann eine Halbschattholzart, wie Eschen,
Ahorn, Ulmen, Linden, Weymouthsföhren, Zürbeln, in der Nähe ihrer
Kälte- eine völlige Lichtholzart, in der Nähe ihrer Wärme Grenze zur Schattholzart werden; eine Schattholzart, z. B. eine Tanne, kann an der Kältegrenze zur Halbschatt-, ja fast bis zu einer Lichtholzart in ihrer Eigenschaft durch die Abnahme der Wärme verändert werden. Die vielen differenten Angaben bezüglich des Lichtbedürfnisses der einheimischen Holzarten finden sicher in der Nichtbeachtung dieser Erscheinung ihre Erklärung.

40. Die gleiche Wirkung wie die Wärme übt auch die Bodengüte auf das Verhalten der Pflanzen gegen Licht; je besser der Boden, um so intensiveren oder längeren Lichtentzug kann jede Holzart ertragen; umgekehrt wird auf schlechterem Boden ein gesteigertes Lichtbedürfnis bei allen Pflanzen zu beobachten sein, das Hand in Hand geht mit einem erhöhten Wasserbedürfnis. Es bedarf nicht des Hinweises, daß Klima und Boden in ihrem Einfluß auf das Lichterträgnis der Holzart sich verstärken und gegenseitig aufheben können.

42. Den besten Maßstab zur Beurteilung der Güte des Bodens geben die auf derselben oder auf gleichem Boden in der Nachbarschaft wachsenden, einheimischen Holzarten; es bedarf hier nicht einer Erörterung, auf welchem Boden die Eiche oder die Föhre oder die Esche am besten gedeiht. Wo Holzarten fehlen, können auch Unhölzer, selbst Unkräuter einen Fingerzeig für die Güte des Bodens abgeben; wo diese fehlen, kann, wenn eine landwirtschaftliche Bodenbenutzung vorausgegangen ist, die früher aufgezogene Pflanze als Anhalt dienen, und wo alles fehlt, mag eine Bodenuntersuchung Aufschluß geben.

43. Mineralisch geringer Boden wird durch größere Feuchtigkeit in der Güte gehoben; ob die Pflanzen aber auch der damit verbundenen Abkühlung gewachsen sind, ist eine weitere Erwägung, welche dem Anbau vorausgehen muß.

44. Alle Holzarten lieben eigentlich einen nahrungsreichen, guten Boden, selbst die Föhren sind nicht ausgenommen; ist dieser zugleich in seinen physikalischen Eigenschaften (Tiefe, Lockerheit, Frische) entsprechend, so ist es für alle Holzarten gleichgültig, welcher Gesteinsart, welcher geologischen Formation der Boden seinen Ursprung ver-
VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten. 541
dankt; die chemische Zusammensetzung gewinnt dann an Wert, je ungünstiger die physikalischen Eigenschaften sind, je weiter vom klimatischen Optimum hinweg der Anbau einer Holzart geschehen. Auf den geringeren und geringsten Böden scheiden die meisten Holzarten aus, nur die Föhre bleibt die letzte Bewohnerin solcher Böden.

45. Für alle Holzarten besteht das Gesetz, daß sie in dem mittleren Teile ihrer Vegetationszone, in ihrem klimatischen Optimum, einen frischen Boden lieben; gegen ihre Wärmegrenze hin und darüber hinaus steigert sich ihr Anspruch an Bodenfrische bis zum feuchten, ja nassen Boden behufs Abkühlung des Klimas und Ersatz für stärkere Verdunstung; gegen die Kältegrenze hin und darüber hinaus verlangen sie einen weniger frischen Boden behufs Erwärmung des Klimas bei abgemindertem Verdunstung von seiten der Pflanzen. Ist von einer fremden Holzart ihr Verhalten nur an der Wärme- oder nur an der Kältegrenze bekannt, so können aus dem Verhalten der Holzart an dem betreffenden Standorte keine allgemein gültigen Schlüsse auf die Waldbaueigenschaften der betreffenden Holzart gezogen werden.

47. Daraus ergibt sich aber auch, daß es für alle Bestandsanlagen mit einheimischen wie fremden Holzarten wünschenswert ist, Kahlschlag, als die Ursache aller Früh- und Spätfröstlöcher, möglichst zu vermeiden und wenn irgend möglich, entgegen dem bei der Kahlschlagmethode üblichen Rasieren der ganzen Fläche, gerade das unter- und zwischenständige Material, alles Buschwerk von Unhölzern auf der
Schlagfläche zu erhalten, wenn Pflanzung beabsichtigt ist. Sie schützen nicht bloß gegen Fröste, sondern erleichtern das Aufkommen der neu-begründeten Holzarten außerordentlich. Schon aus diesem Grunde sind Plätze- und Riefensaaten zwischen verunkrauteten Bodenflächen günstiger als Volssaaten auf völlig kahlen Stellen.

50. Alle Methoden der Aufzucht der Holzart gelingen um so leichter, je reichlicher und gleichmäßiger während des ganzen Jahres Luftfeuchtigkeit geboten ist (insulares Klima, See- und Flußufer, große Waldmassen, windgeschützte Waldtäler, nördliche und östliche Hochlagen in Mitteleuropa bis zu 1000 m Höhe).

51. Wegen der Kostspieligkeit des Saatgutes kommen für die fremdländischen Holzarten, welche sich verpflanzen lassen, einstweilen am besten nur Aufziehung in Saat- und Pflanzengärten und später Auspflanzung ins Freie in Frage.

52. Die Aufzucht aller Holzarten geschieht am besten und sichersten in kleinen, im Seitenschutz eines Hochwaldes, der 1/3−1/2 der Besonnung entzieht, auf gutem, frischem Boden gelegenen Saat- und Pflanzgärten: derartige Saatgärten taugen allen Nadel- und Laubhölzern, Föhren, Eschen und Erlen nicht ausgenommen.

VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten. 543

Bodens zur Erhaltung der Bodenfeuchtigkeit wichtiger als eine durch das Beschneiden der Äste erzielte Förderung im Höhenzuwachs.

56. Je länger das Samenkorn austrocknet, um so längere Zeit braucht es, um nach der Aussaat zu keimen; kann die Aussaat der fremden Samenart nicht frühzeitig (für Mitteleuropa April) erfolgen, so ist entweder die Aussaat auf den Spätherbst zu verschieben oder für die aufgekommene Saat eine Deckung im Spätherbst oder Winter vorzusehen.

57. Die Deckung bringt aber nach einer anderen Richtung hin eine große Gefahr, nämlich die Tötung der Keimpflanze durch Schimmelpilze (Botrytis, Mucor, Penicillium). Von diesen Pilzen befallene fahl- oder graugrüne Pflanzen werden nach Entfernung der Decke mehr oder weniger rot bis braun und sind in der Regel verloren, auch wenn anfangs nur der Gipfel der Pflanze getötet erscheint.

58. Eine weitere Gefahr der Deckungen besteht darin, daß dieselben mit Vorliebe von den Mäusen zu Winterquartieren benutzt werden. Wenn möglich, soll die Deckung daher so spät ausgeführt werden, bis die Mäuse bereits ihre Winterquartiere bezogen haben.

60. Schutz gegen Unkrautwuchs verlangt im Keimbeete das sorgfältige Ausjäten desselben, am besten mit der Hand oder einer Messerklinge; dem Unkrautwuchse und der Trocknis in Verschulbeeten wird am besten durch Deckung des nackten Bodens mit Moos oder Säge- mehl oder Torfklein (Mull) oder Laub, das mit Prügeln in seiner Lage festgehalten wird, vorgebeugt. Bei Pflanzen, welche das letzte Jahr im Verschulbeete stehen, empfiehlt sich statt der Beseitigung des Unkrautes mit den Wurzeln ein Ausrüpfen oder Abschneiden desselben vor oder während der Blütebildung.

61. Ob die Verschulung der Sämlinge im ersten oder zweiten Jahre oder in späterem Alter vorgenommen werden soll, wie lange eine Pflanze im Verschulbeete bleiben soll, das hängt von der Entwicklung der Pflanze und vom Zustande des künftigen Standortes in der freien Natur, von der Gefahr der Umgebung u. a. ab. Im allgemeinen verschafft man 10—15 cm hohe Pflanzen im Abstande von etwa 15—20 cm und bringt sie nach zwei oder drei Jahren ins Freie; wie bei den einheimischen Holzarten kann natürlich auch bei den Fremdländern eine Verschulung bei weiträumigen Saaten unterbleiben; nur für die etwas barbarische Methode des Herausrupsdens oder Durchschneidens der Saat zur Ersparung der Verschulung dürften fremdländische Pflanzen noch zu kostbar sein.

62. Ob auf die erste Verschulung noch eine zweite (welche eigentlich eine regelrechte Verpflanzung ist) folgen soll, darüber entscheiden
die späteren Verwendungszwecke der Pflanze, z. B. als Alleebaum, für Parkanlagen, Pflanzung in wildgefährdeten Örtlichkeiten u. dergl.

64. Fremde Holzarten leiden ebenso wie einheimische durch die Verpflanzung. 1—2 m hohe Pflanzen entwickeln im Jahre der Verpflanzung selbst zwar noch einen ziemlichen Längstrieb, aber die Endknospen bleiben schwach: aus diesen geht im folgenden Jahre ein kurzer neuer Trieb hervor, der mit einer kräftigen Endknospe abschließt: im folgenden Jahre (mit dem Verpflanzjahre somit das dritte Jahr) bricht aus der kräftigen Endknospe wiederum ein kräftiger, normaler Sproß hervor. Erst im dritten Jahre hat die Pflanze die Folgen des schweren Eingriffes in ihre Lebensgeschichte überwunden. (Nur in besonders günstiger Bodenlage mag schon im zweiten Jahre die Normalität wiederum erreicht sein.) Ist die Pflanze in geeignete Verhältnisse gebracht worden, so muß sich diese Steigerung des Längstriebes alljährlich bis zum Abschluß des Stangenholzalters einstellen; verschieden lange Streckungen im Triebe sind dann nur noch die Folge von mehr oder weniger günstigen Vegetationsjahren; je größer die Pflanze bei der Umplantzung ist, desto empfindlicher und länger leidet sie.

65. Die Waldbegründung, die Bestandsanlage, mag bei den fremdländischen in denselben Verbande wie bei den einheimischen Holzarten ausgeführt werden: das kostbare Pflanzenmaterial empfiehlt aber einen weiteren Verband, nämlich 1,5—4 m, wobei zur Auffüllung einheimische Holzarten dazwischenzupflanzen sind. Für diesen Zweck sind einheimische Schattholzarten, wie Buchen, Fichten, Tannen, am wenigsten geeignet: sie bedingen alle zu sehr die steile Entwicklung und erzielen für die spätere Freistellung ungeeignete Pflanzen; am besten sind Lichtholzarten, wie Weiden, Eichen, Birken und andere. Durch allmäßlicher Herausnehmen des Zwischenbaues wird die fremdländische Art allmäßlicher freigestellt.
VIII. Abschnitt. Allgemeine Regeln für den Anbau fremder Holzarten. 545

66. Holzarten, welche notorisch während der ersten Lebenshälften (nicht bloß während ein paar Jahrzehnten, wie bei den japanischen Lärchen!) rascher wuchsig sind als die einheimischen Bäume, können mit diesen in Einzelmischung gebracht werden; in allen anderen Fällen ist der fremdländischen Art entweder ein größerer Vorsprung durch vorzeitigen Anbau zu geben, oder dieselbe ist in seinen, größeren Gruppen oder selbst in reinen Beständen zu begründen, damit die Versuche gegen einheimische Arten aufkommen, nicht in Vergessenheit geraten und einen zweckmäßigen Schutz gegen Tiere lohnen; wo Einzelmischung gewählt wird, ist fortgesetzte Überwachung und Bekämpfung der zumeist voranenilenden einheimischen Holzarten nötig. Bei diesen ist das Zurückschneiden und Köpfen nur eine halbe Maßnahme. Kann das völlige Heraushauen wegen allzu plötzlicher Freistellung nicht ausgeführt werden, so empfiehlt sich das Abstößen oder Abhacken einiger kräftiger Seitenwurzeln der bedrängenden Pflanze, „Wurzelstümmelung“, wodurch die Pflanze längere Jahre in ihrer Wuchsernergie geschwächt wird, so daß sie zum unschädlichen Fällholze herabsinkt, während anderseits die Fremdländerin durch Minderung der Wurzelkonkurrenz gestärkt wird.

68. Fremdländische Holzarten zur Ausbesserung der Kulturen mit einheimischen Holzarten zu verwenden, dürfte nur bei besonders rauschwüchsigen Arten, wie Roteichen, der grünen Douglasie, mit Sitkafichten anzuraten sein; das Überpflanzen von Buchenhorsten mit Lärchen, einheimischen wie fremden, und anderen Holzarten führt zumeist zu keinem Erfolge, daß die enggeschlossenen Buchenhorste zu wahren Brutstätten für die Mäuse werden; in ihrem Optimum überwächst überdies die Buche später alle Holzarten, nur Fichten und Tannen ausgenommen.

69. Alle Anbauversuche mit fremden Holzarten sind angesichts der Kostspieligkeit des Pflanzmaterials, des wissenschaftlichen Wertes solcher Versuche, mag das Resultat günstig oder ungünstig sein, zur Erreichung eines reinen Ergebnisses mehr noch als bei einheimischen Arten gegen Beschädigungen aller Art, insbesondere durch Hasen, Rehe, Mayr, Fremdländische Wald- und Parkbäume. 35
Neunter Abschnitt.

Spezielle Anbauregeln und Anbaupläne für forstliche Zwecke.

a) Saat und Pflanzung.

Findet sich eine bestimmte Holzart nur an einem bestimmten Punkte, so ist die Garantie für die Provenienz auch genügend Bürgschaft für die Echtheit der Art; so kann man zum Beispiel aus Eso nur Sämereien der Picea ajanensis oder Glehnii, aus Zentralhondo nur Sämereien der hondoënsis-, der bicolor- oder polita-Fichte beziehen, welche drei Fichten schon durch ihre Samengröße leicht voneinander zu unterscheiden sind. Wer Chamaecyparis-Samen, zuverlässig in Ost-amerika gesammelt, bezieht, erhält die spheroidea, wer aus Oregon bezieht, erhält die Lawsoniana, wer im britischen Dominium sammelt, erhält die mutilaënsis. Hier hat die Provenienz einen hohen Wert, weil sie entscheidet, ob die gewünschte Art geliefert wird oder nicht.

Die Ausführung der Saat. Für die Ausführung der Saat im Garten wie im Freien erheischen schon die eimheimischen Holzarten besondere Maßnahmen, um alle entwicklungsfähigen Körner zum Keimen zu bringen, um Abgang möglichst zu vermeiden, um das Heranwachsen möglichst zu fördern; solche Maßnahmen sind: Auswahl eines guten Bodens in passender Klimalage, Bodenbearbeitung, Ausführung der Saat nach den Regeln, welche durch die Samenart und die Korngröße gegeben sind. Um so mehr werden solche Maßnahmen sich rechtfertigen bei den fremdländischen Arten, bei welchen das Saatgut meistens viel kostspieliger ist, aber, mit wenigen Ausnahmen, keine andere Behandlung verlangt als die Samen der einheimischen Baumarten. So haben Versuche ergeben, daß man wie
mit einheimischen Nadelholzarten auch mit der Douglasie, mit der japanischen Lärche in Rifen- und in Plätzesaaten gutes Ergebnis erzielt. Für die Mehrzahl der Holzarten empfiehlt sich die Ausführung der Saaten im Saatgarten, wobei Grundsatz ist, daß, je kleiner der Same oder je schlechter die Keimkraft, um so dichter die Saat: je größer das Saatkorn selbst, um so tiefer die Bedeckung. Angaben über Samenmenge pro Rille, Rillenabstand, Bedeckungstiefe und dergleichen haben nur einen lokalen Wert. Mit der geringsten Änderung in der Zusammensetzung des Bodens, des Klimas, der Arbeiterchaft und dergleichen erweist sich eine etwa gegebene schablonenhafte Vorschrieb für die Ausführung der Saat eher als schädlich denn nützlich. Bei ganz kleinen Sämereien empfiehlt sich behufs Schutzes gegen Trocknis, Auffüllen und andere Unbilden die Aussaat in Kästen. In der Regel werden die zwei- oder dreijährigen Pflanzen ausgehoben und auf ein anderes Beet in weiterem Verbande umgepflanzt (verschult, umgeschult), worüber in den allgemeinen Regeln des vorhergehenden Abschnittes genügend Andeutungen für den Pflanzenzüchter gegeben sind.

Eine Deckung der Saat während des Winters soll nur dann gegeben werden, wenn die Untersuchungen im Herbst ergeben haben, daß die Endknospe nicht voll zur normalen Ausbildung gekommen,
daß die Blätter nicht die normale Herbstfärbung gezeigt haben. Sind Herbstfärbung und Blattabfall eingetreten, so liegt darin der beste Be- weis für rechtzeitigen Vegetationsabschluß und genügende Vorbereitung für die Winterruhe und Winterfröste. Über die weiteren Schutzmaß- nahmen gibt der elfte Abschnitt Aufschluß.

Der Pflanzenbezug. Soweit Deutschland in Frage kommt, unterliegt der Bezug einheimischer wie fremdländischer Pflanzen von Pflanzschulen des Auslandes großen Schwierigkeiten, welche an der deutschen Grenze erhoben werden, um der Verbreitung der Reblaus vorzubeugen, obwohl dieselbe längst auch in Deutschland selbst an- sätzlich geworden ist. Die Schwierigkeiten, die das Gesetz hier schafft, sind sehr beklagenswert; die Interpretationen des Gesetzes selbst führen geradezu ad absurdum; müssen doch sogar sibirische Tannen, Fichten und Lärchen, welche aus Nordrusland nach Deutschland kommen, als „reblausverdächtig“ an der Grenze verbrannt werden, wenn man mit den Pflanzen aus Rusland bei einer Öffnung in das Deutsche Reich eintritt, an welcher kein nach Rebläusen inspizierender Beamter seinen Wohnsitz hat. Es wäre eine schöne Aufgabe des Dendrologischen Vereins, hier Schritte zu tun, um die Aufhebung des in seiner Wirkung sehr zweifelhaft gewordenen Reblausgesetzes durch- zusetzen.

Der Bezug von Pflanzen aus großen Pflanzenzuchtanstalten nimmt immer mehr überhand; Stimmen für und gegen solche Unternehmungen hat die Literatur zu verzeichnen; daß solche große Unternehmungen mit möglichster Vereinfachung des ganzen Betriebes, Verwendung von Maschinen bei gesteigerter Ausnutzung des Bodens an Raum und Güte, von Düngung und anderen Hilfsmitteln Pflanzenmaterial liefern, das wesentlich billiger ist, als die kleinen, eigenen Betriebe es zu liefern vermögen, wenn in diesen alles und jedes an Kosten verrechnet wird, ist wohl nicht zu bestreiten; und wenn schließlich die Kosten gleich sind, so ist im ganzen förstlichen Betriebe zu bedenken, daß die bei dem Bezuge der Pflanzen von auswärts eingesparten Zeit und Mühen der mehr Mühe und Denkarbeit fordernden Bestandspflege und -erziehung gewidmet werden können. Das auswärtige Pflanzenmaterial an und für sich ist zumeist tadellos: es kann aber bei allzu weitem Transporte, bei mangelhafter Verpackung zu größerem Abgange kommen, und wenn die Pflanzenhandlungen nicht zu besseren Pack- methoden greifen, als heute für den Massentransport gewählt werden (einfaches Zusammenschnüren der Pflanzen mit nackten Wurzeln und Hineinlegen in die Eisenbahnwagen), dann laufen sie Gefahr, all- mäßiglich ihren guten Ruf zu verlieren, denn es mehren sich die Klagen über die schlechte Verpackung, und die Abneigung gegen diese billigen und sonst guten Bezugsquellen nimmt zu.
Es hat sich als vorteilhaft herausgestellt, fremdländische Arten als ein- oder zweijährige Pflanzen von Handlungen zu beziehen bei allen Sämereien, deren Aufzucht infolge der Kleinheit des Kornes eine besondere, oft nicht zu bietende Vorsicht erheischt, oder bei Sämereien, deren Ankaufspreis sehr hoch steht. In solchen Fällen werden am besten die meist billigen ein- und zweijährigen Pflanzen gekauft, verschult und nach zwei oder drei Jahren als kräftige Pflanzen ins Freie verbracht.

Bezüglich der Pflanzzeit sei Folgendes erwähnt: Wäre es im europäischen Witterungsscharakter gelegen, daß zu ganz bestimmten Zeiten, z. B. im Frühjahr und in Sommer oder im Herbst, eine mehrwöchige Regenperiode mit derselben Sicherheit eintrat, wie dies bei den Ländern der Fall ist, welche unter dem Einflusse der Passatwinde stehen, so wäre, wie in den genannten Regionen, die dem Eintritte einer Regenperiode unmittelbar vorausgehende Zeit als die beste für Saat und Pflanzung zu bezeichnen. Allein in Europa sind Trocken wie Nässeperioden ganz unberechenbar. Auch in Europa gelingt jegliche, selbst die sorgloseste Kulturmethode, wenn unmittelbar auf die Ausführung der Kultur eine mehrwöchige Regenperiode einsetzt: unzählige Methoden für die Ausführung der Saat und Pflanzung sind gleichsam als Rezept gegeben worden; bei den meisten fehlt das Wichtigste zum Verständnisse des Wertes der Methode, die Beschreibung der auf die gelungen Pflanzung unmittelbar folgenden Witterung; die Witterung, welche erst nach ein paar Monaten nach der Pflanzung sich einstellt, entscheidet bereits weniger, die des folgenden Jahres nicht mehr über den Einfluß der Pflanzmethode auf die Sicherheit der
Kultur. Als allgemeine Regel gilt die Pflanzung während der Vegetationsruhe, somit während der Monate September bis April; Pflanzung im Herbst (September, Oktober) hat den größten Vorzug, daß durch das Wachstum der Wurzeln noch eine innige Verbindung der Pflanze mit dem Erdreich sich einstellt, welche dem Verhalten der Holzart gegen die Unbilden jeder Witterung im darauf folgenden Frühjahr zu-
nutze kommt. Die Witterung des Winters verbietet die Pflanzarbeit; das Frühjahr bleibt als Hauptzeit. Eine Pflanzung während der Vegetationszeit, d. h. mit Pflanzen, welche bereits zu treiben begonnen haben, ist ein Würfelspiel, über das die darauffolgende Witterung ent-
scheidet. Wo es möglich ist, wie im Garten und Parke, jederzeit mit Gießkanne und Gartenpumpe zu Hilfe zu kommen, dort kann bis zum Anfang Juli in Europa gepflanzt werden. Da aber in der großen forstlichen Kultur weder gespitzt noch gegossen werden kann, so muß vor Empfehlungen von forstlichen Kulturanlagen mit Föhren „mit bereits Fingerlänge in den Trieben“ und mit „bereits im Triebe begriffenen“ Fichten, wie sie Garteninspektor Beilser in seinem mehrfach zitierten Buche den Forstleuten zuteutet, eindringlich ge-
warnt werden.

Für das Beschneiden der Pflanzen vor dem Einpflanzen an Ästen und Wurzeln mag als Regel dienen, daß ein Beschneiden der Wurzeln nur so weit eintreten soll, als dieselben verletzt sind; ist damit beträchtlicher Wurzelverlust verknüpft, so ist es nötig, durch Einstutzen der Zweige das Gleichgewicht zwischen Wasserverdunstung und Wasser-
annahme wieder tieflichst herzustellen.

Dem Anbau der fremdländischen Bäume in reinen Beständen auf ebenen, kahlen Flächen dürften viele Mißerfolge zuzuschreiben sein, und über manche Holzart wurde allzu rasch der Stab gebrochen, weil sie unter diesen für alle Holzarten ungünstigsten Verhältnissen nicht gedeihen wollte. Besser haben sich Bestandsanlagen unter lockerem Schirme gehalten, wobei Lichtholzarten als Überschirmer günstiger wirken als Schattholzarten, z. B. Buchen. Der von mir seinerzeit empfohlene Anbau der fremdländischen Arten in Löcher eines alten Holzbestandes hat sich bewährt und findet immer größere Verbreitung. Größere reine Bestandsanlagen lassen sich heute schon nur für solche Holzarten rechtfertigen, deren Aufwachsen in Europa zu Bäumen sicher nach-
gewiesen ist. Bei reinen Bestandsanlagen mit wertvollen Holzarten empfiehlt sich ein weiter Pflanzverband von 2—4 m, wobei zur Aus-
füllung des Zwischenraumes andere Holzarten, mit größtem Vorteile Erlen für Laub- und Nadelhölzer, Weymouths-Föhren für Nadelhölzer, eingebracht werden. Das Herausnehmen dieser Zwischenpflanzung muß ganz allmählich geschehen. Eine derartige Anlage verlangt stetige Überwachung zum Zweck der Pflege und Erziehung der Fremd-
länder. Wo diese Hilfe für Fremdländer durch Aufästen, Ausscheiden,
Entgipfeln. Verstümmeln der Wurzeln der einheimischen Art nicht gegeben werden kann, muß diese Zwischenpflanzung unterbleiben.

Bezüglich der Art der Einmischung der fremdländischen Baumarten, ob einzeln, gruppen- oder flächenweise, sind bei den allgemeinen Regeln des achten Abschnittes die nötigen Anhaltspunkte gegeben. Die Einmischung darf nur dann gewählt werden, wenn die Vorwuchsigkeit der fremden Art gegenüber der einheimischen bis zum Baumalter feststeht. Das dürfte bis heute nur für die Weymouths-Föhren bekannt sein. Für manche Holzarten, wie Douglasie, Roteichen, ist diese Vorwuchsigkeit wahrscheinlich; es ist aber zu beachten, daß die Raschwüchsigkeit der ersten Dezennien hierüber nicht entscheiden darf; Millionen von einheimischen Lärchen sind dem Glauben, daß die Lärche ihre anfängliche Vorwuchsigkeit beibehalten muß, den Fichten und Buchen zum Opfer gefallen, und für die japanischen Lärchen kann man bereits nachweisen, daß sie trotz ihrer noch größeren Wuchs-geschwindigkeit in der Jugend ebenfalls von den einheimischen Lärchen und wohl auch Fichten im Stangenholzalter überholt werden wird. Nur ständige Hilfe zugunsten der fremden Arten durch Köpfen und Wurzelstümmelung der Nachbarn kann diese Fremden retten. Besser, d. h. weniger Sorge und Mühe und Kosten verursacht der gruppenweise Anbau der Fremdländer zwischen einheimische Arten. Ja solche Gruppen dürfen auch in Vergessenheit geraten; die zentralen Bäume werden sich erhalten, die kleinere, gruppenweise Mischung geht naturgemäß im höheren Alter in Einzelmischung über. Überschreitet eine Gruppe die Größe von $\frac{1}{4}$ ha, so verhält sie sich völlig wie ein reiner Bestand mit allen seinen Vorzügen und Nachteilen, welche dieser Bestandsform eigen sind.

Hinsichtlich des Umfangs des forstlichen Anbaues der fremdländischen Bäume ist der Umstand mit entscheidend, ob für die zu wählende Holzart ihr Aufwachsen zu nutzbaren Baumdimensionen in Europa bereits nachgewiesen ist; solche Holzarten sind in den folgenden Anbauplänen in die erste Anbauklasse eingereiht. Auf Grund 40jähriger eingehender Beschäftigung mit den Exoten kommt Forstmeister Boden in Hameln zur Forderung, daß man der deutschen Eiche die Primalagen entziehen solle, „um auf ihnen Schwarzwalnüsse, Graumüse und Lärchen, eventuell Eschen und Douglasien zu ziehen“. Soweit kann und darf man nicht gehen. Aber sicher darf und soll man auch den besten Boden ausländischen Baumarten mit wertvollem Produkte in beschränkter Menge zusammen mit einheimischen Arten, an möglichst vielen Plätzen des Waldes einräumen: ferner soll man solche Versuche nicht ein oder ein paar Jahre hindurch vornehmen und darauf wiederum die Hand in den Schof's legen in dem Gedanken, was bisher geschehen sei, genüge: nun müsse man abwarten, ob Stämme und Hölzer zur Branchbarkeit sich entwickeln. Ein solcher
Gedanke ist mehr bequem als richtig, denn wenn es zur Ernte kommt, nach fast hundert Jahren, so wird man bei den unbrauchbaren Holzarten wohl die Einsicht des ehemaligen Begründers loben, der wenige Fremdländer dem Walde beigemengt hat; bei den brauchbaren aber wird man seine Kurzsichtigkeit bedauern, daß die Versuche nicht fortgesetzt wurden, daß von dem wertvollen Materiale für die nächsten 100 Jahre nichts mehr zur Verfügung steht.

In die zweite Anbauklasse wären jene Holzarten zu bringen, deren Aufwachsen zu Nutzbäumen in Europa noch nicht feststeht, teils weil die Versuche noch nicht alt genug sind, teils weil es sich um Arten handelt, mit denen Versuche auf den unten angeführten Standorten noch nicht ausgeführt wurden. Mit Holzarten der zweiten Klasse ist eine weise Beschränkung sowohl in der Zahl der Individuen (Beimischung zwischen einheimischen Arten bis zu 5 % der Stammzahl) als auch nach der Fläche (nicht über 1/3 ha große reine Bestände) angezeigt.

Für solche Leser, welche den Darstellungen der vorausgegangenen Abschnitte gefolgt sind, bedarf es wohl kaum des Hinweises, daß die nachfolgenden Anbaupläne für bestimmte Klima- und Bodenverhältnisse nicht bloß für Europa, sondern auch für Amerika, wie für Asien und selbst auf der südlichen Halbkugel, wo, wie in den Kolonien der europäischen Staaten, bei größerer Erhebung eine Zone mit Lauretum-Klima geboten ist, anwendbar sind.

Anbaupläne für Standorte mit Lauretum-Klima.

Feuchter bis nasser Boden.

I. Chamaecyparis sphaeroidea, Taxodium distichum; Liquidambar styraciflua, Sassafras officinale.

II. Glyptostrobus heterophylla, Pinus excelsa, Picea sitchensis.

Guter, frischer Sandboden.

I. Biota orientalis, Cupressus macrocarpa, turulosa, Juniperus virginiana, Pinus palustris; Albizzia, Robinia, Sophora.

Trockener, minder guter, kiesiger oder sandiger Boden.

II. Pinus ponderosa, Sabiniuna, Torreyana, Gerardiana; Albizzia, Prosopis, Robinia, Sophora.
Beweglicher Sandboden (Dünen, Strand).

II. *Pinus clausa, insignis, Luchuensis, sinensis, Thunbergii; Albizia Julibrissin, Sophora.*

Normalboden. gut bis sehr gut.

I. *Carya alba, Juglans nigra, Sieboldiana.*

II. *Cedrus atlantica, Deodar, Libani, Cryptomeria japonica, Cunninghamia, Juniperus virginiana, Pseudotsuga macrocarpa, Sequoia sempervirens; Arbutus Menziesii, Buxus-Arten, Castanopsis, Cinnamomum, Cedrela, Diospyros, Eucommia, Mahabash, Melia, Moschobambus, Paulownia, Quercus incana, Trachycarpus excelsa, Umbellularia, Zelkova Kekui.*

Steppenböden.

II. *Picea pungens, Pinus clausa, glabra, longifolia, serotina, Pseudotsuga glauca; Albizia, Carya porcina, Fraxinus pubescens, Prosopis juliflora, Quercus dentata, Michaurii, serrata, variabilis, Robinia, Sophora.*

Anbaupläne für Standorte mit Castanetum-Klima.

Feuchter bis nasser Boden, stehende Nässe.

I. *Chamaecyparis sphaeroidea, Taxodium distichum, Thuja occidentalis.*

II. *Glyptostrobus, Larix americana, occidentalis, sibirica, Picea pungens, silkiensis, Pinus der Sektion Murraya, Pinus serotina, Pinus excelsa.*

Feuchter bis nasser Boden, Nässe wechselnd, Überschwemmung- oder Infiltrationsboden von Bächen und Flüssen.

I. *Fraxinus americana, nigra, Platanus occidentalis, Populus, Pterocarya fraxinifolia.*

II. *Cercidiphyllum, Liquidambar styraciiflua, Nyssa sylvatica, Phellodendron, Pterocarya rhoifolia.*

Sandboden II. und III. Bonität.

I. *Biota orientalis; Prunus serotina, Robinia.*

II. *Cupressus macrocarpa, Pinus densiflora, Luchuensis, ponderosa; Albizia, Carya porcina, Catalpa Kuempferti, Chadrastis amurenensis, Fraxinus pubescens, Prunus serotina, Shiuri, Quercus dentata, ruba, Sophora.*

Sandboden III. bis IV. Bonität.

I. *Pinus rigida.*

II. Föhren der Sektion Murraya, Pinus Torreyana, Albizia, Betula nigra, Prosopis.

Beweglicher Sandboden (Dünen).

I. *Pinus rigida.*

II. *Cupressus macrocarpa, Pinus clausa, insignis, Thunbergii, Quercus dentata, Rosa rugosa (zur Festlegung).*
IX. Abschnitt. Spezielle Anbauregeln u. Anbaupläne für forstl. Zwecke. 557

Normaler, guter bis sehr guter Boden.

I. Cedrus atlantica, Deodar, Libani, Cryptomeria japonica, Juniperus chinensis, virgin.; Aecer sacchar., Carya alba, olieaeformis, Catalpa, Cedrela, Gleditschia, Gymnocladus, Juglans cinerea, nigra, Sieboldiana, Liriodendron, Maclura, Melia, Morus alba, Paulownia, Platams, Quercus palustris, Prínos, rubra, Robinia.

Für Steppe böden.

II. Pinus der Sektion Jeffreya und Murraya, Pseudotsuga glauca, Picea pungens; Albizzia, Carya poreina, Cladrastis. Fraxinus pubescens. Prosopis, Prunus serotina, Shiāri, Quercus dentata, rubra, variabilis, Robinia, Sophora.

Für verkarstete Standorte. Führen der Sektionen Murraya und Parrya.

Anbaupläne für Standorte mit Fagetum-Klima.

Für die wärmsten Lagen, in denen Castanae kultiviert noch erfolgreich zum Nutz- und Fruchtbaume erwächst, sollen auch Holzarten der vorigen Klimalage auf den entsprechenden Böden angebaut bezw. versucht werden: auf den kühleren und kühlsten Lagen können die Holzarten der folgenden Klimaregion, die Holzarten des Picetum bezw. Abietum, angebaut werden.

Boden feucht bis nafs; stehende Nässe, doch während der Vegetationszeit für Cirsium, Euphrasia usw. genügend trocken werdend: Moorböden, auch torlige Unterlage, intensive Frostlage.

I. Pinus Strobus, Thuja occidentalis.

II. Chamacepyaris sphaeroidea, Picea pungens, Pinus Banksiana, contorta, Murrayana, Pnke, pumila, sibirica.

Boden feucht, Wasser sich öfters erneuernd (Flufsüfer, Überschwemmungen selten).

I. Fraxinus americana, nigra, mandshurica und andere; Phellodendron, Platams occidentalis, orientalis, Populus deltoides, monilifera, suaveolens, triphocarpa.

Sandboden II. und III. Bonität.

I. Chamaecyparis-Arten, Pinus Strobus, Thujopsis: Robinia.
II. Pinus scopulorum, Jeffreyi, ponderosa; Betula lenta, lutea, Maximovics. Carya parvina, Cladrastis, Fraxinus pubescens, Prunus serotina, Shiuri, Quercus dentata, palustris, rubra, Sophora.

Sandboden III. bis V. Bonität.

II. Föhren der Sektion Murraya, insbesondere Banksiana, Bungeana, contorta, Murrayana.

Sandige, kiesige, sichrtgründige, steinige Hänge (Karste).

II. Föhren der Sektion Murraya: Banksiana, Bungeana, chinokawaana, contorta, Murrayana, pyrmaica, pungens, dann Pinus arizonica, Pinus Mayriana; Betula lenta, lutea, Maximovicsiana, Cladrastis, Robinia.

Beweglicher Sandboden, Standdünen.

II. Pinus Banksiana, contorta, Murrayana, rigida.

Normalboden, Eichen- und Rotbuchenboden, auch Föhrenboden I. bis II. Bonität.

I. Tsuga canadensis; Acer saccharum, Carya alba, Gymnocladus dioica, Juglans cinva, nigra, regia, Liriodendron, Robinia.

Für Ödlandforstungen, Kahlflächen (Frostlöcher), mit gutem Boden, nicht versumpft, nicht mit Steppenpflanzen bestockter Boden: Heideboden nach vorheriger Bodenbearbeitung.

I. Fraxinus americana, Quercus bicolor, rubra, Robinia.
II. Abies nobilis, Nordmanniana, Picea bicolor, pungens, Pinus Banksiana, Jeffreyi, Murrayana, ponderosa, vazinoso, scopulorum. Pseudotsuga glauca, Thuja occidentalis, Thuja, Pinus serotina, Shiuri.
IX. Abschnitt Spezielle Anbauregeln u. Anbaupläne für forstl. Zwecke. 559

Für Steppenböden.

II. Betula lenta, lutea, Maximowiczioua, Cladrastis, Fraxinus pubescens, Quercus rubra, Robinia; Föhren der Sektion Murraya, Pseudotsuga glauca.

Boden feucht bis naß, Erlenbrüche wie bei Fagetum-Klima.

I. Pinus Strobus, Thuja occidentalis.
II. Chamaecyparis sphaeroidea, Picea pungens, Pinus Banksiana, contorta, Murraya, Penn, pumila, sibirica.

Boden frisch bis feucht (Flussufer usw.).

I. Fraxinus americana, nigra, Populus sowie obige Holzarten.

Sandboden II. und III. Bonität.

I. Cladrastis, Pinus Banksiana, Jeffrey, Murraya, ponderosa, scopulorum.

Sandboden III. bis V. Bonität.

II. Pinus Banksiana, Bungeana, contorta, Murraya.

Normalboden, auch Föhrenboden I. bis II. Bonität.

I. Tsuga canadensis; Acer saccharum.

Beweglicher Sandboden.

II. Picea alba, Pinus Banksiana, contorta, rigida.

Mooriger Boden, Hochoomore.

II. Pinus Banksiana, Murraya, pumila.

Anbaupläne für das Alpinetum bezw. Polaretum.

Normaler Boden.

Pinus albicaulis, aristata, Balfourioua, flexilis, pumila, reflexa, Tsuga Pattoniana.

Holzarten für besondere forstliche Zwecke.

Aus den vorhergehenden Anbauplänen ergibt sich die Verwendung der Baumarten nach Boden und Klima.

Holzarten gegen Wildverbifs.

Abies cephalonica, firma, homolepis, Pinsapo, Picea alba, Morinda, politu, pungens, Schrenkiana, silikuensis (zweifelhaft).
Holzarten als Vorbau in Frostlagen mit feuchtem oder normalem Boden.

Pinus Banksiana, Murrayana, Peuce, Strobus.

Holzarten für Unterbau unter Eichen, Föhren (I. und II. Bonität im Castanetum- und Fagetum-Klima), Lärchen (im Fagetum-Klima); der Unterbau soll später am Hauptbestande sich beteiligen.

Cedrus-Arten, _Chamaecyparis_-Arten, _Libocedrus_, _Pinus_ der Sektionen *Strobus* und *Cembra*, _Sciadopitys, Taxus, Thuja*-Arten, _Thujaopsis; Acer saccharum, Ulmus lacinata, Zelkova Keaki._

Holzarten für Niederwaldbetrieb.

Carya alba, Magnolia hypoleuca, Pseudotsuga densiflora, Paulownia, Quercus dentata, Prunus, Robinia, Trochodendron.

Holzarten als Oberholz in Mittelwaldungen.

Chamaecyparis-Arten, *Cryptomeria, Larix*-Arten, *Libocedrus, Pinus* der Sektion *Cembra, Jeffreya* und *Strobus, Pseudotsuga*-Arten, _Sequoia; Acer saccharum, Carya alba, Catalpa, Cercidiphyllum, Cinnamomum Camphora, Juglans*-Arten, *Liriodendron, Magnolia hypoleuca, Melia, Paulownia, Phellodendron._

Holzarten, hervorragend durch Schattenerträgnis.

_Sciadopitys, Taxus*-Arten, _Thujaopsis dolabrata, Torreya*-Arten, *Acanthopanax, immergrüne Laubbäume._

Holzarten, hervorragend durch Stockausschlagfähigkeit.

Camellia, Carya alba, Catalpa, Cercidiphyllum, Cladrastis, Hovenia, Liriodendron, Maclura, Magnolia hypoleuca, Nyssa, Paulownia, Robinia.

Baumarten, hervorragend durch Schnellwuchsigkeit.

Holzmassenerzeugung.

Populus deltoides, monilifera, suaveolens, trichocarpa, Paulownia imperialis; Sequoia gigantea, Picea sitchensis, Pseudotsuga Douglasii.

Holzarten zur Ausfüllung von Pilzlöchern in Nadelholzkulturen.

Cladrastis, Prunus serotina, Shiur, Quercus rubra, Robinia.

Holzarten für Standorte, welche vom Schüttepilze verseucht sind.

Pinus lapponica. Föhren der Sektionen *Murraya* (wie *Banksiana, Murrayana, nöps u. a*), der Sektionen *Strobus* und *Cembra; diese beiden bei besseren, frischeren Böden; abgesehen sei hier von auf solchen Böden anbaufähigen Laubhölzern.
IX. Abschnitt. Spezielle Anbauregeln u. Anbaupläne für forstl. Zwecke. 561

Baumarten, hervorragend durch Erzeugung wertvollen Bau- und Sägehölzes.

Baumarten zur Erzeugung sehr dauerhafter Hölzer.

Chamaecyparis-Arten, Cedrus-Arten, Cryptomeria, Juniperus, Larix-Arten, Libocedrus, Pseudotsuga-Arten, Sequoia, Taxus, Thuja, Thujopsis, Tsuga-Arten, Taxodium; Catalpa, Cedrela, Cercidiphyllum, Cladrastis, Diospyros, Gymnocladus, Hovenia, Juglans-Arten, Liriodendron, Magnolia hypoleuca, Melia, Morus, Quercus, Phellodendron, Prunus serotina, Shiuri, Robinia, Zelkova.

Baumarten zur Erzeugung besonders schön gefärbter, für die Möbelindustrie wertvoller Holzarten.

Cembra-Arten, Juniperus chinensis, virginiana, Larix-Arten, Pseudotsuga-Arten; Cercidiphyllum, Diospyros, Hovenia, Juglans-Arten, Magnolia hypoleuca, Morus, Phellodendron, Prunus serotina, Shiuri, Zelkova.

Baumarten, welche Hölzer mit hervorragender Politurfähigkeit erzeugen.

Cedrela, Hovenia, Juglans-Arten, Magnolia hypoleuca, Melia, Phellodendron.

Baumarten zur Erzeugung von Blindhölzern für die Möbelindustrie.

Abies und Picea, Pinus der Sektionen Cembra und Strobus; Aesculus-Arten, Liriodendron, Magnolia hypoleuca, Populus-Arten, Tilia-Arten.

Baumarten zur Erzeugung von besonders elastischen Hölzern.

Carya alba, Fraxinus-Arten, Mabambus, Morus, Pasania glabra, Quercus giri.

Baumarten zur Erzeugung besonders spaltbaren und zähen Materials für Flechtarbeiten.

Fraxinus nigra, Mabambus, Mosabambus, Quercus Michauxii, Weidenarten.

Baumarten, welche Holz erzeugen, das am besten sich bearbeiten, nageln, zersägen, schneiden, hobeln läßt.

Pinus der Sektionen Cembra und Strobus; Cedrela, Cercidiphyllum Paucovicia, Liriodendron, Phellodendron.

Mayr, Fremdländische Wald- und Parkbäume. 36

Baumarten, hervorragend zur Erzeugung von Zündholzmaterial.

Baumarten zur Erzeugung von Schiffbauholz.
Larix-Arten, Pinus-Arten, Pseudotsuga-Arten; Cinnamomum Camphora, Eucalyptus.

Baumarten zur Erzeugung hartes Holzes für Straßenzubehör.
Eucalyptus, Maclura, Larix-Arten, Pseudotsuga-Arten, Pinus palustris, cubensis u. a.

Baumarten zur Erzeugung von Hölzern für die Bleistiftindustrie.
Juniperus chinensis, rigida, virginiana.

Baumarten für Gerbstoffgewinnung.
Picea Engelmanni, Pseudotsuga Douglasii, glauca, japonica, Tsuga canadensis, heterophylla (Mertensiana); Pasania densiflora, Quercus Primus, dentata, incana.

Baumarten mit elbsaren Sämereien.
Angehörige der Sektionen Cembra, Pinus Gerardiana, Pasania cuspidata.

Baumarten für Harzgewinnung.

Baumarten für Zucker- und Zuckersaftgewinnung.
Acer nigrum, saccharum und übrige Ahornarten.

Baumarten für Farbstoffe.
Gelbe Farbstoffe: Maclura, Phellodendron, Quercus tinctoria.

Baumarten, welche Leim oder Milchsäft (Lack) in der Rinde führen.
Rhús vernicifera, Trochodendron.
IX. Abschnitt. Spezielle Anbauregeln u. Anbaupläne für forstl. Zwecke. 563

Baumarten, welche Kautschuk in Blatt und Rinde enthalten.

Encommia ulmoides.

Baumarten, welche Kork bilden.

Phellodendron amurense, Quercus variabilis.

Baumarten, welche Fasern als Binde-, Flecht- und Gewebematerial besitzen.

Morus, Trachycarpus excelsa, Ulmus laciniata.
Zehnter Abschnitt.

Spezielle Anbaupläne für Parke, Ziergärten und ähnliche, vorwiegend ästhetischen Zwecken dienende Anlagen.

Es erscheint selbstverständlich, daß zu Zierzwecken nur solche Holzarten verwendet werden, welche an dem betreffenden Standorte volles Gedeihen versprechen, so daß man eine normale Entwicklung

Nur bei völligem Freistande als Solitärpflanzen vermögen die Schmuckbäume ihre normale, symmetrische und schönste Kronenentfaltung zu zeigen; muß man aber Gruppen oder Flächen rasch mit fremdländischen Arten decken, so wähle man für seltene und kostspielige Baumarten einen weiten Pflanzenverband (3—4 m) und fülle den Zwischenraum mit billigen, fremdländischen oder einheimischen Baumarten aus; diese Füllpflanzen werden so lange zurückgeschnitten zugunsten der selteneren Arten, bis letztere genügend Deckung geben; es wird sich empfehlen, die angebauten, einheimischen Arten dann ganz zu beseitigen, da die Gefahr besteht, daß die gewalttätigeren einheimischen die fremdländischen unterdrücken. Lichtholzarten, wie Lärche, Föhre, Birke, unter geschlossene Gruppen von Schatten- oder Halbschatthölzern einzupflanzen, um Boden und kahle Schäfte etwas zu verdecken, ist ein Mißgriff: Lichthölzer kämmern und gehen aus Mangel an Licht und insbesonders an Wasser während der Vegetationszeit zugrunde; Schatthölzer erhalten sich eher, zumal wenn für Befenchtung während der heißen Zeit gesorgt wird; dagegen sind unter gruppen- oder flächenweise angebauten Lichthölzern, wie Eichen, Birken, Pappeln, Föhren, Lärchen und anderen, die Halbschatth- und Schatt holzarten aus dem großen Vorrat der fremdländischen Sträucher und strauchartig in der Jugend sich verhaltenden Bäumen anzupflanzen: so entsteht nicht nur eine ästhetisch-gesunde, normale Mischung, es geht viel mehr aus solchem Anbau auch ein hochwertiges Nutzobjekt hervor.

Für Anpflanzungen auf größeren Flächen hin gelten die Natur gesetze und Grundsätze wie für Waldanlagen; bei größeren Parkanlagen zu ästhetischen (nicht zu Zwecken der Tierhaltung für das Jagdvergnügen) ist der forstliche Kahlschlag zum Zwecke der auch im Parke stets notwendigen Verjüngungen ausgeschlossen; denn dieser Wirtschaftsform wohnt der geringste, ästhetische Wert inne: besteht die Parkanlage vorwiegend aus Laubholz, so ist der Mittelwald mit seinem im Kahlschlage gefällten Unterholze und seinem bald in Gruppen, bald einzeln verteilten Oberholze ästhetisch zwar wertvoller als der
Kahlschlag; er steht aber der vollendet schöne Bilder gebenden Wirtschaftsform des Planterbetriebes nach; dieser vereinigt auf einer Fläche alle Altersklassen, gestattet die reichhaltigste Mischung aller Baumarten und schafft keine Kahlflächen von größerer Ausdehnung; seine Parkformen nähern sich am meisten dem Urilde aller Waldschönheit, dem Urwald, ohne dessen Nachteile wie Unwegsamkeit, Gefahr durch morsche Baumsäulen, mangelaften Nutzgwert und anderes, zu teilen.

Der gegebene, größere Raum der meisten Parkanlagen erklärt es, warum zumeist fremdländische Bäume mit einer zu erwartenden kräftigen Entwicklung gewählt werden zur Ausschlückung; nur bei Anlagen im kleineren Stile, bei Nischen, Felsgruppen, Quelleinfassungen und ähnlichen, zur Ausfüllung zwischen den Baumstäben und unmittelbar am Hause greift man zu Stauden oder lange Zeit nieder sich haltenden Baumarten. Unberechenbare Schätze hieran beherbergt noch die asiatische Flora. In ähnlichen Verhältnissen wählt man in Ostasien die Zwergzüchtungen, welche so gut wie Alpenpflanzen und Sträucher...
in europäischen Gärten Verwendung finden könnten; denn die landläufige Ansicht, daß diese Züchtungen häßliche, verkrüppelte Zwerge seien, teilen jene nicht, welche gelernt haben, den Schmuck der chinesischen oder japanischen Ziergärten ästhetisch zu genießen, statt ihn lächerlich auf Größe oder Alter einzuschätzen. Man bemühe sich, die Ausführungen auf Seite 85 und folgende im I. Abschnitt durchzulesen.

Bezüglich des Bodens haben die Angaben für forstliche Zwecke Geltung.

Schmuckbäume, ausgezeichnet durch besonders große oder eigenartig gestaltete, der europäischen Baumflora mehr oder weniger fremde Blätter.

Für **Standorte mit Lauretum-Klima.**

Acacia-Arten, Bambusarten, Cinnamomum Camphora, Eucalyptus, Magnolia grandiflora, Quercus cuspidata, gilea, glabra und viele andere; Trachycarpus.

Für **Standorte mit Castanetum-Klima.**

Acanthopanax, Acer macrophyllum, Albizia, Betula Maximovicsiana, Catalpa, Carya, Cladrastis, Gleditschia, Juglans-Arten, Idesia, Liriodendron, Magnolia acuminata, hypoleuca, Quercus dentata, Paulownia, Platanus-Arten, Populus (Balsampappeln).

Für **Standorte im Fagetum-Klima.**

Für die wärmsten Lagen mögen alle Holzarten des Castanetums verwendet werden; für alle Klimalagen des Fagetum passend: Acanthopanax, Betula Maximovicsiana, Liriodendron, Magnolia hypoleuca, Quercus dentata, Populus (Balsampappeln).

Für die Standorte mit Picetum- oder Abietum-Klima, wärmste Lagen noch die Holzarten des Fagetums aller Lagen.

Betula Mariinovicsiana.

Zierbäume mit schuppenförmiger oder sonst eigenartiger Benadelung.

Für die Standorte mit Picetum- oder Abietum-Klima, wärmste Lagen noch die Holzarten des Fagetums aller Lagen.

Betula Mariinovicsiana.

Für die Standorte mit Picetum- oder Abietum-Klima, wärmste Lagen noch die Holzarten des Fagetums aller Lagen.

Bäume mit schönem Aufbau und hervorragender Färbung der Belaubung oder Benadelung.

Die passenden Standorte in Klima und Boden mögen aus den beiden vorhergehenden Anbauplänen entnommen werden.

Dunkelgrün glänzende Belaubung oder Benadelung.

Abies amabilis, cephalonica, ciliéca, Nordmanniana, mumidica, Araucaria, Chamaecyparis obtusa, Keteleeria, Picea Glhnnii, orientalis,

polita, Pinus koraiensis, Pseudotsuga Douglasii; Buxus, Cinnamomum, Pasania cuspidata, Podocarpus, Quercus acuta, thalassica und andere, Sciadopitys.

Oberseits glänzend, unterseits hellweifslich.

Abies Veitchii, Webbiana, Picca ajanensis, homobönsis, Tsuga diversifolia, Sieboldiana; Quercus gilva.

Oberseits glänzend dunkelgrün, unterseits braunrot.

Magnolia grandiflora.

Dunkelgrün, matt.

Abies nobilis, Cedrus atlantica, Libani, Larix kurilensis, Pinus Cembra, Pseudotsuga glauca, Tsuga Pattoniana.

Hellgrüntgrün.

Pinus Murrayana, ponderosa, die Mehrzahl aller winterkahlen Laubhölzer, Taxodium distichum; Glyptostrobus und alle Lärchenarten.

Hellmattgrün.

Abies nobilis, Cedrus Deodar, Chamaecyparis Lawsoniana und pisifera, Picca alba, Engelmannii, pungens, Pinus aristata, Ayacahuite, excelsa, parviflora, Penuv. sibirica, Strobus, Pseudotsuga glauca, Tsuga Pattoniana, Eucalyptus.

Hellblauweifs mit grünem Tone der älteren Nadeln.

Abies concolor, nobilis, Picca Engelmannii, pungens, Pseudotsuga glauca, Tsuga Pattoniana, Eucalyptus.

Bäume mit auffallend schönen oder wohlriechenden Blüten.

welche regelmässig zweimal im Jahre die Blätter verliert, zweimal sich neu begrünt und zweimal blüht. Die Kirschen sind in Japan der Blumen, nicht der Früchte wegen gezüchtet, letztere sind ungenügsbar; ans ersteren wird ein angenehmer Aufguß, Kirschblütentee, bereitet. Während Kirschblüten nur in grösserer Menge wirken, fesselt die einzelne rote Huppenblüte der Albizzia, die Lilienblüte der Magnolien, mögen diese wie bei M. Kobushi vor oder wie bei M. hypoleuca, grandiflora u. a. nach dem Laubausbruch sich entfalten; die Kamellie blüht zwar zumeist im März, aber schon im Dezember brechen viele Blüten hervor, zu welchen warme Tage des Winters und Vorfrühlings stets neue hänfen; nicht selten werfen heftige Schneefälle die Mehrzahl der roten Blüten wieder zu Boden.

Als blumentragende Baumarten empfehlen sich in den Klimastreifen, für welche die beiden ersten Anbaupläne die passenden Holzarten geben, folgende:

Albizzia, Camellia, Cladrastis, Liriodendron, Magnolia grandiflora, Kobushi und hypoleuca, Prunus, Robinia, Sophora.

Bäume mit auffallend geformten oder gefärbten Früchten (Boden nach den forstlichen, Klima nach den beiden ersten Anbau-gruppen dieses Abschnittes).

Abies homolepis, Mariesii, nobilis, Pindrus, Veitchii, Webbia, Larix dahurica, kurilensis, Picea Glehnii, Omorica, Atlantus, Gleditschia, Magnolia hypoleuca, Pterocarya.

Schmuckbäume mit hervorragend schöner Herbstfärbung. Zunächst sollen einige allgemeine Bemerkungen über die Ursache der Herbstfärbung und ihrer Abhängigkeit vom Individuum, Klima und Boden vorausgeschickt werden. Allgemein nimmt man an, dass die Kälte, insbesonders die Herbstfröste es sind, welche die schöne Verfärbung der Blätter vieler Baumarten hervorrufen: in Amerika, wo ja eine ganz hervorragende Rotfärbung der Blätter den wichtigsten, den Laubwald bildenden Bäumen eigen ist, wird allgemein den im Oktober sich einstellenden starken Frösten diese Farbenpracht zugeschrieben. Meine jahrzehntelang fortgesetzten Beobachtungen über diesen Punkt haben mir die Überzeugung aufgedrängt, dass Frost in erster Linie es ist, welcher die Pracht der Herbstfärbung verhindert, wenn er vor Eintritt derselben erscheint oder sie zerstört und ihre Dauer verkürzt, wenn er mitten in die schönste Herbstfärbung hineinfällt. Die Herbstfärbung wird eingeleitet durch den Beginn der Wanderung der Nährsalze (Phosphorsäure oder Schwefelsäure, Kali-, Magnesiasalze) aus den Blättern zurück in die Knospen und Triebe. Mit dieser Auswanderung geht eine Zerstörung des grünen Farbstoffes vor sich (des Chlorophylls); es verwandelt sich
in gelbe, rote, braune Farbstoffe, die Träger der Herbstfärbung. Alle Ereignisse in der Witterung, welche somit diese Rückwanderung beschleunigen oder verzögern, müssen auch den Eintritt der Herbstfärbung entsprechend beeinflussen; unter den Faktoren, welche am mächtigsten an der Verfrühung, an der Beschleunigung und an der Gründlichkeit der Auswanderung der Stoffe sich beteiligen, ist der beginnende Wassermangel. Jede Pflanze kann bei Eintritt von Wassermangel, z. B. mitten im Sommer bei Trockenperioden, sich bis zu einem gewissen Grade vor dem Tode schützen, indem sie einen Teil ihrer Blätter abwirft, welche, wenn die Vertrocknung nicht allzu plötzlich einsetzt, dieselbe Färbung zeigen wie im Herbst. Wird ein Pflanzenteil verwundet, von einem Insekte oder Pilze befallen, so daß die Wasserversorgung zu den Blättern dadurch gemindert oder unterbunden wird, so beginnt sofort die Auswanderung der kostbaren Stoffe aus dem mit dem Tode bedrohten Pflanzenteile in die gesunden Organe, es setzt damit aber auch eine dem Herbst gleiche Verfärbung der erkrankten Blätter ein, oft schon mitten im vollen Sommer; jeder Obstzüchter weiß, daß das Auftreten der Herbstfärbung an einem Aste um einige Wochen früher als an den übrigen Bäumen zweifellos eine Erkankung, in der Regel dessen Tod bis zum kommenden Frühjahr bedeutet. Wurzelkrankheit laubbäume erglühen im letzten Herbst in besonders auffallender, am Baume früher nie beobachteter Farbenpracht. Wassermangel beginnt sodann bei allen winterkahlen Bäumen normal mit der Bildung der Abtrennungsschicht zwischen Blattstiel und Zweig, womit meist auch noch eine Platte von undurchlässigen Korken zur Einleitung und Verstärkung der Not an Wasser sich verbindet. Es ist in erster Linie der rote Farbstoff, welcher um so stärker hervortritt, je größer der Wassermangel wird. Entscheidend für die Schönheit der Herbstfärbung ist somit folgendes: Die Witterung des Sommers mit längerer Trocknis: der Sommer 1904 z. B. bereitete eine ganz besonders schöne, mit roten Tönen auftretende Herbstfärbung vor; der Herbst soll ebenfalls trocken sein ohne Sturm, kühl, nicht allzu warm; bei größerer Wärme spielt sich der Vorgang der Wanderung der Stoffe in der Pflanze allzu rasch ab, und die Herbstfärbung erlischt: Stürme brechen gewaltsam die in ihren Gelenken zum Abfälle sich vorbereitenden Blätter. Die Herbstfärbung hängt sodann noch wesentlich ab von der Pflanze selbst. Frisch verpflanzte Exemplare, welche auch an Wassermangel zu leiden pflegen, zeigen deshalb besonders lebhafte Herbstfarbe, wie sie in den folgenden Jahren des gesunden Lebens nie wieder zutage tritt; die Pflanze ist normal geworden und hat die ihr typische Herbstfärbung angenommen, welche alljährlich dieselbe ist, wenn die Witterungsverhältnisse annähernd die gleichen sind, worauf schon Emerson hinwies. Unter derselben Art, z. B. unter den Roteichen, gibt es Individuen, welche prächtig rot, und solche, welche ganz un-
scheinbar gelbbraun sich färben; sie stehen unmittelbar neben einander in den Pflanzbeeten, so daß Boden, Klima und Behandlung ohne Einfluß hierauf sein können. Aber Boden und Klima sind schuld, wenn normal rot sich färbbende Eichen dies bald mangelhaft, bald hervorragend zur Schau bringen.

Es läßt sich erwarten, daß auch der Feuchtigkeitsgehalt, die Zusammensetzung des Bodens und seine Lage nicht ohne Einfluß auf die Herbstfärbung sein können. In der Tat sind es trockene, magere Sand- und Kiesböden, sind es trockene, heiße Südhänge, welche stets eine buntere Blattfärbung im Herbst hervorrufen, als die in üppigem, frischem Boden stehenden, nach ihrer Entwicklung völlig gesunden Pflanzen sie zeigen. Näßkalte Witterung im Herbst mit Schnee und Frost (1905) verdürrt die ganze Herbstfärbung der Laubbäume, da der Vorgang der Auswanderung wegen Wasserfülle außerordentlich verlangsamt wird. Fallen dann noch Früste bis zu −5 °C, in diese Zeit, so wird die rote Farbe in der Herbstfärbung fast ganz unterdrückt, und wo sie sich bereits eingestellt hat, da erkennt man an milßfarbigen, bräunlichen Streifen und Flecken (z. B. besonders auffallend am Zuckerahornblatte!) die deutlichen Spuren der Beschädigung und Zerstörung.

Ungleich ist der Eintritt der Herbstfärbung nach Baumgattungen und Baumarten. So kann man z. B. am Eintritte der Herbstfärbung und des Nadelabfalles die sibirische Lärche jederzeit von der europäischen unterscheiden, da erstere um 3—4 Wochen früher gelb wird und ihre Nadeln verliert als die europäische Art. Der Gedanke, daß solche Holzarten, welche frühzeitig ihre Vegetation beginnen, auch frühzeitig ihre Blätter verlieren, ist nicht richtig; gerade die europäische Lärche ergrünt sehr frühzeitig (im kühlener Fagetum bereits anfangs April), und ihre herbstliche Verfärbung ist erst anfangs November allgemein geworden. Die Bäume im ostamerikanischen Walde erglühen im Herbst in einem prächtigen, gleichzeitigen Rot, im europäischen in einem Gelb bis Rotbraun; der Wald in Ostasien aber ist in der Herbstfärbung viel bunter und prächtiger; grüne, gelbgrüne, gelbe und rote Baumkronen drängen sich im Laubwalde zusammen mit dunkelbraunen bis rotbraunen; dazu kommt noch ein ebenso farbenprächtiges Buschwerk.

Für die Auswahl der Holzarten zum Schmucke der Gärten soll die Schönheit der Herbstfärbung, die Zeit und die Dauer ihres Auftretens an den verschiedenen Pflanzen nicht außer acht gelassen werden.

Nachstehende Baumarten sind hervorragende Zierde in den herbstlichen Waldungen.

Schwefelgelb bis Zitronengelb.

Alle fremden Lärchen und Birken, einzelne Pflanzen oder Blätter von Cercidiphyllum, Gingko, Juglands nigra.

Orange gelb.

Larix leptolepis; Betula nigra, einzelne Pflanzen oder Blätter von *Cercidiphyllum, Liriodendron*.

Scharlachrot.

Acer nigrum, palmatum, pictum, saccharum, Stuartia, Cercidiphyllum, Nyssa sylvatica, Quercus coccinea.

Nach Japan. Photogr.

Nach Japan. Photogr.

Rot oder dunkelrot.

Acer dasycarpum, rubrum, Cercidiphyllum, Liquidambar, Quercus alba, dentata, imbricaria, palustris, rubra.

Violett.

Cercidiphyllum.

Dunkelbraunrot.

Magnolia hypoleuca, Zelkova, Acanthopanax, Carya, Catalpa.

Baumarten für Anpflanzungen an Landstraßen.

Böden und Klima nach früheren Plänen. *Cedrus, Cryptomeria*, alle Lärchenarten; *Pinus Banksiana; Pinus resinosa, Thunbergii; Acer saccha-

...Arten, Ailantus, Albizzia, Betula Maximoviesiana, Cedrela, Cladrastis, Fraxinus americana (wird wegen Wurzelverbreitung im benachbarten Gelände lästig), Gleditschia, Juglans nigra, Lithocedrus, Magnolia hypoleuca, Melia, Phellodendron, Platanus-Arten, Populus (Balsampappel), Quercus coecinea, imbricaria, palustris, rubra, Robinia, Sterculia, Ulmus laevisiana, Zelkova.

Baumarten zu lebenden Zäunen, Verkleidungen, Kulissen gegen Strafensstaub.

Chamaecyparis, Cryptomeria, Libocedrus, Picea-Arten, Podocarpus, Sciadopitys, Taxus, Thuja, Thujiopsis; Camellia, Citrus trifoliata, Pausinia cuspidata.

Christbäume.

Ihr Anbauort ist aus den beiden ersten Anbauplänen dieses Abschnittes zu entnehmen, die besten in Symmetrie und Buschigkeit wachsen auf mittlerem Boden.

Alle Abies-Arten, Cryptomeria, Keteleeria, alle Picea- und Pinus-Arten, Sciadopitys, Torreya; Birkenarten vier Wochen vor der Verwendung abgeschnitten und in Wasser gestellt.

Bäume, welche eine besonders schöne Zierde für Zimmerschmuck geben.

Von den in Europa anbaufähigen Baumarten geben die schönsten Schmuckzweige: Acacia, Acer palmatum, Albizia, Cladrasis; Abies, Chamaecyparis, Juniperus. Pinos, insbesonders Schwarzföhren, die Sektionen Cembra und Strobus, Picea, Podocarpus, Sciadopitys, Thuja, Thujopsis.

Baumarten, welche im jugendlichsten Alter als Topfpflanzen hervorragende Zierden sind.

Cedrus, Chamaecyparis-Arten, gewachsen auf schlechtem, sandigem, kiesigem oder festem, tonigem Boden; Pinus palustris, excelsa, Murrayana, Podocarpus, Sciadopitys, Thuja, Thujopsis: Acacia, Acer palmatum, Albizia, Trachycarpus und viele andere.

Schattenbäume.

Acanthopanax, Acer, Aesculus, Fagus, Tilia, Ulmus.
Elfter Abschnitt.

Schutz und Erziehung der fremden Holzarten.

XI. Abschnitt. Schutz und Erziehung der fremden Holzarten.

Stunde das Thermometer um 20° C., von — 4 auf + 16° C., steigt, um schon nach 24 Stunden wiederum bis auf 0° herabzusinken. Holzarten aus solchen Regionen leiden nicht durch verspätete Fröste, aber Holzarten aus Regionen, in welchen das Frühjahr kurz ist, der Sprung vom Winter zum Sommer fast unvermittelt sich vollzieht (das ist besonders im kühleren Fagetum und im Picetum der Fall), ergrünzen rasch, nachdem die ersten wärmeren Luftwellen die Vegetation angeregt haben; sie leiden dann durch die Kälterückschläge. So paradox es klingen mag, junge Walnüsse, Edelkastanien und Robinien verlangen keinen Schutz gegen verspätete Fröste, wohl aber junge Fichten und Tannen.

Wie einheimische können auch fremdländische Bäume durch ungewöhnlich große Schneedruckmassen leiden; das Verhalten gegen
XI. Abschnitt. Schutz und Erziehung der fremden Holzarten. 579

Schneebelastung im Stangenholzalter konnte nur bei wenigen fremden Arten bisher studiert werden. Die Pinus rigida hat sich empfindlicher als die einheimische Föhre gezeigt; junge Chamaecyparis-Arten bedürfen zuweilen einfacher Maßnahmen, damit sie nicht zu Boden gedrückt werden; sobald die Biegung Dehnung und Zerrung der Wurzeln nach sich zieht, richtet sich die gebogene Pflanze später nicht mehr gerade. Je kleiner die Pflanze, um so weniger ist Schutz gegen Schnee und Wind nötig; je größer die neugesetzte Pflanze, um so notwendiger wird die Anpflanzung oder Befestigung mit drei Pflocken, von denen Drähte nach der Baumkrone gezogen werden.

Gegen Austrocknen der Saaten und Verschulungen hilft etwas das Bestecken der Beete mit Zweigen, auch eine Deckung mit Matten, Holzgittern und Zweigen, erhöht über den Pflanzen beziehungsweise Saaten angebracht, gibt Schutz. Bei längeren Trockenperioden ist Gießen nötig. Bei den frisch ausgepflanzten Individuen, denen meist auch etwas bessere Erde beigegeben wird, ziehen sich Regenwürmer in die lockere Erdschicht; darauf erscheinen Maulwürfe und lockern die Pflanzen wiederum, so daß sie bei einfallender Trocknis leiden oder ganz absterben. In trockener Lage empfiehlt es sich, die Pflanze in eine gegen das umliegende Land schwach vertiefte Mulde auszupflanzen; in feuchter Lage wäre die gegenteilige Anordnung, nämlich Hügelpflanzung, zu wählen.

Bei richtiger Auswahl von Klima und Boden drohen den fremdländischen Baumarten die schlimmsten Gefahren durch die belebte Welt von seiten der Menschen, Tiere und Pflanzen.

Das beste Schutzmittel der fremden Baumarten gegen Menschen und Tiere wäre Massenanbau, der eine Preisgabe ohne Schutz ermöglichen würde; solange dies nicht der Fall ist, ist von seiten des Menschen Frevel der immergrünen Zweige der Scheinzypressen, Thujen, Föhren, Fichten und Tannen, von beiden letzteren auch ganzer Gipfeltriebe zu Christbaumzwecken, zu gewärnt. In der Regel erreicht man den Schutz gegen Menschen durch die gleichen Maßnahmen, welche man gegen die Tiere des Waldes zu ergreifen nötigt ist.

großen Landstrichen ist der Hirsch schon durch seine Seltenheit oder durch sein völliges Fehlen für die Holzarten gefährlos. Wo der Hirsch fehlt, ist der schlimmste Feind der Exoten das Reh. Die Art der Beschädigung, die Menge an weiblichen Tieren dieser Wildgattung sind wohl bekannt; weniger bekannt scheint mir die Wirkung des Verbeißens der Gipfelknospe und des Verfegens der Rinde durch den Bock auf die Pflanze selbst zu sein. In meinem früher zitierten Buche habe ich 1890 Seite 406 bereits auf die folgenden Punkte hingewiesen.

Aller Schaden beim Verbeiß drängt sich bei den Nadelhölzern auf den Verlust der Gipfelknospe zusammen. Forstlich ist gegen das Verbeiß der Seitentriebe nichts einzuwenden; der Zierwert dagegen geht auch mit dieser Beschädigung verloren. Solange die Gipfelknospe erhalten bleibt, besteht die Aussicht, daß die Pflanze in wenigen Jahren den Tieren entsteht. Wird aber die Gipfelknospe abgenommen, was besonders deshalb gerne geschieht, weil um die Gipfelknospe noch zahlreiche Seitenknospen mit großem Reichtum an mineralischen Salzen sitzen, so daß im Winter auf einen Biß eine sehr nahrungsreiche, erdige Delikatessen den Tieren ins Geäse gelangt, so ist:

Bei keiner Baumgattung der Schaden durch den Verbiß der Gipfelknospe größer als bei der Gattung *Abies*, den Tannen. Fast stets ist der einjährige Tannentrieb ohne Seitenknospe zwischen Gipfel und Basis; wird die Spitze während des Winters abgenommen, so bleibt ein knospenloser Stummel zurück, an dem oder an dessen Basis während des folgenden Jahres kein Längstrieb erfolgt, sondern nur Knospen sich bilden: aus dieser oder, was noch schlimmer ist, aus diesen Knospen gehen im zweiten Jahre nach dem Verbiß einer oder mehrere Triebe hervor; ist letzteres der Fall, so übernehmen später ein, oft auch zwei, selbst drei Gipfel die Führung und, von diesem letzteren, ungünstigsten Falle abgesehen, ist im günstigsten Falle nach drei Jahren der Schaden ausgeheilt, wenn man den Verlust an Zuwachs außer acht läßt und weiteres Verbeiß inzwischen unterblieben ist.

Am häufigsten begegnet man noch Knospen am Triebe bei der *Abies concolor*, welche somit auch am schnellsten eine Verletzung ausheilt. Bei diesem Verhalten der Tannen ist es ziemlich gleichgültig, ob die Gipfelknospe durch das Reh, durch verspäteten Frost nach bereits erfolgtem Austrieb oder durch das während des ganzen Lebens der Tanne gefährliche und verderbliche Eichhörnchen herbeigeführt wird. Gegen Fröste kann man die Tannen schützen durch entsprechenden Anbau unter Schirm, wie bereits erwähnt; gegen Rehe erzielt man Schutz durch entsprechende Maßregeln; aber gegen Eichhörnchen gibt es nur ein Mittel, Abschluß bis hart an die Grenze der Ausrottung der Tiere, so ungern man aus anderen Gründen sich dazu entschließen wird.

Ähnlich wie die Gattung *Abies* verhalten sich die Gattungen *Torreyia* und *Keteleeria*. Die Gattung *Picea*, die Fichten, sodann die Lärchen,
Tsugen, die Douglasien, alle Thujen und Scheinzypressen ersetzen leichter den Verlust der Gipfelleittriebe, da am Längstriebe zwischen den Quirlen sich Knospen finden, ähnlich wie dies bei den Laubhölzern der Fall ist.

Die Frage ist nun, wie lange kann eine Pflanze eine derartige Mißhandlung ertragen, ohne zugrunde zu gehen? In Frostlöchern sieht man Tannen, welche 50 Jahre lang vom Froste beschädigt wurden, nur einen Meter Höhe erreichten und immer noch die Möglichkeit besitzen, bei genügendem Schutze zu Normalpflanzen emporzuwachsen. Fallsen Rehe die Pflanzen an, so sterben diese nach den umfangreichen Beobachtungen im Versuchsgarten zu Grafrath außerhalb der Umzäumung nach 15 bis 20 Jahren ab; Pflanzen, die nur 5 bis 10 Jahre von den Rehen regelmäßig verbissen wurden, erholten sich, sobald ein gründlicher Schutz geboten wurde, in der Regel rasch; einige unter ihnen aber hatten die Fähigkeit, einen Gipfeltrieb zu bilden, ganz verloren; sie erschöpften ihre Wuchskraft in weitausgreifenden, als "Storchennester" zu bezeichnenden Bäuchen. Unter den Anbauplänen sind Tannen aufgeführt, welche vielleicht imstande sind, sich durch ihre stehende Benadelung selbst zu schützen. Ebenso sind Fichten genannt, von denen die Stechfichte (pungens) den Erwartungen am besten entspricht, während die bisher für den gleichen Zweck empfohlene Sitka fichte nicht überall als genügend rehfest sich bewährt hat: die alba-Fichte wird wegen ihres unangenehmen Geruches von den Rehen gemieden.

Den Föhrenarten fehlen zwar ebenfalls die Knospen an den Trieben vom Gipfel bis zur Basis, aber es kann aus jedem Kurztriebe mit zwei, drei oder fünf Nadeln eine Knospe entstehen, welche dann zum Längs triebe wird; außerdem hebt sich bei ihnen leichter als bei den übrigen Nadelbäumen ein Seitentrieb zum Gipfeltriebe, womit freilich eine Krümmung des Schaftes und eine entsprechende Entwertung desselben zurückbleibt; neben dem Reh ist es wiederum das Eichhörnchen, welches den dicken Knospen der Gelbföhre, der Jeffreyföhre besonders nachstellt. In der größten Not befrisst das Reh alle Laubhölzer; besonders schmackhaft, auch wenn Überfluß an Gräsern und Kräutern geboten ist, sind die neuen Triebe, insbesondere die Johannitriebe und Stockausschläge der Eichen. Fast jedes Jahr bringt neue Mittel zum Schutze gegen Wildverbifs; am weitesten verbreitet ist das Durchziehen des Gipfeltriebes durch einen Handschuh, einen Tuch lappen oder die Büttnersche Doppelbürste, nachdem genannte Dinge zuvor mit säurefreiem Teer, Raupenleim oder mit einer Mischung von Teer und Blut, Teer und Jauche, Teer und Rindermist und dergleichen bestrichen wurden; die Knospe selbst soll dabei von der Substanz nicht getroffen werden. Auch das Verwergen der Gipfel, das Umwickeln mit einigen Frauenwirrhaaren, das Aufsetzen von Blechspitzen (Blech-
Drahtspiralen und dergleichen mag zweckdienlich sein, wenn die nötige Sorgfalt bei der Anwendung und Wiederentfernung obwaltet. Gegen das Fegen, das im günstigsten Falle mit einer Verwundung oder Krümmung des Schalters endet, wird Bestreichen der Stämmchen, das Verpflücken und vieles andere empfohlen; gegen Verbeissen der Laubhölzer durch Hasen ist man so ziemlich ohne Waife, von der Flinte abgesehen. Rechnet man alle und jede Ausgabe, welche der Schutz der Pflanze mit obigen Hilfsmitteln verlangt, genau zusammen, so wird sich wohl herausstellen, daß die Umzäunung mit Drahtgeflecht nicht nur die sicherste, am wenigsten Arbeit erfordernde, sondern auch noch die billigste Methode ist. Verzinkte Drahtgeflechte sind unverwüstlich und können öfter in Gebrauch genommen werden. Man kann die vielen Drahtzäune, die kaum sichtbar sind, wohl aber die Bewegungen besonders zu jagdlichen Zwecken im Walde hemmen, beklagen; jedenfalls sind sie nicht häßlicher und unbequemer als die mit Teer oder Raupenleim verschmierten, wie die mit Pikrofötidin verseberten Waldkulturen.

Sehr lästig werden in Wald und Park die Beschädigungen durch die Mäuse, sobald diese in Massen auftreten. Es sind vorzugsweise drei Mäusearten, welche sich an den Holzgewächsen vergreifen. Die vom Felde eingewanderte Feldmaus (Arvicola arvalis), die im Walde lebende Arvicola Glareolus und endlich die größte von allen, die Wühlmaus (Hypotaenus amphibius); die Feldmaus befrisst unter dem Schutze von Laubstreu, Stranchwerk, Gräsern, tiefem Schnee vorzugsweise den Wurzelhals; ihr fallen insbesondere Zuckerahorn, Liriodendron, Zelkowa, Fagus, Chamaecyparis, Tsuga-Arten zum Opfer; die eigentliche Waldmaus bestiegt die Pflanzen, um an dünnen, glatten Pflanzenteilen die Rinde abzuknappern; dabei frisst sie auch Knospen aus; besonders gerne sucht sie die Lärchenarten auf, bestiegt auch die Douglasien, Pinus ponderosa, Strobus, Biota und andere. Die Wühlmaus endlich ist die gewaltätigste von allen, glücklicherweise auch die seltenste. Sie befrisst die Wurzeln, so daβ von den Eschen-, Lärchen-, Ahornen-, Hainbuchenpflanzen bloβ noch Wurzelstummeln im Boden verbleiben, welche meist für die Erhaltung des Lebens des Bäumchens nicht mehr ausreichen. Gegen Mäuse hilft nur Vergiftung mit Phosphorpillen, vergiftetem Weizen, das Aufstellen von automatischen Fallen. Das beste Mittel gegen diese und andere Schädlinge im Walde (Kaninchen
und Hasen) sowie gegen das ziegenartig naschhafte Reh darf man allerdings nicht empfehlen, es wäre die Schonung der Feinde dieser Tiere, in erster Linie des Fuchses, der von dem einseitigen Standpunkte der Pflanzenzüchter aus als das nützlichste Tier im Walde bezeichnet werden muß.

XI. Abschnitt. Schutz und Erziehung der fremden Holzarten. 585
eicht daran erkennlich sind, daß das zersetzte Holz naß, schmierig, läulig, weifsich, jedoch ohne üblen Geruch, in lange Fasern zerteilbar st. zwischen welcher Masse düne, harte, brüchige, braune Schichten agern. Ist eine Fläche von Pilzsträngen durchwuchert, so stirbt deshalb noch lange nicht alles an Nadelhölzern ab, was darauf steht. Es kommt wohl ein gruppenweises Absterben vor. In solchen Fällen nögen auch die von R. Hartig empfohlenen Isoliergräben, genügend tief und in grösserem Umkreise um die erkrankte Stelle herum angelegt, zum Ziele führen; in der Regel aber bleibt das Auftreten des Pilzes auch dann noch ein sporadisches, so daß jede Bekämpfungsmaßnahme sich auf das Ausreifen der befallenen Pflanzen mit der Wurzel beschränkt. Fleifsige Revision der untersten Schaftpartien an kostbaren Exemplaren in Wald und Park vermag den Pilz so rechtzeitig an dem Austreten von Harz an der Basis des Stammes zu erkennen, daß die Pflanze noch gerettet werden kann, indem man die Infektionswurzel vom Stemme abtrennt und aus dem Boden reißt und die bereits gebräunte Rinde vollständig aus dem Stamme mit scharfem Messer auseschneidet, auch wenn dadurch die Hälfte bis zwei Drittel des ganzen Stammumfanges entblößt werden muß, wobei auch noch andere kranke Wurzeln abgetrennt werden. Darauf wird mit nicht entsäumertem Teere die Wunde fest verstrichen, so daß der Teer auch die bloßgelegten Holzlager noch durchwuchert und die dort befindlichen Pilzfäden tötet. Es gelang mir auf diese Weise, schöne Lawsonien-Exemplare zu retten. Die Wunde beginnt — zehn Jahre nach der Operation — sich bereits wiederum zu schließen.

Bis heute noch weniger schädlich als der Halimasch ist Polyporus annosus, der, wie es scheint, ebenfalls sehr dicke und zähe Rhizomorphen im Boden umherwendet und Nadelhölzer befällt; aus Indien 1) kommt Klage von massenhaftem Absterben von jungen Zedern durch die Tätigkeit dieses Pilzes. Ich glaube, daß auch bei uns in Europa der Pilz Rhizomorphen bildet 2). Auch gegen diesen Pilz sichert am besten die Stockrodung. Bei Plenterrodung sind die befallenen Stöcke leicht an den weißen Flecken mit schwarzem Zentrum, welches die Zerstörungsform des Pilzes im Holzkörper ist, zu erkennen. Es liegt nahe, daß diese Plenterrodung nicht nur zugunsten der fremdländischen, sondern auch einheimischen Holzart ausgeführt werden sollte, wo eine Totalrodung nicht zulässig ist.

Als ein sehr gefährlicher Pilz für die Gattungen Chamaecyparis und Thuja (weniger Thujopsis) hat sich die von Dr. Böhm bestimmte Pestalozzia funerea erwiesen, die man vielleicht „Tränenpilz“ nennen

1) B. T. Butler, A Deodar disease in Jaunsar. Indian Forester, 1903.
2) H. Mayr, A fungus on some Indian trees with in German forests. Ebenda 1904.

Ein anderer Pilz, der epidemische Erkrankung und Aussterben von Tausenden von Pflanzen fast gleichzeitig hervorzurufen vermag, ist der Schüttepilz, Lophodermium Pinastri. Er ist, wie Versuche nachgewiesen haben, die Ursache der Schüttekranzheit. Von fremdländischen Arten leiden insbesondere die Angehörigen der Sektion

XI. Abschnitt. Schutz und Erziehung der fremden Holzarten.

Der Kampf gegen Unkrautwuchs und gegen Bedrängungen der fremdländischen Baumarten durch einheimische Bäume hängt eng zusammen mit der nach der Verpflanzung ins Freie einsetzenden Nachbesserung, Pflege und Erziehung. Für Garten- und Parkzwecke mag mit der Begründung im wesentlichen die Aufgabe des Pflanzenzüchters erfüllt sein; im Walde beginnt mit der Erziehung erst die wichtigste, theoretische Denkarbeit und praktische Ausführung.

Die Pflege erstreckt sich zunächst auf die Ausfüllung der in den Saaten und vor allem in den Pflanzungen entstandenen Lücken. Solche Ergänzungen werden nur vorgenommen, wenn die neu einzubringende Pflanze Aussicht hat, mit ihrer im Vorsprunge befindlichen Umgebung Schritt zu halten. Einzelergänzungen haben im ersten Jahre nach der Pflanzung noch am meisten Aussicht; stirbt aber eine einzelne Pflanze in späteren Jahren heraus, so besteht keine Aussicht, daß die nachgebesserte noch der Erdrückung durch die Nachbarschaft enteilen kann; die Nachbesserung kann also unterbleiben. Fehlen mehrere Pflanzen in einer Reihe oder auf einer zusammenhängenden Fläche, so wird die Ergänzung mit neuen Pflanzen auf den mittleren Teil dieser Fehlstelle beschränkt; rührt solches flächenweise Absterben von Wurzelparasiten (Agaricus melleus, Polyporus annosus) her, so sind die Nachbesserungen mit Laubhölzern (neunter Abschnitt) zu betätigen. Geht eine Pflanze in die Breite, verzweigt sich der Hauptschaft, wird der selbe aus irgendeinem Grunde krumm, gedreht, geknickt, so werden solche Pflanzen beseitigt, ohne Rücksicht, ob dadurch der bereits eingetretene Schluß unterbrochen wird oder nicht; ebenso müssen alle nicht wünschenswerten Holzarten, welche sich in der Pflanzung ansiedeln oder welche überflüssig geworden sind, beseitigt werden. Für das rechtzeitige völlige Ausschneiden der Zwiesel und aller aufwärtswachsenden, den Hauptgipfel in seiner Wuchsleistung hemmenden Äste ohne Rücksicht auf den Schluß der Pflanzung Sorge zu tragen, ist für die fremdländischen Arten so wichtig wie für die einheimischen. Dieses Ausschneiden hat mit der Baumschere oder Baumsäge zu geschehen, womit sich zugleich der Zeitpunkt der Ausführung, im jugendlichsten Alter eines Bestandes, ergibt. Erfordert die Zwieselbeseitigung wie bei der in praxi herrschenden Durchforstung die Axt, so ist der richtige Zeitpunkt der Operation längst versäumt; eine solche Durchforstung schadet mehr, als sie nützt; wenn die Durchforstungen einsetzen, müssen die Zwiesel verschwunden und verheilt sein. Das meiste an rotfaulen Stämmen in Fichtenbeständen ist der ungenügenden Überwaltung der zu spät entfernten Zwilingsstämmchen, den von der Wunde auf den Hauptstamm überragenden Fäulnisprozessen zuzuschreiben. Die fremdländischen Arten sind hierin nicht besser als die einheimischen. Bei den Chamaecyparis-Pflanzen sind Zwieselbildungen sehr häufig; sie
möglen im jugendlichsten Pflanzenalter zur Aufzucht von neuem Pflanzenmaterial (zwölfter Abschnitt) benutzt werden.

Auch die Behandlung der mit fremdländischen Arten begründeten Bestände bis zu ihrer Haubarkeit wäre von jener, wie sie einheimischen Nadelhölzern und Laubhölzern am besten zuteil wird, nicht verschieden.

Da bei den Erziehungshieben (Durchforstungen, Durchlichtungen, Umlichtungen usw.) jeder Bestand, jede Gruppe, ja jeder einzelne Baum eine eigene Behandlungsweise verlangt, welche aus der eigenen Überlegung des Wirtschafters, aus der Erwägung aller naturgesetzlichen, wirtschaftlichen und finanziellen Gesichtspunkte hervorgehen muß, so verzichtete ich darauf, spezielle Regeln zu geben. Im allgemeinen dürfte festzuhalten sein: Im jüngsten Alter vor und nach Eintritt des Bestandsschlusses kräftigste Eingriffe mittels Reinigung, Durchforstungen und Wurzelstümmelung zugunsten der nützholztüchtigsten Bäume oder wertvollsten Baumarten; im Stangenholzalter Beseitigung der absterbenden und toten und Wurzelstümmelung der lebenden, schädlichen Stämme, Erhaltung des durch Wurzelzwächung sich ergebenden unterdrückten Materials; da dies die wichtigste Zeit für die Astreinigung ist, so muß der Schluf so voll-
Zwölfter Abschnitt.

Vermehrung der Pflanzen ohne Sämereien; Erzielung von Schmuckpflanzen.

Will man eine neue Pflanze gewinnen, welche genau die Eigenschaften der Mutterpflanze — morphologisch wie biologisch — besitzt, so gibt es bei der sogenannten typischen Art zwei Wege: die Aufzucht aus dem Samenkorne und die ungeschlechtliche Vermehrung durch Stücke der Pflanze, bei Varietäten und Gartenformen nur letztere. Zu diesem Zwecke bringt man oberirdische Stücke der Mutterpflanze zur Bewurzelung (Stecklingsvermehrung), oder man verleibt Stücke der Mutterpflanze (Zweig mit Knospe oder blofs Knospe) einer anderen Pflanze ein, welcher im wesentlichen die unterirdische Tätigkeit der Pflanze zufällt (Veredlung, Pflropfung), oder man bringt unterirdische Pflanzenteile, somit Wurzelstücke, zur Bildung oberirdischer Sprossen (Wurzelstecklinge). Spielarten und Gartenformen bringen entweder gar keinen oder nur unkeimfähigen Samen, oder aus dem keimenden Korne gehen Pflanzen hervor, welche ganz oder im größten Prozentsatz wiederum zur typischen Art zurückschlagen. Meiner Ansicht nach ist es eine irri­ge Auffassung zu glauben, die wenigen Garten­
formen in solcher Aussaat seien durch Vererbung von seiten der Mutter-
pflanze entstanden. Von der Mutterpflanze ist nur die Dis-
position zur Variation im Sinne der Mutterpflanze, und zwar in
allen Körnern, vererbt; die Variation selbst aber entsteht erst bei
der Keimung des Saatkornes und ist deshalb, nicht wegen
ungenügender Vererbung, so selten unter den Keimen fruchttragender
Gartenformen.

Die Stecklingsvermehrung gelingt bei vorsichtiger Behandlung
(sehr lockerer Boden, genügend frisch und Erhaltung großer Luft-
feuchtigkeit), das heißt bei künstlicher Schaffung eines warmfeuchten
Raumes, bei allen Holzarten, selbst allen Nadelhölzern; sie hat aber
praktischen Wert nur dann, wenn sie leicht gelingt. Verwendet man
Seitentriebe, so geht bei Laubhölzern, dann bei den Cupressineen und
Taxodien die neue Pflanze sofort in eine typische, gipfeltragende über,
as wäre sie aus dem Samen erzogen worden; bei den Abietineen da-
gegen erhält sich der Charakter des Seitentriebes sehr lange, oft das
Leben lang, so daß solche Pflanzen für forstliche Zwecke gar nicht,
für dekorative kaum brauchbar sind. Leicht und für forstliche wie
gärtnersche Ziele branchbar ist die Stecklingsvermehrung bei den
Cupressineen, das ist bei Chamaecyparis, Thuja, Thujaopsis, Libocedrus,
Juniperus, dann bei Taxus, Cunninghamia, Sequoia, Cryptomeria, Gingkyo,
Sciadopitys, Cedrus; unter den Abietineen werden am leichtesten noch
die Tsuga-Arten mit Stecklingen vermehrt. Die Stecklingsvermehrung
gelingt auch in der freien Natur ohne besondere Vorsichtsmaßnahmen,
wen man luft- und bodenfeuchte, somit kühle Standorte im Schatten
von Bäumen auswählt. Ja, unter günstigen Witterungsverhältnissen
kann man völlige Freilandbestandsbegründungen mit Stecklingen aus-
führen; die Entscheidung liegt bei der auf die Kultur folgenden Witte-
run. Der europäische Witterungscharakter ist ein schwankender; nach
der Pflanzung im Frühjahr zuweilen mehrwöchige feuchte, regnerische
Tage, kurze Trockenperioden während des ganzen Sommers; dann ge-
lingt die Kultur, für welche somit in den luftfeuchtesten Lagen die
günstigsten Aussichten bestehen. Fallen aber Trockenperioden in den
Sommer von ein- oder mehrwöchiger Dauer, dann ist ohne Begleisen
die Stecklingskultur verloren; in Ostasien wird die Kultur unmittelbar
vor Eintritt des Regenmonsuns ausgeführt; es folgt eine Witterung,
welche das Anwachsen aller Pflanzenstücke genannter Arten ermöglicht.
Bei obengenannten Baumarten gelingen 10—20 cm lange Stücke, welche
einem zwei- bis dreijährigen Triebe entnommen wurden, am besten,
wen die Stücke so in den Boden gebracht werden, daß die Jahrrings-
grenze oder die glatt abgeschnittene Ursprungsstelle des Zweiges
c. 5 cm unter den Boden zu liegen kommt.

Bei Holzarten, welche bei Verletzungen der Wurzeln aus diesen
ausschlagen, können auch Wurzelstecklinge zur Vermehrung ge-

Bei allen Holzarten, welche der Stecklingsvermehrung Schwierigkeiten bereiten, führt die Vermehrung durch Absenker sicher, wenn auch oft sehr langsam, zum Ziele. Bei diesem Verfahren werden Seitenäste zum Boden herabgebogen, in dieser Lage festgehalten und übererdet; zuweilen werden zuvor Schnitte an der übererdeten Stelle belüftet und überregt zur Bildung des Überwallungswulstes (Callus) ausgeführt; man kann Seitenzweige auch durch Blumentöpfe von unten nach oben hindurchstecken und diese mit Erde füllen; man erhält dadurch bewurzelte Seitenzweige, welche bei den Laubhölzern und den oben angeführten Nadelholzern in Bälde zu normalen Gipfelpflanzen werden.

Mayr, Fremdländische Wald- und Parkbäume.

Wenn man nach der Zahl der Varietäten schließt, dann neigt die *Pinus densiflora*, die Rotföhre, am leichtesten zur Variation: dagegen ist die japanische Schwarzföhre (*Pinus Thunbergii*) beachtenswert durch ihre ganz überraschend günstige Eigenschaft, als Unterholz für alle Veredlungen mit Föhren zu dienen, gleichgültig, welcher Sektion sie angehören. Freilich bleiben solche Formen niedrig, was aber nach japanischem Geschmacke gerade erwünscht ist. Ich selbst habe in Tokio seinerzeit Versuche mit amerikanischen Föhren (*Strobus, pungens, Jeffreyi, Coulteri, echinodrana*) vorgenommen; sie gelangen ebenfalls. Auch die Himalaya-Strobus wie die europäische Seekiefer (*P. maritima*) lassen sich mit Leichtigkeit auf die Schwarzföhre veredeln; für gärtnerische Zwecke kann man die japanische Schwarzföhre als Unterholz nicht genug empfehlen; sie dürfte in dieser Eigenschaft für Deutschland wertvoller sein denn als Forstbaum.

Die Veredlungsmethoden sind folgende: Es wird der Wildling (2—4jährige Schwarzföhrenpflanzen) genau durch die Quirlknospen der Triebspitze wagrecht abgeschnitten; die darunterstehen-

Mir selbst gelingt nur ein kleiner Procentsatz der Veredlungen; aber sicher werden mich hierin die Gärtnert von Beruf in Bälde übertreffen und die Methode so ausbilden, daß sie für ihre Zwecke, die Massenvermehrung schöner Schmuckpflanzen, geeignet wird; bisher gelang mir die Knospenveredlung auf der europäischen Tanne (A. pectinata) mit folgenden Arten: A. amabilis, cephalonica, concolor, lasiocarpa, nobilis, Pindrau, sibirica, Webbiana; dagegen sind alle Versuche, auf gleiche
Weise die Fichten (Picea) zu vermehren, mir bisher gescheitert; leicht dagegen gelangen Föhrenveredlungen, nämlich auf Pinus Strobus mit Pinus Peuce, excelsa, korcensis, Lambertiana, monticola, parviflora, auf Pinus silicestris mit Pinus Banksiana und densiflora; auf einheimischen Lärchen gelang die Knospenpflropfung mit Larix leptolepis und kurilensis, auf Larix kurilensis mit Larix Principis Rupprechtii. Alle diese Veredlungen haben sich wie normale Gipfel weiterentwickelt, obwohl Seitenknospen genommen wurden; aber an solchen Veredlungen zeigen sich Eigentümlichkeiten, welche den nicht veredelten Pflanzen fehlen, so das frühzeitige Absterben und Abfallen der untersten Äste des Edelteiles, wohl infolge einer gehemmten Wasserbewegung an der Veredlungsstelle. Auch die beigegebenen Abbildungen lassen dies erkennen.

Bei Veredlungen an jungen, niederer Pflanzen, wie dies für gärtnerische Zwecke notwendig sein wird, dürfte die Entfernung der Wildlingsäste schon frühzeitig möglich sein. Die Veredlung gelingt am besten, wenn noch ruhende Knospen auf Wildlinge gesetzt werden, die etwas in der Vegetation voran sind (April), oder wenn schon ruhende Knospen auf Wildlinge gelangen, an welchen die Vegetation noch nicht

übereinstimmt; brachte ich die excelsa auf eine dunkelgrüne Weymouthsföhre, so wurde auch das Edelreis dunkelgrün; wählte ich auffallend helle, fast silberweiße Strobus, wurde auch die excelsa hellgrün. Es liegt hierin eine Anregung zur Prüfung und weiteren Aussnitzung dieser Erscheinung bei Tannen, Fichten, anderen Föhren, Lärchen, Douglasien und anderen Holzarten. Knospen normaler Formen müßten auf hell gefärbten Unterlagen sogenannte Silberformen ergeben; Knospen von Silberformen ließen sich in ihrer Färbung steigern und fixieren; schon in der Veredlung selbst liegt Grund zur Variation. So wurden in meinem Garten alle Abies concolor-Veredlungen auf einheimischen Tannen viel schöner weiß, als die ursprüngliche Form ist.

Je weiter stehend die Verwandtschaft zwischen Edelreis und Wildling, desto geringer die Wahrscheinlichkeit, daß aus der Veredlung ein normal hochstrebender Baum wird. Bei Tannen, Föhren, Douglasien, Lärchen und anderen ist die Veredlung nur innerhalb der Arten derselben Gattung, z. B. Abies, Larix usw., möglich; bei der Gattung Pinus können auch die Angehörigen verschiedener Sektionen aufeinander veredelt werden. Sobald nun Edelreis und Wildling derselben Sektion angehören, erwächst das Edelreis zu einem normalen Baum; sind aber Edelreis und Wildling Angehörige verschiedener Sektionen, so unterbleibt angenscheinlich die Normalbaumform; es entsteht eine kugelige oder buschige Form, welche je nach Bedarf und Geschmack dekorativ ebenso wertvoll sein kann wie eine normal aufwachsende Pflanze; man vergleiche Abb. 126, welche eine Koreazürbel (Sektion Cembra), auf Strobus veredelt, wiedergibt.

Eine ganze Reihe von Zwergbäumchen, voraussichtlich von kugeligem Charakter, aber ganz hervorragend schöner Färbung und dichter Verzweigung, müßten sich ergeben, wenn man Knospen der bei allen Fichten und Föhren bekannten Hexenbesen zur Veredlung benützen würde. Eine schönere blauweiße Färbung, als jene ist, mit der die Hexenbesen der Sitkafichte, der ajarischen Fichte auf den Boscouver vom Baume herableuchten, ist unter den vegetabilischen Gegenständen nicht bekannt. Die Möglichkeit einer Knospenveredlung erscheint um so wahrscheinlicher, als es sich bei allen diesen Hexenbesen sicher nicht um Pilzerkrankungen handelt; die Ursache dieser Misßbildung ist noch heute ein völliges Rätsel.

Jeder Eingriff in die normale Entwicklung einer Pflanze gibt Anstofs zu einer Variation, welche sich zumeist in einer Farbveränderung der Pflanze äußert. So ist allgemein bekannt, daß Fichtenpflanzen, ins Freie gebracht, die beiden ersten Jahre eine helle, gelbliche Färbung zeigen, welche allmählich wiederum verschwindet; pflanzt man die Fichten zwischen Erlen, so unterbleibt diese gelbliche Färbung; je schlechter, wahrscheinlich stickstoff-, nicht eisenärmer der Boden ist, um so länger erhält sich die gelbe Färbung. Pflanzt man Holzarten,

XII. Abschnitt. Vermehrung der Pflanzen ohne Sämereien usw.
zweigang durch Veredlung nicht nahe verwandter Baumarten, selbst Veredlung zwischen verschiedenen Gattungen benützt. Es ist mir nicht zweifelhaft, daß es den europäischen Gärtnern in kürzester Zeit gelingen wird, auch hierin die Japaner und Chinesen zu überflügeln, sobald einmal der in den Zwergformen liegende, feinere mongolische Geschmack den europäischen günstig beeinflussen wird. In bezug auf Chrysanthemen, Camelien und anderen haben die ostasiatischen Nationen zwar das Material geliefert, in den daraus gewonnenen Zuechtformen aber sind die Europäer den Ostasiaten bereits überlegen.

1) Rupprecht, Prinz von Bayern, Reiseerinnerungen aus Ostasien 1906, S. 343.
Im Anhange gebe ich einige mit fremdländischen Sämereien oder Pflanzen handelnde Firmen, soweit ich selbst mit denselben in Verbindung getreten bin, in alphabetischer Reihenfolge.

Dänemark: Johannes Rafn, Skovrıkontoret, Kopenhagen. Größtes Sortiment von Sämereien.

Anhang.

Peter Schott, Knittelsheim (Rheinpfalz). Massenanzucht von Pflanzen fremder Arten.

Städtische Baumschule zu Augsburg. Pflanzen.

Italien: Rovelli Frères, Pallanza, Oberitalien. Sämereien.

Goriokyo, Sapporo, Eso (Forstrat Sasai). Sämereien.

Das Register ist so angelegt, daß mit Hilfe nachstehenden Schlüssels für jede Holzart das in diesem Buche zerstreute Wissen wiederum gesammelt werden kann; wird hierzu noch die Nutzanwendung aus den allgemeinen und speziellen Anbauregeln, sowie aus der Beschreibung der Baumgattung gefügt, so wird für jede Holzart sich ein Gesamtbild ergeben, das zur Verwirklichung der Ziele dieses Buches, Anleitung und Förderung des Anbaus der fremdländischen Baumarten in Wald und Park, wesentlich beitragen dürfte.

Ohne die dankenswerte Fähle meiner Schwägerin Fräulein Hutter wäre es mir wohl nicht möglich gewesen, dem Register eine von der bisherigen Form abweichende und, wie ich glaube, praktischere Anordnung zu geben.

I. Heimat,
II. Anbaufähigkeit,
III. Anbauwürdigkeit,
IV. Beschreibung,
V. Anbaupläne,

VI. Forstliche Anbauergebnisse,
VII. Behandlung und Schutz,
VIII. Vermehrung,
IX. Abbildung.

Abemaki 510.
Abies 240. IX 241. Tafel II.
— brachyphylla = Abies homolepis 246.
— cephalonica Lk. I 243. II 191, 192, III 223, 244. IV 242, 244, 246. V 558, 559, 562, 568, 575. VII 242, 580. VIII 595, 598. IX 244.
— ciliicca Carr. I 180, 244. II 192, III 219, 223, 244. IV 244. V 558, 559, 562, 568, 575. VII 242, 580. VIII 598.

— Lowiana Mc Nab. = Abies Iasiocarpa 247.
Alders 447.
Aleppo-Fäbäre 342.
Alnus 447. IX 446.
- firma var multinervis = multinervis 447.
- Mayrlii Callier I 447.
- rhombifolia Nutt. I 448. V 562. IX Tafel XV.
- rubra Bong. I 448. II 190. IV 448. V 562. IX Tafel XV.
- Amerikanische Buche 460.
- Christusdorn 474.
- Edelkastanie 457.
- Kastanienechse 503.
- Linde 520.
- Platane 491.
- Roterfehre 346.
- Silbertanne 244.
- Ulme 522.
- Weißichehe 500.
- Zärgelbaum 461.
Amurische Maakie 463.
Aobo-momi 248.
Aogiri 518.
Aokiba = Aucuba 304.
Aomoritanne 248.
Aomori-todomatzu 248.
Aotago 472.
Apollotanne 242.
Araragi 418.
Aranearia imbricata Par. I 181, 182, 261.
Arbor Vitae 263, 418, 421.
IX 448.
Arizona-Pine 389.
Arizona-Scheinstrobe 389.
Arizonaatanne 243.
Aranda Zürbel 385.
Arve 386.
Aashes 470.
Asiatische Körbeiche 510.
Asunaro 422.
Atlantische Zeder 265.
Aunes 447.
Azedarach 484.
Azedarachbäume 484.
Bald Cypress 416.
Balfouria 390. IX Tafel 11.
Balfour-Fähre 390.
Balsam 246.
- fir. 243, 247, 257.
Balsamante 243.
Bambusa 430.
- Moso I. 74. IV 74. V 567.
Bambusa nana var. gracillima 432.
Banksfiobre 353.
Baramoni 385.
Basket oak 583.
Bass wood 520.
Bastard Cedar 315.
Beech 469.
Beeches 467.
Bemisugi 280.
Bergpasanie 487.
Bergznekerhorn 440.
Betula 448.
III 219, 449. IV 449. V 558, 559. IX Tafel XIII, XIII.
- nigra L. I 25, 26, 319. IV 556. V 573. IX Tafel XIII.
- occidentalis Hook. I 450. IX Tafel XII, XIII.
- odorata Bechst. 298.
- papyracea = Betula papyrifera 450.
- papyrifera Marsh. I 25, 26, 30, 450. III 219, 450. IV 450. IX Tafel XII (papyracea). XIII.
- wutaica Mage I 450. II 191. IV 450. IX 450.
Biakushin 291.
Big cone pine 365.
Big trees 410.
Biota orientalis Endl. I 136, 156, 263.
II 188, 189, 191. III 263. IV 263. V 555, 556. VII 263. 582. IX 263. Tafel 1, 8.
Birches 448.
Birkenarten 448.
Bitternuss 455.
Bitter-nut-hickory 455.
Black ash 472.
- birk. 450.
- cotton wood 493.
- gum. 485.
- maple 441.
- oak 508, 509, 510.
- spruce 333.
- waldn. 477.
Blauer Douglast 404.
Blauer Eukalyptus 466.
Blansche 473.
Blaufichte 336.
Bleistiftholz 292.
Blue ash 473.
- gum. 465.
- spruce 336.
Bodaiju 521.
Bouleaux 448.
Box 451.
- Elder 441.
Boxes 451.
Brewers Fichte 324.
Broad leaved maple 440.
Broussonetia papyrifera *Vent.*, III 82.

Buch 467.

Buchsarten 451.

Buckeye 445.

Buna 469.

Buntfichte 323.

Bur oak 502.

Butter-nut 477.

Button wood 491.

Buxus 451.

— japonica = microphylla 451.

— Wallichiana = Buxas longifolia 451.

Cajanders Lärche 297.

California Swamp-Pine 360.

California live oak 512.

Camellia japonica *L.* I 452. II 188. III 452. V 560, 571.

Canoe birch 450.

Carolina-Tange 425.

Carpinus 452. IX 453.

Carya 453. IX 454.

— *amara* *Nutt.* I 453. II 189, 190. 454. IV 455. V 567, 574. VII 593. IX 455. Tafel XIII, XIV.

— oliviformis *Nutt.* I 24. 132. 455. II 189. III 456. IV 455. V 544, 557, 567, 574. VIII 593. IX Tafel XII, XIII.

— porcina *Nutt.* I 456. II 198. 208. 454. IV 456. V 556, 557. 558. 567. 574. VIII 593. IX Tafel XII, XIII.

— *sulcata* *Nutt.* I 456. II 189. IV 456 V 567, 574. VII 593. IX Tafel XII, XIII.

— tomentosa *Nutt.* I 456. II 190. 454. IV 456. V 567, 574. VIII 593. IX Tafel XII, XIII.

— Castanea 456. IX Tafel X, 25.

— *americana Rafin.* = Castanea dentata 457.

— castanea *Kast.* = Castanea vesca 457.

— japonica *Bl.* = Castanea crenata 457.

— Castanopsis chrysophylla *A. DC.*, I 49. 457. II 188. IV 457. V 556. IX Tafel XV.

— Catalpa 455. IX Tafel XVI, 26.

— Catalpa *Kast.* = Catalpa bignonioides 458.

— *Kaempferi* = Catalpa ovata *G. Don.*, 459.

— Cedars 264.

— *Cedrela chinensis* *Tuss.*, I 460. III 460. IV 460. V 556, 557, 561, 575. VII 554. IX 461.

— Cedars 264.

— *Cedrus* 264.

— *Celtis* 461.

— *australis* *L.*, I 190. 461. III 219.

— *occidentalis* *L.*, I 461. II 189. IV 461. IX Tafel XIII.

— *Cemba* 383. IX Tafel II, 7 Sect. Tafel VII, 12.

— *Cephalotaxus* 269.

— *drupacea* *Sieb. et Zucc.*, I 269. II 189. IV 269. V 568. IX 269.

— *Fortunel Hook.*, I 269. II 189. III 269. IV 269.

— *Cercis giganteus* *Engelm.*, I 35. II 188. IX 36.

— *Chamaecyparis* 269. IX Tafel II.

— *Nootkatensis* *Lamb.* = Chamaecyparis nuthkaensis 276.

— thyoides Britt. = Chamaecyparis sphaeroidea 278.

Chamaecops excelsa Thunb. = Trachycarpus excelsa 432.

Chauchin 460.

Châteaigniers 456.

Châteaigniers de cheval 456.

Chênes 497.

Cherry trees 494.

Chesnut 457.

Cheesnut oak 503.

Chesnuts 456.

Chihuahua Pine 356.

Chilenische Amlukarie 261.

Chineseische Gleeditschie 474.

— Goldlärche 392.

— Gutta-percha-Baum 467.

— Heyderie 316.

— Kopfeiben 269.

— Lärche 299.

— Rosfokastanie 445.

— Rotföhre 349.

— Schusserbaum 474.

— Silberföhre 372.

— Spiefstanne 285.

— Surenbaum 460.

— Taxodic 289.

— Thuje 293.

— Trompetenbaum 458.

— Tulpenbaum 480.

— Ume 524.

— Wacholder 291.

— Wasserfichte 289.

— Zürgelbaum 461.

— Zwirteranne 285.

— Chinquinap 457.

— Chir 376.

— Chosenmatzu 386.

— Christusdornen 473.

— Cilicische Tanne 244.

Citrus trifoliata L. 575.

— Colorado Douglas fir. 404.

— Cottonwood 493.

— Coulters Föhre 365.

Register.

Fraxinus pubinervis Mayr I 473. IV 473. V 561.

Frösner 470.

Fuchs-chwanzföhre 390.

Fuji 518.

Fuji-matza 302.

Fuji-Sophore 518.

Füssasakura 467.

Gabeleiche 505.

Garrys Eiche 502.

Gedrehte Föhre 357.

Gelbbirke 449.

Gelbblihende Ofskastanie 445.

Gelbföhre 399.

Genévriers 290.

Gerards Föhre 373.

Gebereiche 503.

Gewebelinde 523.

Giant Eucalyptus 466.

Gingkyo 288.

Glänzeiche 309.

Glattföhre 357.

Gleditschla 473.

— japonica inermis 474.

Gleditsche 474.

Gleditschien 473.

Glehuhs Fichte 327.

Götterbaum 445.

Goldblätterige Scheinkastanie 457

Goyomatsu 377.

Grane Walmös 477.

Gray Pine 383, 370.

Green Ash 473.

Griechische Strobe 377.

— Tanne 243.

— Weymouthsfohre 377.

Grüftils Lärche 300.

Grüftils Larch 300.

Großblätteriger Ahorn 440.

Großw Köstentanne 246.

Großfrucht-Eiche 502.

Großfrucht-Lebensiche 513.

Großfrüchtige Douglasie 406.

Großfrüchtige Hickory 456.

Grüne Douglasie 396.

Grünesche 473.

Grüngelbblühende Ofskastanie 445.

Gumtrees 465.

Gurkenmagnolie 461.
Gymnochadas camadensis Lam. = Gymnochadas dioica 474.

Hackenbirke 450.
Hackenföhre 351.
Hackenziebel 388.
Hainatzu 388.
Hainbirke 449.
Hainbuchenträger 452.
Hainbuchenblättrige Erle 447.
Haku-unboku 520.
Haragiri 282.
Harigiri 436.
Hartlandeiche 503.
Hase 514.
Hendlock 425.
Hemlocks 424.
Henry's Buchs 541.
- Föhre 557.
Heranoki 521.
Herzblättrige Hainbuche 453.
Herzformige Waldhufen 477.
Hêtre 467.
Hedyrien 314.
Hiba 422.
Hicoria 453.
- laciniosa Strey. = Carya sulcata 456.
- minima Britt. = Carya amara 455.
- ovata Britt. = Carya alba 455.
- Pecan Britt. = Carya ovataformis 455.
Hickories 453.
Hickory-Arten 453.
Hickory-Pine 390.
Himalayafichte 330.
Himalayantiebe 473.
Himalayastrobe 375.
Himalayawacholder 291.
Himalayazeder 266.
Hime-gurumi 447.
Himekornatzu 386.
Hinoki 277.
Ho 481.
Homagnolie 481.
Hondolichte 327.
Hondolärche 301.
Honey-Loest 494.
Honsugi 280.
Hookers Ahorn 440.
Horsechesnats 445.
Hon-Po 481.

Hovenie 475.

Ibuki 291.
Ichii-gashi 513.
Idesia polycarpa Maxim. I 476. III 476.
IV 476. V 557. 562. IX 476.

Jack Pine 353.
Japanische Azedarach 484.
- Balsamappel 493.
- Buche 463.
- Buchs 451.
- Christusbuche 474.
- Douglasie 466.
- Edelkastanie 457.
- Eibe 418.
- Fließbuche 497.
- Gleditsche 474.
- Hofpenbuche 486.
- Kaisereiche 501.
- Kohleiche 510.
- Kopfiebe 269.
- Korkbaum 489.
- Lärche 302.
- Linde 520.
- Nufsbebe 423.
- Pflanzenwacholder 291.
- Holzkastanie 445.
- Rotföhre 362.
- Schwarzföhre 350.
- Seifenbaum 517.
- Stieleiche 502.
- Storaxbaum 520.
- Strobe 377.
- Thujas 421.
- Weymouthsfohr 377.

Jeffreys-Föhre 365.
Jeffreys-Pine 365.
Jersey-Föhre 357.
Jersey-Pine 357.
Jindai 112.
Jindai Keaki 113.

Juglans 476.
Juglans mandshurica Maxim. I 125, 477.
 1189, 1121, IV 477, V 558, 559, 560, 561, 567, VIII 593.
 Junipers 290.
 Juniperus 290. IX Tafel II.
 — macrocarpa Boiss. = Juniperus excelsa 291.

Kaede 441.
 Kämpfers Trompetenbaum 459.
 Kaki 441.
 Kakipflämme 464.
 Kalifornische Gerbereiche 455.
 — Lebenstriehe 512.
 — Lorbeer 524.
 — Nußtriehe 423.
 — Platane 492.
 — Roteiche 508.
 — Weißeiche 502.
 Kamellie 452.
 Kämpferbaum 462.
 Kanadische Pappel 493.
 — Tsuga 425.
 Kanarische Föhre 365.
 Kara-matsu 302.
 Kashiya 501.
 Katsura 461.
 Kaukasische Eiche 502.
 — Flügelnufs 497.
 — Keaki 225.
 Kaukasus-Fichte 334.
 Kawagurumi 497.
 Kaya 423.
 Keki 525.
 Keakibäume 525.
 — Keyaki = Keaki 525.
 Kepponishi 475.
 Kentucky Coffee-tree 474.
 Kerzenbaum 514.

Keteleeria 292.
 Keteleerien 292.
 Khasia 373. IX Tafel II.
 Khasiaföhre 373.
 Khasia-Pine 373.
 Kiefernarten 340.
 Kirschenarten 494.
 Kisasage 459.
 Kiushu-Linde 521.
 Kiwada 489.
 Kobusone-Pine 353.
 Kobs ü 484.
 Kobs-Magnolie 484.
 Königin Amalia Taune 255.
 Kolorado Douglasie 494.
 Kolumbische Strobe 377.
 — Weymouthsche Föhre 377.
 Kometsuga 425.
 Konara 502.
 Koniferen 240.
 Konote-Kashiya 263.
 Kopteiben 269.
 Korbeiche 503.
 Korfische 471.
 Koreazürbel 383.
 Korkeiche 514.
 Korklöcher 374.
 Korsische Schwarzföhre 344.
 Koyamaki 497.
 Köyosan 285.
 Krauseiche 501.
 Kriechföhre 345.
 Kriechzürbel 383.
 Krumpolzholzföhre 345.
 Kryptomerie 278.
 Kuboföhre 365.
 Kuchenbaum 461.
 Kugelscheinzypresse 278.
 Kurnugi 510.
 Kuri 457.
 Kurilenlärche 300.
 Kuro-Esomatzu 321.
 Kurogashi 514.
 Kurokaki 464.
 Kuromatzu 350.
 Kurosugi 282.
 Kurznadelige Föhre 358.
 Küstendouglasie 396.
 Küstensequoie 414.
 Kufs 462.
 Kusu 462.
 Kuwa 485.

Lackbaum 515.
 Lärchenarten 293.
 Larches 293.
 Larix 293. IX Tafel II, VII, 9.

— conifera Kaempl. = Larix leptolepis 302.

Latsche 345. Laurel oak 509.

Laurus nobilis L. I, II 188.

Lawsonie 273.

Lawsons Cypress 273.

Scheinzypressen 273.

Lebensbäume 418.

Lebensbaum 421.

Leiereiche 502.

Libanons-Zeder 260.

Libocedrus 314. IX Tafel II.

Linden 520.

Liquidambar styraciflua L. I 17, 479. II 189, 479. IV 17, 479. V 555, 556, 557.

Liquidambar 479.

Live oak 513, 514.

Loblolly-Pine 363.

Locust 515.

Lodgepole-Pine 358.

Longleafed-Pine 367.

Lorbeereiche 509.

Lows-Tanne 247.

Luchtfichte 344.

Lyalls Lärche 306.

Mabambus 432.

Madroña 448.

Madronia 448.

Mädenzerblatt 386.

Magnolia 480, 481.

— acuminate Linn. I 481. IV 481. V 562. 567. VIII 593.

— glauca Linn. I 481. IV 481. V 562. VIII 593.

— Kobus De Cand. = Magnolia Kobushi 484.

— Kobushi De Cand. I 125, 126, 484. III 221, 484. IV 562, 571. VIII 593. IX 484.

Maki 391.

Mannmuthbaum 411.

Mandschurei-Nufs 477.

Mandschurische Esche 472.

— Linde 521.

— Tanne 249.

Maples 438.

Masters‘ Fichte 328.

Matsubash 487.

Maulbeerbäume 484.

Maximoves‘ Birke 449.

Tsova 425.

Nayrs Ahora 440.

— Föhre 367.

Mélezes 293.

Melia L. I 484.

Picea Maximoviesii 330 = Picea bicolore 323.
— Menzießi Carr. = Picea Sitkaæniss 327.
— VIII 596, 598. IX 172, 331, 332, 335.
— Morinoides Rhecl. 332.
— VIII 596, 598.
— nigra Link I 24, 30, 333. II 190, 192.
— IX 334.
— VIII 596, 598.
— Sarg. = Picea pungens 326.
— behandlung = Picea alba 575.
— behandlung = Picea pungens 326.
— camadensis B. et P. = Picea alba 339.
— Mariana B. S. et P. = Picea nigra 333.

Register.

616

Piiius longifolia Exb. I 164, 171, 176, 374.
556, 562,
[II 221, 222, 223. IV 374.

V

—

=

Pinus Laricio
Pinus Poiretiana

344.
II 189,
190, 192, 209. III 218, 221, 222, 223, 370.
IV 369.
555, 556, 557, 558, 559, 560.
VI 233. VII 582, 587. IX 53, 369, 370,

568, 575.

V

lucbuensis Mayr.

I 16, 117, 344. II 188.
III 219, 221, 222, 223, 344. IV 344.

V

—
—
—

555, 556, 568, 575.

mandshurica

linpr. I, II 191. III 222,
V 568, 575.
223.
Pinus Pinaster 345.
maritima Poir.

=

Massoniana

]j<imb.

= Pinus sinensis 349. —

Mavriana Suäw.

II 189, 190.
I 367.
111*222, 223, 367. IV 367.
557, 558,
560, 561, 568, 575. VII 587. IX 368,
Tafel IV (macrophylla).

—

221, 222, 223.

III

IV

V

358.

562,

:.^, 575.
»litis Mirhx. I 358. 11 189, 209. III 221,
556, 557, 559,
222, 223, 358. IV 358.
560, 568, 575. IX Tafel IV.

V

—
—

monopbylla
III 373. 'IV
Tafel

Torr, et Frem, I 373. III 373.
373. V 557, 568, 575. IX

III.

monticola Dougl

l 41, 61, 377. II 190,
III 221, 222, 223. IV 377.
558,
559, 560, 561, 568, 575. VII ">s4. VIII 596.
1

V

92.

IX

Tafel III.
- Mugbus Scop. I 344.

V

III

192.

V

=

Pinus cembroides

osteosperma Knqelm.372.
-

Paüasiana Lamb.

346.

I

IV

345.

—
—
—
—
—

III

189.

MM.
16,

I

16, 41, 42, 367.

Parryana Etuielm. I 373. III 37::. IV
V 557, 568, 575. IX Tafel III.

373.

Sieb, et Zucc. I 126,
III 221, 222, 223. IV
192.

386.
386.

558, 559, 560, 561, 568, 569, :>75.
VIII 596.
584.

VII

parriflora
II

V

191,

pentaphylla Mayr
222, 2L':i, 377.
561, 568, 575.

-

Peuke

I

IV

IV

I

Pinaster Sob.

V 568,
Pinea
22::,

/..

345.

Schlüssel:

345.

III

345.

IV

345.

III

222,

575.

I.

I

345.

IV 345.
Heimat.

II

V
II.

188,

568,

190.
-">7:>.

Anbaufähigkeit.

VI. Forstl. Anbauergebnisse.

=
=

V

346, Tafel IV.
rigensis 348.

VI

233.

IX

362.

51, 370. II 188, 189.

I

—

Tafel

370.
587.

V

555,

1X371,

III.

scopulorum

Lern. I 370. II 189, 190, 192.
222, 223. IV 370.
557, 558, 559,
560, 561, 568, 575. VII 587.
serotina Michx. I 16, 371. II 190, III
221, 222, 223. IV 16, 371.
556, 557,
560, 561, 568, 575.
sibirica Mayr I 388. II 191, 192. III
222, 223, 389. IV 389.
557, 558. 559,
560, 561, 568, 569, 575. VII 385, 584.
silvestris A. I 347. II 190, 191, 192,
568, 575. VII 587. VIII 596.
silvestris engadinensis Heer. 347.
sinensis Lamb. I 154, 349. II 188, 189,
Pinus reflexa 388.
strobiformis Engelm.
Strobus /.. I 25, 28, 378. II 190, 192.
IV
378.
558, 559, 560, 561, 568, 569. VI
233.
VII 582, 584, 587. VIII 594, 596.
597. IX 381, 402, Tafel IV.
Taeda L. I 20, 363. II 189. III 221, 222,
223, 364. IV 363.
556, 557, 559, 560,
568, 575. IX Tafel III.
Thunbergii Pari. I 78, 120, 350. II 188,
189. III 219, 221, 222, 223, 351. IV 86,
350.
555, 562, 568, 575. VII 587.
VIII 594, 599, 601. IX 86, 88, 574, 600.

V

III

—

IV
VII

V

-

V

-

V

—
-

—
—

=

V

—

V

-

V

Anbauwürdigkeit. IV. Beschreibung. V. Anbaupläne.
Behandlung u. Schutz. VIII. Vermehrung. IX. Abbildung.

III.

VII.

V

IV

III 221, 222, 223, 370.
557, 560, 561, 568,575.

I

I

I 345. II

193. III 221,
345.
568, 575.
pungens Mich. f.. I 360. II 189, 2 9. III
556, 557, 558, 559,
222, 223. IV 360.
560, 568, 575. VIII 594. IX Tafel IV.
pyrenaica Lapeyr. I 360. III 360. IV
860. V 556, 557, 558, 559, 560, 568, 575.
Pinus Parryana 873.
quadrifolia Sudu\
Pinus insignis 357.
radiata D. Don.
559, 560, 561,
reflexa Enqdm. I 388.
568, 575. VII 385. 584. IX Tafel III.
resinosa Ait. I 28, 346. II 190, 192.
III 28, 219, 221, 222, 223, 346, 382. IV
346.
558, 568, 574, 575. VII 587. IX

222, 223, 345.

Tafel IV.

III 221,
558, 559, 560,

Griseb.
377. II 191, 192. III 222,
223, 378.
V ::77. V 557, 558, 559, 560, 561,
568, 569, 575. VIII 596 IX 402.

Pumilio Haenke

- Sabiniana Douql.

126, 377.

377.
VII 584.

584, 587.

V

=

360.

390.

I

108, 111, 157, 177, 388.
II 193. III' 221, 222, 223, 388. IV 388.
557, 559, 560, 561, 568, 575. VII 385,
I

557, 558, 559, 560, 562.

19, 221, 222, 223, 367, 382.

IV 367. V 555, 557, 560, 561, 562, 568,
.-.7:..
VII 587. IX Tafel III.
Paroliniana Webb.
Pinus pyrenaica

Mayr

- rigida MM. I 19, 361. II 189, 190, 209.
III 221, 222. 223, 361. IV 361.
556,

V568,
II 188,

puniila

V

575.

palustris

Pseudostrobus Linäl.

=

V

—

568.

41, 42, 309, 358. II

I

221, 222, 22:'., 359. IV 358.
V 556, 557, 558, 559, 560, 568. VI 233.
VII 587. IX 359, Tafel IV.
Murrayana var. Sargentii Mayr 359.
IX Tafel IV (contorta var. Sargentii).
inuricata I). Don. 1360. II 188. III 221.
556, 557, 559, 560,
222, 223. IV 360.
568, 575. IX Tafel IV.
Pinus austriaca 343.
nigricans Host.
L90,

—

—
—

4."),

Murrayaiia Boy.

Taf. III.

ponderosa var. scopulorum Engelm.
Pinus scopulorum 370.

V

V

- Merkusii Jungk, et de Vries I 171, 358,
::74.

—
—


Quercus aquatica Wait. I 16, 509. III 223. IV 509. IX Tafel XI a, b, XIV.

— Bungeana I 155. II 189. III 219, 221.

— californica Coop. I 508. IX Tafel XIV (Kelloggii), XV (Kelloggii).

— Catesbaei Michx. I 20, 508. II 208. III 219, 223. IX Tafel XI, XIV.

— chrysolepis Liebm. I 513. IV 513. IX Tafel XII, XIV.

— cerris sempervirens 508.

— conferta Kt. I 500. III 500. IV 506.

— Dainmio Hort. = Quercus dentata 501.

— falcata L. I 172.

— digitata Sudw. I 508. IV 508. IX Tafel XI (falcata), XIV (falc.)

— falcata Michx. = Quercus digitata 508.

— fenestrata Roxb. I 172. II 188.

— glabra = Pseudina glabra 487.

— glauca Thumb. I 153. II 188.

— grisea Liebm. I 513. IX Tafel XII, XIV.

— grossbarrata Bl. I 105, 125. III 219, 221, 223.

— hungarica Hub. = Quercus conferta 500.

— hypoleuca Engelm. I 513. IV 513. IX Tafel XII, XIV.

— hexas L. I 513. II 188.

— Kelloggii Neerb. = Quercus californica 508.

— laurifolia Michx. I 16, 509. III 219. IV 509. IX Tafel XIV.

— lobata Neé I 502. IV 502. IX Tafel XIV, XV.

— lyrata Wait. I 502. II 189. III 219, 221, 223. IV 502. IX Tafel XI a, b XIV.

Quercus macrocarpa Michx. I 502. II 189, 190. III 219, 223, 502. IV 502. IX Tafel XI a, b, XIV.

— Michauxii Nutt. I 503. III, IV 503. V 556, 558, 561. IX Tafel XIV.

— minor Sarig. = Quercus obtusiloba 503.

— nigra L. I 20, 509. II 208. III 219, 223. IV 509. IX Tafel XI, XIV.

— obtusiloba Mich. I 503. IV 503. IX Tafel XI, XIV.

— pedunculata Ehrh. I 502. II 190, 191. IX 506.

— Phellod L. I 509. IX Tafel XI, XIV.

— phylirhoides A. Gr. I 513.

— platanoïdes Sudw. = Quercus bicolor 500.

— procumbens Willd. I 503. III 219, 503. IV 503. IX Tafel XI, XIV.

— Prinos L. I 503. III 219, 503. IV 503. V 562. IX Tafel XI, XIV.

— pontica K. Koch I 504. IV 504. IX 504.

— pubescens Willd. I 504. II 190, 191. III 219, 504. IV 504.

— sessiliflora Salisb. I 190, 191.

— spelata Sm. I 162.

— Suber L. I 514. II 188.

— thalassica Hex. I 143, 514. III 221. IV 514. IX 514.

— velutina Lam. = Quercus tinctoria 510.

— virens Ait. I 16, 514. II 188. III 219. IV 514. IX Tafel XIV.

— Wilsenteiui A. DC. I 514. IX Tafel XII, XIV.

— wutaishanica Mayr I 504. II 189. III 219, 223. IV 504. IX 504.

Red ash 472.

— birch 449.

— cedar 292, 419.

— elm 528.

— fir 242, 245, 250. 396.

— gum 466.

— maple 442.

— mulberry 485.

— oak 509.

— pine 346.

— spruce 336.

Roter Aborn 441.
Schwarzer Ahorn 441.
Schwarzer Maulbeerbaum 485.
Schwarzer Kaki 461.
Schwarzesche 472.
Schwarze Waldnuss 477.
Schwarzfäule 343.
Schwarzfäule v. Eso 321
Schwarzfäule 343.
Schweinsnüs-Hickory 456.
Sciadopitys verticillata Sielb. et Zucc. I
80, 125, 407. II 189, 191. III 203, 409.
VIII 592. IX 407, 408, 409.
Scrub-Pine 356, 357.
Sempervirens 499, 511.
Sendan 484.
Sequoia 410, IX Tafel II. VIII 15.
Sequoien 410.
Sequoia gigantea Desm. I 40, 411, II 42.
190. III 218, 221, 411. IV 411. V 557.
558, 560, 561. VI 234. VIII 410, 592.
IX 55, 411, 412 Tafel IV.
— sempervirens Endl. I 12, 40, 55, 56, 414.
II 188. 416. III 218, 221, 416. IV 57.
IX 56, 57, 58, 59, 60, 414, 415, Tafel IV.
— Washingtoniana Sieb. = Sequoia gi-
gantea 411.
— Wellingtonia Scm. = Sequoia gi-
gantea 411.
Shastatanne 428.
Shellbark Hickory 455, 456.
Slicotanmutz 300.
Shii 487.
Shimanoiki 520.
Shoji 472, 473.
Shirabe 258.
Shirabiso 248.
Shiro 432.
Shiropalme 432.
Shiuri 495.
Shortleaf-pine 358.
Sibirische Fichte 333.
— Lärche 311.
— Tanne 256.
— Zürbel 328.
Sicheleiche 509.
Sichelfichte 335.
Siebolds Buche 469.
— Esche 473.
— Tsuga 429.
— Walnuss 478.
Silberpappel 493.
Silver für 243, 260.
Single leaved Pohon 373.
Sikafläche 357.
Silkesteinzypress 276
Scheinzyppresse 357.
Sack-Pine 385.
Soft Maple 439.
Sommerkanalie 519.
Sommerlinde 520.
Sophora japonica L. I 132, 155, 518. II
189. III 217. V 555, 556, 557, 571.
— platycarpa Maxim. I 518. II 189. III
217, 518. IV 518. V 555, 556, 557, 558.
571. IX 518.
Register.

Taxus 417. IX Tafel II. VIII 16.

Thomsons Ahorn 444.

Thuja 418. IX Tafel II.
— IX 44, 420. Tafel I 6, 6b, II, IV, IX 18.
— orientalis L. = Biota orientalis 263.

— Kusa-atte 423.
— Ma-atte 423.

Tideland spruce 337.

Tienschanfichte 337.

Tilia 520.
— argentea DC. = Tilia tomentosa 522.
— cordata var. japonica Miqu. = Tilia japonica 520.
— japonica Mayr I 520. IV 521.

Toehi no-ki 445.

Tobi 327.

Tonerico 473.

Tonerico-Esche 473.

Tori-mochi-no-ki 522.

Torrey 423. IX Tafel II. X 23.

Torrey's Föhre 390.

Toxilôn pomiferum Rafin. = Maclura aurantacea 480.

Register.

Trübenföhre 375.
Trompetenzweige 458.
Tschenkoskis-Fichte 339.
Tsubaki 452.

Tsuga 424.
— Brumoniana Carr. = Tsuga dumosa 425.
— Hookeriana Murr. = Tsuga Pattoniana 429.

Tsuge 431.
Tuliptree 479.
Tulipmane 479.
Tumion = Torreya 423.
Tupelo 485.
Turekey oak 508.

Uabangeshi 513.
Udaikababa 449.
Ulmen 522.

Ulmus 522. IX 522.
— alata Michx. II 189, III 219. IX Tafel XIII.
— americana L. I 522. IV 522. IX Tafel XII, XIII.
— fulva Michx. I 523. IV 523. IX Tafel XIII.
— montana = Ulmus laciniata 523.
— racemosa Thum. I 524. IX Tafel XIII.
— scabra var. laciniata = Ulmus laciniata 523.

Umbellularia californica Nutt. I 524. II 188. III 525. IX 525.

Uminatza 396.
Ungarische Eiche 500.
Ungarische Silberlinde 522.
Usa-shiro-moni 246.
Urushi 515.

Vaseys Föhre 356.
Veitels Tanne 278.
Vilmorins Götterbaum 446.
Vine maple 439.
Virginischer Wachholder 292.
Valoncaieiche 507.
Vogelreiche 502.

Wacholderarten 290.
Waldnussarten 476.
Waldnussblätterige Eiche 471.
Walnuts 476.
Warzenföhre 353.
Washingtonien 410.
Wasseresche 471.
Weichholzscheinzypressen 267.
Weidenarten 517.
Weideneiche 509.
Weinaborh 499.
Weißete 471.
— Hickory 455.
Weißseichen 499.
Weißfe indische Lebenseiche 513.
— Lebenseiche 513.
Weißfichte 319.
Weißfe Paulownie 559.
— Sumpfeiche 500.
Weißer Maulbeerbaum 485.
Weißfingrige Föhre 344.
Weißfämmige Zürbel 385.
Weißstanne 253.
Webbs Tanne 260.
Wellingtonia gigantea = Sequoa gigantea 411.
Wellingtonien 410.
Westamerikanische Birke 450.
— Erdbeerbaum 448.
— Heyderie 315.
— Lärche 306.
= Tsuga 427.
Western Catalpa 459.
Western Hemlock 427.
Westliche Balsamante 257.
Westlicher Trompetenbaum 459.
Weymouthsöhre 374, 375, 377, 378.
White ash 471.
— bark pine 385.
— cedar 278, 315, 421.
— elm 522.
— fir 244, 246.
— oak 500, 502.
Register.

White oak ban 543.
— pine 386, 388.
— spruce 319, 325.
Wikströmia I 82.
Wild black cherry 495.
Willow oak 509.
Wilson's Fichte 339.
Winterlinde 521.
Wislicenus-Eiche 514.
Wistaria I 87, VII 578, IX 578.
Wutaibirke 450.
Wutaipappel 494.
Wutaishan-Eiche 504.

Yachidama 472.
Yama-guruma 522.
Yellow birch 449.
— cypress 276.
— pine 369.
— poplar 479.

Yews 417.
Yunnanföhre 373.

Zapfenmus 492.
Zelkowa 525.
— crenata Spach. I 525, II 192, IV 526.
V 574, 575, VII 582, IX 525.
— Keaki Siebold I 73, 100, 118, 132, 134, 179, 525, II 189, III 221, 528, IV 526.
V 556, 557, 560, 561, 574, 575, VII 582.
IX 526, 527 Tafel XX, 44.

Zerreiche 508.
Zirben 385.
Zuckernhorn 442.
Zuckerföhre 376.
Zuckerstrofe 385.
Zürbeln 385.
Zürgelbäume 461.
Zypressenarten 286, 288.

Unterseite von Seitenzweigen verschiedener Cupressineen,
im Alter von 5–10 Jahren. 3 mal. Vergrößerung.
Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel II.

<table>
<thead>
<tr>
<th>Bild</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies bracteata.</td>
<td>Pseudotsuga Douglasii Ps. macrocarpa</td>
</tr>
<tr>
<td>Tsuga ohne Harzgänge (Picea) mit "</td>
<td></td>
</tr>
<tr>
<td>" ohne Harzgänge.</td>
<td>"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bild</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies ohne Harzgänge.</td>
<td>"</td>
</tr>
<tr>
<td>1 Sect. Pinaster 2 nadel. 2. " Khasia 3 "</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bild</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Sect. Paryga 12 u. 3 nadel. 9. " Balfouria 5 "</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bild</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cupressus. Chamaecyparis. Thuya, Libocedrus, Sequoia, Taxodium, Juniperus.</td>
<td></td>
</tr>
<tr>
<td>Taxus.</td>
<td></td>
</tr>
<tr>
<td>Taxus.</td>
<td></td>
</tr>
<tr>
<td>Thuya gigantea.</td>
<td></td>
</tr>
</tbody>
</table>

Mikroskopische Merkmale des Holzes von Nadelbaumgattungen.

Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel VI.

5 Chamaecyparis pisifera.

6 Chamaecyparis sphaeroidea.

7Cryptomeria japonica.

8Juniperus virginiana.

H. Mayr n. & N.

Splint- und Kernhölzer anbauwürdiger Nadelbäume.
Verlag von Paul Parey in Berlin.
13 Section Jeffrey, Pitch-Pine-Föhren.

14 Pseudotrupa, Douglasien.

15 Sequoia-Arten.

16 Taxus-Arten.

Splint- und Kernhölzer anbauwürdiger Nadelbäume.
Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel IX.

17 Taxodium distichum.

18 Thuja gigantea.

19 Thuja japonica.

20 Thuja occidentalis.

Splint- und Kernhölzer anbauwürdiger Nadelbäume.
Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel X.

21 Thujopsis dolabrata

22 Tsuga diversifolia und heteroph.

23 Torreya-Arten

24 Cryptomeria: Jindai-Sugi.

Splint- und Kernhölzer anbauwürdiger Nadelbäume.
Verlag von Paul Parey in Berlin.
Blattformen ostamerikanischer Eichen.

Verlag von Paul Parey in Berlin.
Sämereien amerikanischer Laubbäume.

Verlag von Paul Parey in Berlin.
Fruchtformen amerikanischer Eichen.

Verlag von Paul Parey in Berlin.
Blattformen westamerikanischer Laubbäume.

Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel XVI.

25 Castanea-Arten.

26 Catalpa-Arten.

27 Cercidiphyllum japonicum.

28 Cinnamomum Camphora.

Splint- und Kernhölzer anbauwürdiger Laubbäume
Verlag von Paul Parey in Berlin.
29 Diospyros Lotus.

30 Eucalyptus rostrata.

31 Cladrastis amurensis.

32 Hovenia dulcis.

Splint- und Kernhölzer anbauwürdiger Laubbäume.

Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel XVIII.

33 Juplans nigra

34 Jupl cinerea und Sieboldiana.

35 Liriodendron tulipferum.

36 Magnolia hypolana.

Splint- und Kernhölzer anbauwürdiger Laubbäume.

Verlag von Paul Parey in Berlin.
Mj, Fremdländische Wald- und Parkbäume.

Tafel XIX

37 Melle-Arten.

38 Paulownia imperialis.

39 Phellodendron amurense.

40 Prunus serotina und Shiuri.

Splint- und Kernhölzer anbauwürdiger Laubbäume

Verlag von Paul Parey in Berlin.
Mayr, Fremdländische Wald- und Parkbäume.

Tafel XX

41 Quercus, Weisseichen.

42 Quercus, Rot- oder Schwarzechen.

43 Robinia Pseudoacacia.

44 Zelkowa Keaki.

Splint- und Kernhölzer anbauwürdiger Laubbäume.
Verlag von Paul Parey in Berlin.